Explorer
HAL tricks

fun things to try with your Pimoroni Explorer HAT

ROMILLY COCKING

Explorer HAT tricks
fun things to try with your Pimoroni Explorer HAT

Romilly Cocking
This book is for sale at http://leanpub.com/explorerhattricks

This version was published on 2020-10-08

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2015 - 2020 Romilly Cocking

http://leanpub.com/explorerhattricks
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!

Please help Romilly Cocking by spreading the word about this book on Twitter!
The suggested hashtag for this book is #explorerhattricks.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

#explorerhattricks

http://twitter.com
https://twitter.com/search?q=%23explorerhattricks
https://twitter.com/search?q=%23explorerhattricks

Also By Romilly Cocking

Making the Shrimp
Learn APL on the $5 Raspberry Pi
A Simulation of Cerebellar Cortex

micro:bit MicroPython in 60 minutes

http://leanpub.com/u/romilly
http://leanpub.com/makingtheshrimp
http://leanpub.com/learnapl
http://leanpub.com/marrscerebellarcortex
http://leanpub.com/microbitmicropython

Contents

Preface e
Abouttheauthor

How to have fun with thisbook
What’s this about? L
Gethelpifyouneedit.
Make sure you are registered! o oL
TheRaspberry Pi
Physical computing
The Pimoroni Explorer HAT

What skillsdoyouneed?
What skills will you learn?,
Your choices
A quick note about spelling. L
A quick preview

What’s this about?
Prepare your Raspberry Pi oo
Installing the HAT onthePi
Enabling interfaces
UsePython3
Install software
Summary
Next . . o

00 N OO U W W W W W

AN DWW R R

CONTENTS

Hello, explorer!
What’s this about?
Turning an LED on and off from Python
Control an LED from inside a Python program
Blink an LED repeatedly,
Redisnottheonly LED
Summary
Next. ... e

Traffic lights project - first version
What’s this about?
UK traffic light sequence
Some new Python features oo L.
Defining Python functions
The complete program
Summary
Next. ..o

SOS!-send Morsecode
What’s thisabout?
Theprogram.
Summary
Next . . . e

The touchy Explorer HAT
What’s thisabout?
Touchpads
Summary
Next. ..o

LED to the breadboard
What’s this about?
Breadboards
A quick experiment
Blinkingthe LED
Blinking program
Touchpadcontrol

CONTENTS

Summary 29
Next . . oo 29
What’s the buzz? 30
What’s thisabout? 30
Twosortsof buzzer 30
Wiring up thebuzzer 30
Driving the buzzer 30
Buzzing Morsecode 30
Summary e 31
Next . . o 31
Traffic lights project -second version 32
What’s thisabout? 32
Summary 32
Next. ..o 32
Measuring analogue values 33
What’s this about? L 33
Analogue measurements with the Explorer HAT 33
Start building a weather station o L. 34
Measuring light levels withan LDR 34
Summary 34
Next . .o 34
The plot thickens L 35
What’s this about? 35
Calculating the LDR’s resistance 35
Mucanplotyourdatal 38
Summary 43
Next. ..o 44
Gettingpushy 45
What’s thisabout? L 45
Wiringupabutton L o 45
Wiring up thebutton L 45

Writingthecode 46

CONTENTS

Summary 46
Next . . oo 46
Now you're motoring 47
What’s thisabout? 47
The motoryoulluse 47
Controlling motor direction 47
Summary 47
Next . . o 47
Where next? 48
Support forreaders 48
Next, two favours. o o 48
Resources forthe future 48
Appendix A 49
Resistor colourcodes. 49

Wiring colours 49

Preface

Explorer Hat Tricks - Learning by Discovery
Build fun Raspberry Pi projects that work

Have you ever wanted to build a realistic set of traffic lights, with beeps and a button
for pedestrians to push?

How about making your own weather station?
Always wanted to build a Pi-powered robot but wondered how to control the motors?
This is the book for you.

With Explorer Hat Tricks you’ll start working on practical examples from the very
first chapter.

You’ll learn about, and write programs using

« Digital inputs that allow you to detect what’s happening in the outside world

« Outputs that can drive LEDs and relays

« Touch sensors that help you to control your projects

« Analogue inputs that you can use to track temperature, light, sound levels and
more

« Motor controls for projects that move.

The book is written with beginners in mind. You won’t need to solder anything, you
don’t need to know any electronics, and you’ll learn about Python programming as

you go.
You’'ll be guided through each project step-by-step, so you can learn by discovery.
The book will be published on Leanpub. That gives you

« a chance to see a sample before you buy the book

« free lifetime updates

« a 45-day money-back guarantee

« copy-protection-free content in several different formats.

https://leanpub.com/explorerhattricks

Preface 2

About the author

Romilly Cocking has been programming computers since 1958!
He has been programming in Python for almost 20 years.

He still loves learning and sharing what he’s learned with oth-
ers. He’s written several books about single-board computers
and physical computing.

He’s a contributor to several Open Source projects, and in 2012
he founded Quick2Wire, a start-up that made add-on boards for
the Raspberry Pi.

