

Finding Success (and Failure) in Haskell

by Julie Moronuki and Chris Martin

© 2019 Julie Moronuki and Chris Martin. All rights reserved.

2018-12-02: First draft

2019-04-02: Second draft

2019-05-21: First edition

Contents

Preface 7

1 Introduction to case expressions 11

1.1 Conditionals . 12

1.2 Reading type signatures . 12

1.3 Branching patterns . 16

1.4 Case expressions . 16

1.5 Sum types . 18

1.6 Exercises . 19

2 Case expressions practice 23

2.1 The anagram checker . 24

2.2 The word validator . 26

2.3 Validate first, then compare 29

2.4 Interactive program . 30

2.5 Exercises . 33

3 Validation functions 37

3.1 Project setup . 38

3.2 checkPasswordLength . 40

3.3 requireAlphaNum . 42

3.4 cleanWhitespace . 44

3

3.5 Exercises . 47

4 TheMaybeMonad 50

4.1 Combining the validation functions 50

4.2 De-nesting with infix operators 54

4.3 Enter the monad . 56

4.4 Classes and instances . 58

4.5 TypeApplications . 58

4.6 Cases and binds . 60

4.7 Exercises . 61

5 Refactoring with Either 65

5.1 Adding error messages . 65

5.2 Introducing Either . 67

5.3 The Either Monad . 68

5.4 Using Either . 71

5.5 Exercises . 73

6 Working with newtypes 78

6.1 Introducing newtypes . 78

6.2 Declaring new types . 81

6.3 Using our new types . 82

6.4 Revising main . 85

6.5 Exercises . 87

6.6 Notes onmonadic style . 90

7 Introducing Applicative 92

7.1 Validating usernames . 92

7.2 Adding to main . 93

7.3 Constructing a User . 94

7.4 Constructors are functions 97

7.5 Using Applicative . 99

7.6 Exercises . 100

4

8 Refactoring with Validation 104

8.1 Introducing validation . 104

8.2 Adding a dependency . 107

8.3 Nominal refactoring . 108

8.4 Interpreting the errors . 110

8.5 An Error semigroup . 111

8.6 Using Applicative . 114

8.7 Exercises . 117

9 Better error messages 122

9.1 The problem . 122

9.2 The error functions . 124

9.3 Gathering up the errors . 125

9.4 Lists upon lists . 126

9.5 Coercion . 128

9.6 Handling success . 129

9.7 The final main . 131

9.8 Exercises . 132

10 Coercible 136

10.1 Enter Coercible . 138

10.2 What can be coerced? . 138

10.3 Updating the display function 140

10.4 Type applications . 141

10.5 Coercibility is transitive . 142

10.6 Coercion via type parameters 144

10.7 Coercing functions . 144

11 Generalizing further 148

11.1 Designing a typeclass . 149

11.2 Folding over sum types . 151

11.3 Desire for a generalized fmap 155

11.4 The lens library . 157

5

11.5 The Success and Failure prisms 158

11.6 The Either-Validation isomorphism 162

11.7 The Validate class . 164

11.8 Exercises . 168

A Solutions to exercises 171

B API reference 192

C GHCi command reference 200

6

Preface

Julie originally planned this course and taught a version of it at the Austin

Haskell Meetup. The group had, by then, learned about monads and ap-

plicatives and how typeclasses work and all that good stuff, but it wasn’t

yet clear and concrete to them. It’s one thing to talk about an idea and an-

other to make use of it, so this series of lessons was planned to understand

some things aboutmonads and applicatives by using them. We started with

a basic problem to solve – validating some user inputs – wrote a few basic

functions and, over the course of a few hours, refactored it to use different

types. Some of those types aremonads, and some are not, andwewere able

to reach a concrete understanding of why and why not.

We’ve since revised and refined the course and edited the code to illus-

trate several additional coreHaskell conceptswhile still being able to intro-

duce them one at a time, to keep things tractable. By starting with basic

language concepts (if-then-else and case) and growing a single exam-

ple gradually, wemade a book that is accessible to beginners, practical, and

helpful to anyone who wants to get started writing programs in Haskell.

This book is for people who have just started getting into Haskell but

would like to move quickly and understand by doing. We assume very lit-

tle prior knowledge of Haskell. We work through examples without un-

derstanding theory or how and why things work too deeply. We give just

7

enough information, just at the time when you need it.

