<¥>

The JOY
of Haskell

Finding Success (and Failure) in Haskell
by Julie Moronuki and Chris Martin

© 2019 Julie Moronuki and Chris Martin. All rights reserved.
2018-12-02: First draft

2019-04-02: Second draft
2019-05-21: First edition

Contents

Preface

1 Introduction to case expressions

11
1.2
13
1.4
1.5
1.6

2 Case
2.1
2.2
2.3
2.4
2.5

Conditionals
Reading type signatures
Branchingpatterns,
Case expressions
Sumtypes

Exerciseso

expressions practice

Theanagramchecker
Thewordvalidator
Validate first, thencompare.
Interactiveprogram

Exerciseso

3 Validation functions

3.1
3.2
3.3
3.4

Projectsetup
checkPasswordLength
requireAlphaNum
cleanWhitespace

11
12
12
16
16
18
19

35

Exercises

4 The Maybe Monad

41
4.2
4.3
4oy
4.5
4.6
4.7

Combining the validation functions
De-nesting with infix operators
Enterthemonad
Classesandinstances
TypeApplications,
Casesandbinds,
Exercises

5 Refactoring with Either

5.1
5.2
53
5.4
5.5

Adding error messages
Introducing Either
TheEitherMonad
UsingEither
EXercises

6 Working with newtypes

6.1
6.2
6.3
6.4
6.5
6.6

Introducingnewtypes oL
Declaringnewtypes
Usingournewtypes
Revisingmain
Exercises

Notesonmonadicstyle

7 Introducing Applicative

741
7.2
73
7-4
75
7.6

Validatingusernames
Addingtomain.
ConstructingaUser
Constructors are functions
Using Applicative

Exercises

65
65
67
68
71
73

78
78
81
82
85
87
90

8

10

11

Refactoring with Validation

8.1 Introducingvalidation.
8.2 Addingadependency
8.3 Nominalrefactoring
8.4 Interpretingtheerrors
8.5 AnErrorsemigroup
8.6 UsingApplicative

87 EXercises

Better error messages

9.1 Theproblem, .
9.2 Theerrorfunctions
9.3 Gatheringuptheerrors
9.4 Listsuponlists
9.5 Coercion
9.6 Handlingsuccess
9.7 Thefinalmain
0.8 Exercises

Coercible

101 EnterCoercible
10.2 Whatcanbe coerced?
10.3 Updating the display function.
10.4 Typeapplications
10.5 Coercibility is transitive
10.6 Coercionvia type parameters

10.7 Coercingfunctions

Generalizing further

111 Designingatypeclass
11.2 Foldingoversumtypes
11.3 Desire for a generalizedfmap
11.4 Thelenslibrary

104
104
107
108
110

111
114,
117

122
122
124
125
126
128
129
131
132

136
138
138
140
141
142
144
144

148

11.5 The Success and Failureprisms
11.6 The Either-Validation isomorphism
11.7 TheValidateclass

11.8 EXercises
A Solutions to exercises
B API reference

C GHCi command reference

171

192

200

Preface

Julie originally planned this course and taught a version of it at the Austin
Haskell Meetup. The group had, by then, learned about monads and ap-
plicatives and how typeclasses work and all that good stuff, but it wasn’t
yet clear and concrete to them. It’s one thing to talk about an idea and an-
other to make use of it, so this series of lessons was planned to understand
some things about monads and applicatives by using them. We started with
a basic problem to solve — validating some user inputs — wrote a few basic
functions and, over the course of a few hours, refactored it to use different
types. Some of those types are monads, and some are not, and we were able

to reach a concrete understanding of why and why not.

We’ve since revised and refined the course and edited the code to illus-
trate several additional core Haskell concepts while still being able to intro-
duce them one at a time, to keep things tractable. By starting with basic
language concepts (if-then-else and case) and growing a single exam-
ple gradually, we made a book that is accessible to beginners, practical, and

helpful to anyone who wants to get started writing programs in Haskell.

This book is for people who have just started getting into Haskell but
would like to move quickly and understand by doing. We assume very lit-
tle prior knowledge of Haskell. We work through examples without un-

derstanding theory or how and why things work too deeply. We give just

enough information, just at the time when you need it.