Romilly Cocking

He’s a regular presenter at the London-based Raspberry Pint
meetups hosted at Microsoft Reactor London.

You can read his blog about Raspberry Pi, Al robotics and electronics.

https://www.meetup.com/Microsoft-Reactor-London/
https://www.meetup.com/Microsoft-Reactor-London/
https://blog.rareschool.com/

How to have fun with this book

What's this about?

This chapter covers what you may want to know or do before you start.
Get help if you need it

If you need help or have spotted an error, there’s a Facebook group that’s dedicated
to the book.

Make sure you are registered!

One great benefit of buying books on Leanpub is that you can get free updates
whenever the book changes.

To make sure you hear about changes when they become available, you’ll need to
tell Leanpub that you want to be notified.

Once you’ve purchased the book you can do that by visiting your Leanpub library.
Click on the cover of this book and tick the box marked New version available.
I’'m planning follow-ons to this book.

If you also tick the box marked ‘Share my email address with the author’ I'll let you
know when more information is available.

I’ll respect your email - no spam, I promise!

Next, a bit of background on the Raspberry Pi.

The Raspberry Pi

https://www.facebook.com/groups/explorerhattricks
https://leanpub.com/user_dashboard/library

How to have fun with this book 4

The Raspberry Pi is everywhere. The Pi was developed
to encourage young people to learn to program, and
it’s attracted enthusiasts from every age group, gender,
background and skill level.

It’s been incredibly successful.

“We have sold 30 million high-quality, low-cost com-
puters worldwide. Raspberry Pi has become the third
best-selling general-purpose computer ever, behind
only the Mac and the PC”

Philip Colligan, CEO, Raspberry Pi

Raspberry Pi model 4

As a result, there are fantastic resources available to
Raspberry Pi users: extra hardware, software, books, videos and courses. There’s also
a large and supportive community to help you with any problems you encounter.

Physical computing

People use the Pi for all sorts of applications, and the latest version (model 4) is
powerful enough for you to use it as a desktop computer. The Pi can also do things
that most computers aren’t designed for.

The Raspberry Pi has a row of GPIO pins that you can connect to sensors and
actuators in the world around it. This is known as physical computing, and it’s in
physical computing that the Pi really comes into its own. Sensors observe what’s
happening in the real world, and actuators make something happen. A sensor might
detect that a robot is about to hit a wall, and an actuator might drive or stop the robot
motor.

The Pimoroni Explorer HAT

You’ll be using special hardware in this book to make it easy for you to try out
physical computing experiments and projects.

How to have fun with this book 5

The hardware is called the Explorer HAT Pro, and it is made by a UK company called
Pimoroni. Pimoroni was one of the first companies to make and sell add-ons for the
Raspberry Pi.

This book will show you how to connect your Pi to external hardware and program
your Pi to interact with the outside world.

The book is not an official Pimoroni product.

For the projects in the book, there is a discussion group run by the author on
Facebook, and there’s also a Discord channel which you can join here.

You can contact Pimoroni using their support forums if you have a problem with the
Explorer HAT itself.

How much will the hardware cost?

Here’s a rough guide in pounds sterling:

Item Cost
Pimoroni Explorer HAT Pro £19.50
Pimoroni parts kit £11.40
Optional extras £10

If you don’t already have a Raspberry Pi, you will also need

Item Cost
Raspberry Pi 4 starter kit £90+

You may have some of all of the hardware already, and you can use an earlier model
of the Pi if you have one.

The only requirement is that your Pi has a 40-pin GPIO header and WiFi or an
Ethernet connection.

You will also need a TV or computer monitor with an HDMI connection. Details are
on the Raspberry Pi website.

Optional extras include an LDR (light-dependent resistor) and a small electric motor.
They are available from Pimoroni. You’ll find details of how to order below.

https://www.facebook.com/groups/622752398531801/
https://discord.gg/7ZMy4e
https://forums.pimoroni.com/
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/2

How to have fun with this book 6

The code has been tested on a Pi 4B and a Pi 3B/3B+.
Some will run with the Explorer pHAT and a Zero WH.

What skills do you need?

The ability to read, willingness to learn, and fingers nimble enough to push wires
into the holes in the HAT.

What skills will you learn?

You’ll learn how to

1. Create and run Python programs

2. Use jumper wires, electronic components and a breadboard to wire up simple
electronic projects

3. Interact with the real world by running programs on the Raspberry Pi.

What is Python?

Python is a programming language. You'll learn how to write Python programs
(sometimes called Python scripts) to tell your computer what to do.

Why use Python?

Python is widely used and easy to learn. Most of the software written for the
Raspberry Pi is written in Python.

Lots of well-known organisations use Python, including

+ Instagram
+ Google

« NASA

« Netflix

« Uber

so Python is a great language to know.

How to have fun with this book 7

Your choices

You have a choice about which hardware to use for the exercises and projects, and
you can take several different paths through the book depending on your background
and goals.

Choosing your hardware

You’'ll need to get a Pimoroni Explorer HAT Pro.