Success and Failure Most programming languages have, in some form or

other, away of dealingwith failure–ormore specifically, away to combine

multiple smaller programs thatmight fail into a larger program thatmight

fail. In an imperative style, this happens by executing the program’s in-

structions in sequence and halting when an error occurs. Since the instruc-

tion failed to produce its value or effect, which was presumably necessary

for the rest of the program, execution can continue no further, and what-

ever error information was produced by the failed subprogram constitutes

the result of the program overall.

The deficiency of the process described above is that it doesn’t always

provide us with as much information as we might like when failure occurs.

Because execution halts immediately, this approach can only ever give us

informationabout thefirstproblemthatwas encountered. Careless applica-

tion of this error handlingmechanismcangive rise to unfortunate software

behavior. Consider situations in which a user must fill out a form that will

be checked programmatically for mistakes. An ideal program might show

the user a list of every problem on the form; a flawed program may show

only the first.

This is the problem that motivates this book. It is one that many pro-

grammers have encountered and, to our knowledge, one to which only

functional programming with typeclasses permits a straightforward gen-

eral solution in which writing the ideal program is no more difficult than

writing the flawed one.

Programmers askWhymonads? This iswhy: themonad class is our tool

for generalizing the notion of “program” beyond “run a series of subpro-

gramsuntil one fails.” There is awholeworld of other kinds of programs; in

this book, we are concerned with programs for which the execution model

is “run all of the subprograms, and if any of them fail, produce a list of all of

8

the failures.” Oncewe understandhow the Monad and Applicative classes
generalize programs, the solution to our problem falls almost effortlessly

into our lap.

The book begins with two chapters on case expressions to ensure a

solid foundation. From there, we write three functions for checking that

inputs are valid passwords according to the rules of our system. The rest of

the book iteratively expands on and refactors those functions into a small

program that validates usernames and passwords, constructs a User (the
product of a username and a password) if both are valid inputs, and returns

pretty error messages if they are not. Along the way we learn about Monad
and Applicative, how they are similar, how they differ, and how to use

types to rethink our solutions to problems.

Follow along We encourage you to follow along with the steps that we

take in this book, type all of the code yourself, and do the exercises at the

end of each chapter.

You will learn to build a Haskell project with an executable. The only

thing you’ll need to install is Stack; learn about Stack and how to install

it at https://haskellstack.org. Stack will take care of installing the

Haskell compiler, GHC, automatically. If you’re already comfortable build-

ing a project by othermeans, such as with cabal-install or Nix, then you
can still follow along, although we’ll assume that you are able to adapt the

instructions for your build system of choice.

GHC comes with a REPL (“read-evaluate-print loop”) called GHCi

(“GHC interactive”) which makes it easy to run quick experiments to try

things out.

Each chapter except one ends with exercises. Some are fairly straight-

forward extensions of what we’ve just done in the chapter, while others

introduce new concepts. In general, they are ordered by difficulty, with the

first exercises in the chapter being the most familiar and the last one most

9

likely being the most challenging, probably introducing a new concept or

giving you the least amount of help. A few stretch way beyond the current

text to introduce entirely new libraries to encourage you to get closer to id-

iomatic Haskell. You should be able to adequately follow the main body of

the text, however, without doing those exercises, so do not feel obligated

to complete them all before moving on to the next chapter.

10

Chapter 1

Introduction to case

expressions

This chapter compares two kinds of expressions in Haskell:

1. Conditional if-then-else expressions, which you are probably fa-

miliar with from other programming languages; and

2. case expressions, which serve a similar branching role as condition-

als, but with muchmore generality.

Conditionals and case expressions serve a similar purpose: they both

allow a function’s behavior to vary depending on the value of an expression.

However, case expressionshave someflexibility thatif expressionsdonot
have, namely allowing behavior to branch on values other than booleans.