Success and Failure Most programming languages have, in some form or
other, away of dealing with failure — or more specifically, a way to combine
multiple smaller programs that might fail into a larger program that might
fail. In an imperative style, this happens by executing the program’s in-
structions in sequence and halting when an error occurs. Since the instruc-
tion failed to produce its value or effect, which was presumably necessary
for the rest of the program, execution can continue no further, and what-
ever error information was produced by the failed subprogram constitutes
the result of the program overall.

The deficiency of the process described above is that it doesn’t always
provide us with as much information as we might like when failure occurs.
Because execution halts immediately, this approach can only ever give us
information about the first problem that was encountered. Careless applica-
tion of this error handling mechanism can give rise to unfortunate software
behavior. Consider situations in which a user must fill out a form that will
be checked programmatically for mistakes. An ideal program might show
the user a list of every problem on the form; a flawed program may show
only the first.

This is the problem that motivates this book. It is one that many pro-
grammers have encountered and, to our knowledge, one to which only
functional programming with typeclasses permits a straightforward gen-
eral solution in which writing the ideal program is no more difficult than

writing the flawed one.

Programmers ask Why monads? This is why: the monad class is our tool
for generalizing the notion of “program” beyond “run a series of subpro-
grams until one fails.” There is a whole world of other kinds of programs; in
this book, we are concerned with programs for which the execution model

is “run all of the subprograms, and if any of them fail, produce a list of all of

the failures.” Once we understand how the Monad and Applicative classes
generalize programs, the solution to our problem falls almost effortlessly

into our lap.

The book begins with two chapters on case expressions to ensure a
solid foundation. From there, we write three functions for checking that
inputs are valid passwords according to the rules of our system. The rest of
the book iteratively expands on and refactors those functions into a small
program that validates usernames and passwords, constructs a User (the
product of a username and a password) if both are valid inputs, and returns
pretty error messages if they are not. Along the way we learn about Monad
and Applicative, how they are similar, how they differ, and how to use

types to rethink our solutions to problems.

Follow along We encourage you to follow along with the steps that we
take in this book, type all of the code yourself, and do the exercises at the
end of each chapter.

You will learn to build a Haskell project with an executable. The only
thing you’ll need to install is Stack; learn about Stack and how to install
it at https://haskellstack.org. Stack will take care of installing the
Haskell compiler, GHC, automatically. If you're already comfortable build-
ing a project by other means, such as with cabal-install or Nix, then you
can still follow along, although we’ll assume that you are able to adapt the

instructions for your build system of choice.

GHC comes with a REPL (“read-evaluate-print loop”) called GHCi
(“GHC interactive”) which makes it easy to run quick experiments to try

things out.

Each chapter except one ends with exercises. Some are fairly straight-
forward extensions of what we’ve just done in the chapter, while others
introduce new concepts. In general, they are ordered by difficulty, with the

first exercises in the chapter being the most familiar and the last one most

likely being the most challenging, probably introducing a new concept or
giving you the least amount of help. A few stretch way beyond the current
text to introduce entirely new libraries to encourage you to get closer to id-
iomatic Haskell. You should be able to adequately follow the main body of
the text, however, without doing those exercises, so do not feel obligated
to complete them all before moving on to the next chapter.

10

Chapter 1

Introduction to case

expressions

This chapter compares two kinds of expressions in Haskell:

1. Conditional if-then-else expressions, which you are probably fa-

miliar with from other programming languages; and

2. case expressions, which serve a similar branching role as condition-

als, but with much more generality.

Conditionals and case expressions serve a similar purpose: they both
allow a function’s behavior to vary depending on the value of an expression.
However, case expressions have some flexibility that i f expressions donot

have, namely allowing behavior to branch on values other than booleans.