If you have one of the original Explorer HATs or an Explorer pHAT you can use them
but you won’t be able to do all of the experiments and projects.

You’ll need a Raspberry Pi to drive your Explorer HAT.

If you have a Pi already

If you already have a suitable Raspberry Pi and it’s connected to the Internet with
a monitor, keyboard and mouse, you'll just need the HAT, HAT kit and maybe the
optional extras.

Suitable Pi models include the Raspberry Pi model 1B+, 2B or 2B+, Pi 3B or 3B+, Pi
4B or Pi Zero W.

If you're starting from scratch

If you're starting from scratch you should get a Raspberry Pi model 4, a mouse,
keyboard, SD card, power supply and (maybe) a monitor. The Pimoroni starter kit
has them all apart from the monitor.

What to order

You can order all the hardware (apart from the monitor or TV) from Pimoroni’s UK
shop.

You’ll find links that you can use to order each item. These are not affiliate links. In
other words, I don’t receive any commission when you buy things using the links.
That way you can be sure that the advice I give you is unbiased.

https://shop.pimoroni.com/
https://shop.pimoroni.com/

How to have fun with this book 8

Here’s what you will need for the core experiments and projects:
Pimoroni Explorer HAT Pro

Explorer HAT Pro parts kit

Optional:

LDR (light-dependent resistor)

Miniature motor

Extra jumper leads and potentiometers

If you don’t have a Pi already:

Raspberry Pi 4 starter kit - 2 GB

P The 2 GB version is fine for this book. If you want to do really demanding

projects later you may want to get the 4 GB or 8 GB version.

A quick note about spelling

I’'m based in the UK, as are Pimoroni and the Raspberry Pi foundation, so this book
uses UK spelling.

You’ll normally see colour, analogue and so forth instead of color or analog.
But there are some exceptions!

The Pimoroni library, and the board it supports, use US spelling for analog so the
code examples have to do the same.

A quick preview

Here’s a quick guide to the contents of this book.

Each box on the right is a chapter. The thumbnail images in each chapter show the
projects you’ll do.

https://shop.pimoroni.com/products/explorer-hat
https://shop.pimoroni.com/products/explorer-hat-pro-parts-kit
https://shop.pimoroni.com/products/mini-photocell-1
https://shop.pimoroni.com/products/micro-metal-gearmotor-with-motor-shim?variant=32587883594
https://shop.pimoroni.com/products/maker-essentials-mini-breadboards-jumper-jerky
https://shop.pimoroni.com/products/raspberry-pi-4-starter-kit

How to have fun with this book

Explorer HAT tricks

Explorer
HAT tricks

Preface

How to have fun with this book

Ready, steady, go!

Hello, explorer!

Traffic lights project - first version

SOS! - send Morse code

The touchy Explorer HAT

LED to the breadboard

What's the buzz?

Traffic lights project - second version

4
Measuring analogue valuesa E

The plot thickens

Getting pushy

Now you're motoring

Where next?

Appendix A

Contents

How to have fun with this book

Next

Once your hardware has arrived, you can start having fun!

10

Ready, steady, go!

You've got the required hardware. Time to get going!

What's this about?

This chapter covers

1. preparing your hardware
2. installing the required software
3. checking the installation.

Prepare your Raspberry Pi

If you haven’t got your Raspberry Pi connected and ready for you to work on it, now
is the time to prepare it.

Setting up a Pi for the first time is outside the scope of this book, but you’ll find very
clear instructions on the Raspberry Pi website.

Once your Pi is running you will need to plug the Pimoroni Explorer HAT Pro onto
your Pi and install the extra software that you will need.

Installing the HAT on the Pi

You need to carry out the hardware installation with the Pi shut down and powered

off!
Take a close look at the Explorer HAT and the Pi.

The bottom of the Explorer HAT has a connector plug with 40 holes in two rows of
20.

https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up

Ready, steady, go! 2

The Pi has a header consisting of 40 pins that match the holes in the HAT’s connector.

Line up the HAT’s connector with the Pi’s header so that the pins are ready to slip
into the connector’s holes.

It’s easy to have the HAT a little too far to the left or the right. Make sure that all the
pins have a hole above them!

If you look at the HAT and Pi from the side they should look like this.

Jﬂ YV YUV RV Y VL tet

T e e W i e

Raspberry Pi with HAT plugged in correctly

Ready, steady, go! 3

Enabling interfaces

The Explorer HAT needs to use some special hardware on the Pi which you need
to enable. You’ll find detailed instructions below, or you can watch the video on
YouTube.

Click on the Raspberry Pi icon in the top left corner of the desktop.
Select Preferences/Raspberry Pi configuration.

Select the Inter faces tab.

Enable 12C and SPI. Leave the other items unchanged.

Ll

a) Click on 12C.
b) Select yes to enable it and press Enter.
c) Click on sPI.
d) Select yes to enable it and press Enter.

5. Click on OK to save the new configuration.

Now your Pi is correctly configured for use with the Explorer HAT.