11

Index

*
the kind of types, 76

++
list concatenation, 112

.
function composition, 55

:
list constructor, 45

:|
non-empty list

constructor, 134

<*>
applicative operator, 96

<*
left bird, 115

*>
right bird, 115, 116, 118

<-
in do blocks, 31, 86

<>
semigroup operator, 54, 111

=>
typeclass constraint, 14,

106

>>
monadic sequencing, 89

>>=
monadic bind, 56, 90

|
in data declarations, 19, 67

_
hole, 24

type wildcard, 69

absolute value, 19

all, 27

anagram, 23

Applicative, 96, 101

IO instance, 102

Validation instance, 106

do, 119

arity, 76

202

associativity, 55

Bifunctor, 156

Bool, 17

folding over, 152

.cabal file, 38, 107

case expression, 18

catamorphism, 153

checkAnagram, 30

checkPasswordLength, 41, 71,

82

checkUsernameLength, 83

class declaration

Applicative, 101

FoldAB, 154

LiftAB, 149

MaybeAB, 150

Semigroup, 111

Validate, 164

cleanWhitespace, 44, 83

coercion, 138

contrast with

isomorphism, 163

Control.Lens, 157

“Couldn’t match …”, 51, 129

data constructor, 17

Data.Bifunctor, 156

Data.Bool, 152

Data.Char, 27

Data.Coerce, 138

Data.List, 25

Data.List.NonEmpty, 134

Data.Semigroup, 111

Data.Text, 119

Data.Validation, 105

dependency, 107

display, 130, 140, 141, 151, 155

do, 31, 62, 90, 118

Either, 67

monadic composition of,

68

Monad instance, 69

as validation output, 71

folding over, 154

Error, 82, 108, 113, 133, 135

errorCoerce, 128

Semigroup instance, 111

Failure

data constructor, 105

prism, 157, 159

-fdefer-typed-holes, 24

first, 156

fmap, 87, 156, 159

FoldAB, 154

folding

over list, 27

over Bool, 152
over Maybe, 153
over Either, 154
over Validation, 154

getLine, 31

203

GHCi, 12

head, 21

hole, 24

if ... then ... else, 12, 151

:info GHCi command, 17, 82

instance declaration, 58, 60

MonadMaybe, 69

Monad Either, 69

Applicative Validation, 106

Semigroup Error, 111

Semigroup [], 112

Validate Either, 165

Validate Validation, 166

IO

monadic composition of,

61

applicative composition of,

102

isAlpha, 28

isAlphaNum, 42

isAnagram, 26

Iso, 162

simple, 162

construction of, 165

isomorphism, 104, 162

isSpace, 45

isWord, 27, 28

:kind GHCi command, 76

LANGUAGE pragma, 59, 120

length, 41

lens, 157

let, 86

LiftAB, 149

:load GHCi command, 13

main

module, 13, 39

IO action, 30, 39

makeUser, 99, 125, 164, 166

map, 35

mapFailure, 155

Maybe, 18

as validation output, 41

monadic composition of,

56

Monad instance, 69

folding over, 153

MaybeAB, 150

Monad, 57

Either instance, 69

IO instance, 61

Maybe instance, 69

monomorphism, 15

\n, 32

newtype, 80, 138

deriving, 113

“No instance for …”, 58, 110

NonEmpty, 134

null, 21, 27

Num, 14

204

optics, 158

OPTIONS_GHC pragma, 24

Ord, 14

over, 158, 162

palindrome, 33

parentheses, 20

partial function, 17, 21

passwordErrors, 124, 156, 160

polymorphism, 15, 73, 112, 141,

167

preview, 161

Prism, 158

simple, 161

product type, 94

pure, 101

putStr, 32

:reload GHCi command, 15

representational equality, 81

requireAlphaNum, 42, 43, 83,

109, 145

reverse, 33

review, 163, 164

Rule, 146

safeHead, 22

safeTail, 22

second, 156

Semigroup, 106, 111

:set GHCi command, 24, 59

sort, 25

stack new, 38

stack repl, 12, 39

–package, 105

String, 25

gaps, 66

overloaded, 120

Success

data constructor, 105

prism, 157, 158

sum type, 19, 67

tail, 21

testing, 74

Text, 119

tuple, 20, 95

type ambiguity, 146, 168

type application, 59, 141, 167

type constructor, 19

:type GHCi command, 13, 82

type synonym, 79, 146

typeclass, 14, 58, 149

undefined, 24

unlines, 127

usernameErrors, 125

Validate, 164

validatePassword, 52, 56, 65, 72,

85, 116, 147

validateUsername, 92

Validation, 105

lack of Monad instance,

106

Applicative instance, 106

205

as validation output, 109

folding over, 154

Iso, 164

view, 163

206