11

Index

* =>
the kind of types, 76 typeclass constraint, 14,
++ 106
list concatenation, 112 >>
monadic sequencing, 89
function composition, 55 >>=

monadic bind, 56, 90
list constructor, 45 |
2 in data declarations, 19, 67
non-empty list

constructor, 134 hole, 24
<x> type wildcard, 69
applicative operator, 96
< absolute value, 19
left bird, 115 all, 27
*> anagram, 23
right bird, 115, 116, 118 Applicative, 96, 101
<- 10 instance, 102
in do blocks, 31, 86 Validation instance, 106
<> do, 119
semigroup operator, 54, 111 arity, 76

202

associativity, 55

Bifunctor, 156
Bool, 17
folding over, 152

.cabal file, 38, 107
case expression, 18
catamorphism, 153
checkAnagram, 30
checkPasswordLength, 41, 71,
82
checkUsernameLength, 83
class declaration
Applicative, 101
FoldAB, 154
LiftAB, 149
MaybeAB, 150
Semigroup, 111
Validate, 164
cleanWhitespace, 44, 83
coercion, 138
contrast with
isomorphism, 163
Control.Lens, 157
“Couldn’t match ...”, 51,129

data constructor, 17
Data.Bifunctor, 156
Data.Bool, 152
Data.Char, 27
Data.Coerce, 138
Data.List, 25

Data.List.NonEmpty, 134
Data.Semigroup, 111
Data.Text, 119
Data.Validation, 105
dependency, 107

display, 130, 140, 141, 151, 155
do, 31, 62, 90, 118

Either, 67

monadic composition of,
68

Monad instance, 69
as validation output, 71
folding over, 154

Error, 82,108, 113, 133, 135
errorCoerce, 128

Semigroup instance, 111

Failure
data constructor, 105
prism, 157, 159
-fdefer-typed-holes, 24
first, 156
fmap, 87, 156, 159
FoldAB, 154
folding
over list, 27
over Bool, 152
over Maybe, 153
over Either, 154

over Validation, 154
getLine, 31

203

GHCi, 12

head, 21
hole, 24

if ... then ... else, 12, 151

:info GHCi command, 17, 82

instance declaration, 58, 60
Monad Maybe, 69
Monad Either, 69
Applicative Validation, 106
Semigroup Error, 111
Semigroup [], 112
Validate Either, 165
Validate Validation, 166

I0
monadic composition of,
61
applicative composition of,
102
isAlpha, 28

isAlphaNum, 42
isAnagram, 26
Iso, 162
simple, 162
construction of, 165
isomorphism, 104, 162
isSpace, 45
isWord, 27, 28

:kind GHCi command, 76

LANGUAGE pragma, 59, 120

204

length, 41

lens, 157

let, 86

LiftAB, 149

:load GHCi command, 13

main
module, 13, 39
10 action, 30, 39
makeUser, 99, 125, 164, 166
map, 35
mapkFailure, 155
Maybe, 18
as validation output, 41
monadic composition of,
56
Monad instance, 69
folding over, 153
MaybeAB, 150
Monad, 57
Either instance, 69
10 instance, 61
Maybe instance, 69

monomorphism, 15

\n, 32
newtype, 80,138
deriving, 113
“No instance for ...”, 58, 110
NonEmpty, 134
null, 21, 27
Num, 14

optics, 158

OPTIONS__GHC pragma, 24
Ord, 14

over, 158,162

palindrome, 33
parentheses, 20
partial function, 17, 21
passwordErrors, 124, 156, 160
polymorphism, 15, 73, 112, 141,
167
preview, 161
Prism, 158
simple, 161
product type, 94
pure, 101
putStr, 32

:reload GHCi command, 15

representational equality, 81

requireAlphaNum, 42, 43, 83,
109, 145

reverse, 33

review, 163, 164

Rule, 146

safeHead, 22

safeTail, 22

second, 156

Semigroup, 106, 111

:set GHCi command, 24, 59
sort, 25

stack new, 38

205

stackrepl, 12, 39
—package, 105
String, 25
gaps, 66
overloaded, 120
Success
data constructor, 105
prism, 157, 158
sum type, 19, 67

tail, 21

testing, 74

Text, 119

tuple, 20, 95

type ambiguity, 146,168
type application, 59, 141, 167
type constructor, 19

:type GHCi command, 13, 82
type synonym, 79, 146
typeclass, 14, 58, 149

undefined, 24
unlines, 127

usernamekErrors, 125

Validate, 164
validatePassword, 52, 56, 65, 72,
85, 116, 147
validateUsername, 92
Validation, 105
lack of Monad instance,
106

Applicative instance, 106

as validation output, 109 Iso, 164
folding over, 154 view, 163

206