Use Python 3

There are two versions of Python in use at the moment: Python 2 and
Python 3. Both are installed on your Raspberry Pi, but all the examples
in this book use Python 3.

Python 3 is the more up-to-date version. It fixes a few problems with the older
version, and it has a lot of useful new features. While you can use the Explorer HAT
with the old version of Python, it’s not recommended, and this book shows you how
to drive your HAT using Python 3.

https://youtu.be/ZemSFXOEctA

Ready, steady, go! 4

Install software

Once you’ve got the HAT safely plugged in, turn on your Pi.

You’ll need to install two lots of software before you can run your first experiment.
Before you do, it’s a good idea to make sure that the software on your Pi is up to
date.

There’s a great guide to updating the software on your Pi on the Pimoroni website.

Once you’ve done that you’ll be ready to install the additional software.

Install mu

The first piece of software is a Python editor called mu. There are lots of editors
available, but mu is designed for beginners and it’s recommended by the Raspberry
Pi foundation.

Note: If you're already an experienced Python programmer, you can use your usual
editor, but you’ll need to run the programs from the command line.

Mu is easy to install from the main Raspberry Pi menu. Click on the raspberry on
the left of your screen and select Programming. From that menu select mu.

Your screen should look like this.

https://learn.pimoroni.com/tutorial/raspberry-pi/keeping-your-raspberry-pi-updated

Ready, steady, go! 5

m Sound & Video

? Graphics

Installing the mu editor

Click on mu and the Pi will install it.

This can take a while, so now is a good time to take a short break!

Install the Pimoroni Explorer HAT library

Next you’ll need to install Pimoroni’s library for the Explorer HAT. The library is a
collection of pre-written software that makes it easier for you to write programs that
control the HAT.

From the Raspberry Pi desktop, open a terminal window by typing Ctrl-Shift-T.
In the window, type sudo apt-get install python3-explorerhat.

It’s likely that the library is already installed, in which case the command will tell
you so, but if it isn’t the command will install it.

Ready, steady, go! 6

Install code for the projects

Although you will learn most if you type in the code for each project, you may not
have time, and you may want to compare your code with what’s in the book.

You can download the code for all of the projects here. Once you’ve downloaded it,
unzip it into a directory of your choice.

Check the installation

It’s time to check that everything is working.

In the process that follows you’ll get a sneak preview of the first experiments you’ll
work on. Don’t worry too much about what you’re doing; that’s explained in more
detail in the next chapter.

1. If you closed the terminal window, re-open it by typing Ctr1-Shift-T.

2. In the terminal window, type python3. You should see some output followed by
a prompt >>>.

3. Type import explorerhat as eh. You should see a line Explorer HAT Pro
detected... followed by another prompt >>>.

4. Type eh.light.red.on(). The red LED (light-emitting diode) on your HAT
should light up, and the message True will be displayed.

5. Type eh.light.red.off(). The LED should go off and True will be displayed
again.

6. Type exit() to terminate your Python session.

7. Type Ctr1-D to close the terminal window.

Ssummary
Congratulations! You’ve prepared and checked the the HAT hardware and software.

Next

You're ready to start your first project and learn more about blinking the HAT’s
on-board LEDs.

https://github.com/romilly/explorer-hat-examples/blob/master/projects.zip?raw=true

Hello, explorer!

Now that you have your Raspberry Pi prepared and your Explorer HAT ready for
action, it’s time to start experimenting.

What's this about?

In this chapter you’ll learn how to control the LEDs (light-emitting diodes) that are
built in to the Explorer HAT Pro.

An LED is an electronic component that emits light when you apply a voltage to it.
LEDs are available in many different sizes and colours. The Explorer HAT Pro has
four LEDs built in. They are coloured red, yellow, blue and green.

LEDs are really useful because they are easy to see and easy to turn on and off.
Turning an LED on or off is a great way for your program to tell you that something
has happened, and it’s really easy to do from Python.

Turning an LED on and off from Python

You’ll be writing a lot of programs as you work through this book, but in your first
experiment you will run some Python statements directly.

You’ll be using a feature of the mu editor called the REPL.
REPL is short for Read Evaluate Print Loop. When you use mu’s REPL, mu will

1. Read what you type
2. Evaluate what you type using Python
3. Print the result, and
4. Loop back to step 1.

Hello, explorer! 8

In the previous chapter you ran some Python test code from the terminal window
using Python’s built-in REPL. In this chapter you’ll run the same code from inside
mu, and then you’ll use mu to create and run some Python programs.

1. Start the mu editor by clicking on the Raspberry Pi/Programming/mu menu.

2. Click on the keyboard icon marked REPL. A new pane will open at the bottom
of the mu window.

3. In the REPL pane, type import explorerhat as eh. This is a Python statement.
It tells Python that you are going to use Pimoroni’s explorerhat library, and
that you will refer to it as eh to save typing.

4. Type eh.light.red.on(). The red LED on your Explorer HAT should turn on
and you should see the word True appear in the REPL pane. The statement runs
the method (function) on() on the red LED, and returns a result True, which is
displayed in the REPL pane.

5. Typeeh.light.red.off(). The red LED on your Explorer HAT should turn off,
and the result True is displayed.

Control an LED from inside a Python program

In this example, and the ones that follow, you’ll see line numbers beside
the lines of code. Do not enter the line numbers! They are there so that you
can see which line of code the book is talking about.

1. Click on the REPL icon again to close the REPL window.
2. In the main mu window, type the following program:

=N O O b W N =

Hello, explorer!

blink the red LED on the Explorer HAT
import explorerhat as eh
from time import sleep

eh.light.red.on()
sleep(2)
eh.light.red.off()

The mu editor should look like this:

rF + L& 0B @M@ Q) (C) &) 2

Mode New Load Save Flash Files REPL Plotter Zoom-in Zoom-out Theme Check Help
controller.py 3 motoringpy 3 hellopy 3

blink the red LED on the Explorer HAT

import explorerhat as eh

from time import sleep

sleep(2)

1
2

3

4

s eh.light.red.on()
6

7 eh.light.red.off()
8

A simple program in mu

1. Click on the Save button. Name the file hello.py

Quit

Microbit Q

Hello, explorer! 10

2. Click on the Run button. Watch your Explorer HAT. The red LED should turn
on for two seconds and then turn off again.

What's going on?

Line 1 of the program starts with a # symbol, which tells Python that the line is a
comment. A comment is a program line that isn’t meant to be executed. The comment
is there to tell a human reader something about the program, and Python will ignore
the comment line when it executes the program.

Line 2 tells Python that you want to use the explorerhat package and that you
will refer to it as en. A package is a collection of Python code that someone has
made available to be used in other programs. In this case, the explorerhat package
contains code written by Phil Howard (@gadgetoid), who works for Pimoroni. The
package makes it easy for you to use the features of the Pimoroni Explorer HAT from
Python.

The part of the line that reads as eh just saves a bit of typing. If you just
said import explorerhat you’'d need to use the name in full every time
you wanted to refer to the package.

Line 3 tells Python that you want to import the sleep function from Python’s time
package. You’ll use the sleep function on line 6 below.

Line 4 is blank. It’s there to separate the import statements from the code that follows,
so that your program is easier for you and others to read. Python will ignore the blank
line when it executes your program.

Line 5 tells Python to turn the red LED on. eh. 1ight.red refers to the red LED; on()
tells Python to turn the LED on by running some code in the explorerhat package.

Line 6 tells Python to sleep (wait) for two seconds before running the next line.

Line 7 tells Python to turn the LED off.

Blink an LED repeatedly

That program works, but you might want to blink the LED more than once. In this
section you’ll learn how to blink the LED repeatedly.

o N O O b W N =

Hello, explorer! 11

You’ll also learn about a key feature of Python, which is different from many other
programming languages.

In Python, spaces matter. When you look at the code for your next experiment,
you’ll see that lines 5-8 are indented by 4 spaces. If you don’t put those spaces in your
program, it won’t work correctly! You’ll find out why you need those spaces when
you read the line-by-line explanation of the program below.

Typing in the program

1. Open a new file in mu by clicking the New button.
2. Type in the following program:

import explorerhat as eh

from time import sleep

while True:
eh.light.red.on()
sleep(1)
eh.light.red.off()
sleep(1)

Running the program

Mu lets you execute the program you’ve written using its Run button, but the way it
stops a running program does not play well with the Explorer HAT library.

For that reason, it’s best to save your program in mu and to run your program from
a terminal window.

Here’s what you should do:

1. Save the program from within mu:

a) Click the save button.

b) If asked, type the name of the program: blink.py.
2. Open a terminal window by typing Ctrl-Shift-T.

Hello, explorer! 12

3. Go to the directory where mu stored your code by typing cd /home/pi/mu_code.
4. Run the program by typing python3 blink.py.

While your program runs, the red LED on your Explorer HAT should turn on and
off every second.

When you get bored, type Ctr1-C. The Explorer HAT library will print messages
about cleaning up and the program will stop.

What’s this program doing?

Line 1 should be familiar by now. It imports Pimoroni’s explorerhat package and
allows the program to use eh as a shorthand name.

As before, Line 2 imports the sleep function from Python’s time package.

Line 3 is new. Python’swhile statement tells Python to execute the code that follows
over and over again. Python programmers call that a while loop. There are a couple
of things you need to know about while loops.

1. while is followed by a condition. That’s a Python expression which can take
the value True or False. The code that follows while <condition>: is repeated
over and over for as long as the condition is true. In this case, the condition
is always true so the code will be repeated for ever - or at least until someone
stops the program.

2. You often want to execute a few statements over and over, but not the whole
of the program. A little later you’ll code a program that does just that. For
now, what you need to know is that you tell Python which code to repeat by
indenting it - putting extra spaces in front of each line you want to repeat. In
this example, you need to indent lines 5-8 as they are the ones to be repeated.

Lines 5,6,7 and 8 will turn the red LED on, wait one second, turn it off, and wait for
another second.

Since lines 5-8 are repeated, the LED will blink on and off repeatedly, until you stop
the program.

© 00 1 O O b W N =

B RN s s
O b W N -~ O

Hello, explorer! 13

Red is not the only LED

The Pro version of the Explorer HAT has four LEDs: red, yellow, blue and green.

In the next experiment you’ll write a program that will turn them on, one at a time,
and then turn them off again. The program will do that ten times and then stop.

Using mu’s New button, open a new file and enter the following Python code. As
before, make sure you enter four spaces before each of the indented lines.

import explorerhat as eh

from time import sleep

for i in range(10):
eh.light.blue.on()
sleep(0.1)
eh.light.yellow.on()
sleep(0.1)
eh.light.red.on()
sleep(0.1)
eh.light.green.on()
sleep(0.1)
eh.light.off()
sleep(0.1)

print('Time to stop!')

What will this do?
Lines 1 to 3 should be very familiar.

Line 4 is new; it is another type of Python loop. The for loop, combined with the
range function, executes the code block that follows a given number of times.

Lines 5-14 should look fairly familiar. They will turn on the four built-in LEDs, with
pauses in between, and then turn all four off at once. The statement eh.light.off()
doesn’t specify a particular light so it affects them all. The pauses are for 0.1 seconds
(one tenth of a second).

Hello, explorer! 14

Line 15 uses a new Python function: print, which will print the string “Time to stop!”.
A string is a series of characters (letters, numbers and punctuation) - for example, a
message. In Python you can define a string by putting the string in quotation (speech)
marks. As you’ll see shortly, the print statement will tell Python to display the string
as output. mu will display the output when you run the program.

To test your program, save it as all-blink.py and the press the Run button. You
should see all four LEDs light up in sequence, then turn off; that should be repeated
ten times, and then the program will print Time to stop!

Summary

You've covered a lot of ground in these starter projects.

You now know how to

execute Python statements using a REPL

write, save and run a Python program using mu

import and use Python packages

turn the Explorer HAT LEDs on and off

delay a program using Python’s sleep function

use Python’s print function to display output to the user
use for loops and while loops.

Nk N e

Next

The next two chapters use the on-board LEDs for more complex projects.

Traffic lights project - first
version

The next project simulates a set of traffic lights using the LEDs on the Explorer HAT.

What's this about?

In this chapter you will write a more complex program to control a simulated set of
traffic lights, and you will use several powerful features of the Python language.

UK traffic light sequence

Adapted from Wikipedia:
In Britain, and much of Europe, normal traffic lights follow this sequence:

Red - Stop. Do not go

Red and amber - Get ready to go, but do not go yet

Green - Go if the intersection or crossing is clear; you are not allowed to block the
intersection or crossing

Amber - Stop if it is safe to do so.

You will write a Python program which will run through the traffic light sequence
over and over again.

Like the earlier program, this one starts by importing the library code that it needs.

https://en.wikipedia.org/wiki/Traffic_light

Traffic lights project - first version 16

required imports

import explorerhat as eh

from time import sleep

Some new Python features

In order to keep the program simple and readable, the code uses some Python features
that weren’t needed in the previous examples.

The program uses constants. Constants refer to values that don’t change during the
execution of the program.

Python programmers usually write the names of constants in upper case.

The code fragment below defines constants for the three colours of traffic light - red,
yellow and green.

Setting Python constants

RED = eh.light.red
AMBER = eh.light.yellow
GREEN = eh.light.green

The next code fragment creates a Python list.
In Python, a list is just a sequence of values.

Since the program needs to turn unwanted lights off when it turns wanted lights on,
it will be helpful to create a list containing all three lights.

Listing all the lights

ALL_LIGHTS = [RED, AMBER, GREEN]

The part of the program that does the work is a while loop like the one in the LED
blinking example from the previous chapter.

Here it is:

Traffic lights project - first version 17

Simulating the traffic lights

while True:
show(5, RED)
show(1, RED, AMBER)
show(5, GREEN)
show(1, AMBER)

Defining Python functions

As you can see, the code refers to something called show.

show is a function which you need to define in the program. You’ll see its definition
soon.

Functions allow you to define code that you need to use over and over again without
having to type the code repeatedly.

repeated code you will have to fix it in several different places.

P It’s a bad idea to have repeated code in your programs. If you find a bug in

It also makes the code harder to read because it’s longer.

The show function turns the required lights on, turns the others off and then waits
for a period of time.

The values in brackets specify the length of the delay and which lights should be
turned on.

Here’s the definition of show.

Traffic lights project - first version 18

def show(duration, *lights):
for current_light in ALL_LIGHTS:
if current_light in lights:
current_light.on()
else:
current_light.off()

sleep(duration)

The definition of show makes use of some useful Python features.

The names inside the brackets after the name show specify the values that will be
provided when the function is called in your program.

In this case, duration is the length of time the lights should be turned on for. The
function will wait until the specified time has elapsed before carrying on to the next
part of your program.

In the earlier code which called show, the function was sometimes asked to turn on
a single light, and sometimes given two lights to turn on (red and amber).

*1ights tells Python that the function will be called with one or more values, which
can be referred to within the function using the name 1ights.

Python would even allow you to call show with just a duration, in which case 1ights
would be an empty list - a list with no items in it.

The first statement is a for statement. It will run through the block of code that
follows several times - once for each light in the list *1ights.

In Python, blocks of code are indented - spaced in from the code above.

The block that follows the for statement is four lines long, starting with if and
ending with light.off().

current_light is a variable. Each time the code block is executed, the variable
current_light will refer to the next light in ALL_LIGHTS, which is the list [RED,
AMBER, GREEN].

The code block that will be repeated is an i f statement.

In Python, an if is followed by a condition, and then by some code that will be
executed if the condition is true.

© 0O N O O & W N =

NN R R R 1 by vy
O © 0 N O O & W N =~ o

Traffic lights project - first version 19

In this case, the i f statement includes an else, which will be executed it the condition
is not true.

The condition uses Python’s in syntax.

The condition will be True if the current value of current_light occurs in *1ights,
which is the list of lights to be turned on. It will be False if the light is not in the list.

For each light (red, amber or green), the light will be turned on or off, depending on
whether it’s in *1ights, the list of lights given when show is called.

The complete program

Here is the whole program:

import explorerhat as eh
from time import sleep

Name the built-in lights so the code below is more readable.
RED = eh.light.red

AMBER
GREEN eh.light.green
ALL_LIGHTS = [RED, AMBER, GREEN]

eh.light.yellow

def show(duration, *lights):
for current_light in ALL_LIGHTS:
if current_light in lights:
current_light.on()
else:
current_light.off()
sleep(duration)

while True:
show(5, RED)

22
23
24

Traffic lights project - first version 20

show(1, RED, AMBER)
show(5, GREEN)
show(1, AMBER)

Once you’ve entered and saved the program as traffic-lights-@1.py, open a
terminal window, make sure you’re in the correct directory, and type python3
traffic-lights-01.py.

The terminal window will display a message: Explorer HAT Pro detected.
After that you should see the traffic lights cycling through the sequence.
Terminate the program by typing Ctrl-C.

The lights will stop and you’ll see a message from the Explorer HAT library telling
you that it is turning things off and tidying up.

Summary

You’ve seen how to

« use lists in Python

specify a list of arguments when you define a function

- use if statements to control the flow of your program

« use Python’s in syntax to decide if something is in a list.

Next

In the next chapter you’ll write another project that will flash messages in Morse
code!

SOS! - send Morse code

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

What's this about?

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Morse code

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Sending Morse code

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

The program

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks

SOS! - send Morse code 22

Next

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

http://leanpub.com/explorerhattricks

The touchy Explorer HAT

What's this about?

Most Raspberry Pi projects need input from the user. Push buttons work well for
some projects, and you’ll learn how to use them in a later chapter, but the Explorer
HAT has a simpler alternative.

Touchpads

If you look at the HAT you can see eight little pads next to the digits 1 to 8.

HAT Touchpads 1-8

These are touch-sensitive inputs; you can write a program that detects when
someone touches one (or more than one) of the little pads.

Using mu, create a new program with the following code:

o N O O b W N =

The touchy Explorer HAT 24

import explorerhat

from time import sleep

while True:
explorerhat.light.red.off()
if explorerhat.touch.three.is_pressed():
explorerhat.light.red.on()
sleep(0.1)

Save it as led-touch-01.py and run it.

Now touch the pad numbered 3. The red LED should come on. When you take your
finger off the button the LED should go off.

Here’s how the code works:

Lines 1-2 are old friends. They import the packages required by the program.
Line 4 creates a while loop.

Line 5 turns the red LED off.

Lines 6 and 7 introduce the Python if statement. Line 6 checks to see if you are
touching pad 3; if you are, Python will execute line 7, which will turn the red LED
on.

If you didn’t have line 5, what would happen?

As soon as you touched pad 3, the red LED would be turned on and would stay on
for ever!

When you’ve finished experimenting with the program, stop it by typing ctr1-c.

That version of the program works, but it’s not as clear as it might be. At first sight,
line 5 is a bit puzzling.

There’s another way of writing the program which makes things a bit clearer.

O© 00 1 O O b W N =

N
[~

© 0O N O O & W N =

T =
g b 0w N =~ O

The touchy Explorer HAT 25

import explorerhat

from time import sleep

while True:
if explorerhat.touch.three.is_pressed():
explorerhat.light.red.on()
else:
explorerhat.light.red.off()
sleep(0.1)

This uses an alternate form of the i f statement. If pad 3 is touched, line 6 will turn
the LED on. If not, line 8 will turn it off.

Here’s a version of program that uses all four built-in LEDs and controls them using
pads 1-4.

import explorerhat
from time import sleep

while True:

explorerhat.light.off()

if explorerhat.touch.one.is_pressed():
explorerhat.light.blue.on()

if explorerhat.touch.two.is_pressed():
explorerhat.light.yellow.on()

if explorerhat.touch.three.is_pressed():
explorerhat.light.red.on()

if explorerhat.touch. four.is_pressed():
explorerhat.light.green.on()

sleep(0.1)

Type the program in, save it as led-touch-03.py and run it as before.

When done, stop the program by typing Ctr1-cC.

The touchy Explorer HAT 26

Like version 1, this turns LEDs off at the start of the while loop and then turns each
LED on if the corresponding pad is touched. If you touch more than one pad, more
than one LED will turn on.

0 Here’s a tip for Python experts!
The final version uses indexing to dramatically simplify the code.

Pimoroni’s Explorer HAT library represents lights and touchpads using a
class called Ob jectCollection which allows you to refer to a specific light
or touchpad by name or index. The example below uses an index that runs
through the values 0-3 to check the first four touchpads in turn, setting the
corresponding light on or off.

import explorerhat as eh

from time import sleep

while True:
for i in range(4):
if eh.touch[i].is_pressed():
eh.light[i].on()
else:
eh.light[i].off()
sleep(0.1)

Type the program in, save it as led-touch-@4.py and run it as before.

When done, stop the program by typing Ctr1-C.

Summary

You’ve now learned how to use the touchpads on the HAT.

The touchy Explorer HAT 27

Next

So far you’ve made good use of the HAT’s four on-board LEDs, but some projects
need more.

When building a prototype you’ll probably use LEDs and resistors with a breadboard.
You’ll do that in the next chapter.

LED to the breadboard

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

What's this about?

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Breadboards

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

A quick experiment

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Fritzing

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Time to get wiring!

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks

LED to the breadboard 29

Blinking the LED

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Blinking program

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Touchpad control

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Next

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks

What's the buzz?

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

What's this about?

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Two sorts of buzzer

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Wiring up the buzzer

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Driving the buzzer

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Buzzing Morse code

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks

What’s the buzz? 31

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Next

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks

Traffic lights project - second
version

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

What's this about?

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Next

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks

Measuring analogue values

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

What's this about?

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Why do you need analogue inputs?

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Analogue measurements with the Explorer
HAT

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Reading analogue values in your program

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Using a potentiometer

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks

Measuring analogue values 34

Start building a weather station

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Measuring temperature with the TMP36

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Measuring light levels with an LDR

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Using a voltage divider

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Next

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks

The plot thickens

What's this about?

One of the best ways to understand values that change over time is to plot them on
a graph.

Python has good plotting libraries, and the mu editor makes them very simple to use.

In this chapter you’ll learn how to use mu’s plotting to display the outputs from your
weather station.

You'll be able to see how the temperature and light level change hour by hour.

Calculating the LDR'’s resistance

Different models of LDR have different resistance values, and this will affect how
your circuit operates. Below you’ll see how to adjust your code to suit a particular
LDR.

You’'ll need to modify the program that you wrote in the previous chapter.

The analogue input on the Explorer HAT has a high input resistance, so little current
flows through it when you’re measuring a voltage.

That means that almost all the current flowing through the fixed resistor (R1) also
flows though the LDR.

You can use Ohm’s law to calculate the resistance of the LDR from the voltage
connected to analogue input 2.

Don’t worry if you dislike mathematics: the formula you need is already coded in
the Python program below.

If v2 is the measured voltage, R1 is 10k ohms and 1dr is the resistance of the LDR,

© 00 N O O b W N =

-~
[y

The plot thickens 36

5*1dr / (R1 + 1dr) = V2
5*1dr = V2 * (R1 + 1dr)
5*1dr-V2*1ldr=V2*R1
(5-V2)*1dr=V2*R1
Idr=V2*R1/(5-V2)

Here’s the program:

import explorerhat as eh
from time import sleep

while True:
v2 = eh.analog.two.read()
r1 = 10000
ldr =11 * v2 / (5 - v2)
print('v2 is %4.1f and LDR is %4.1f ohms' % (v2, 1dr))
sleep(1)

Save it as calibrate.py and run it in the usual way.

While it’s running, shade the LDR with your hand so that it’s in the dark. You’ll see
the printed values change.

© 00 N O O b W N =

[T N T N T S N o O T = =
N P © O 00 N O O b W0 N =~ O

The plot thickens

Here’s the output I got:

pi$ python3 calibrate.py
Explorer HAT Pro detected. ..

v2 is 0.

v2 is
v2 is
v2 is
v2 is
v2 is
v2 is

v2 is

v2 is 0.
ACTraceback (most recent call last):
File "calibrate.py",

O 0 W W N~
g o1 W =~ N =~ O

5

5

and
and
and
and
and
and
and
and
and

sleep(1)

LDR
LDR
LDR
LDR
LDR
LDR
LDR
LDR
LDR

KeyboardInterrupt

Explorer
Stopping
Stopping
Cleaning
Goodbye!
pi$

The program you just tested shows the resistance of the LDR. How can you convert

HAT exiting cleanly, please wait...

is
is
is
is
is
is
is
is

is

1040.0 ohms
1054.6 ohms
2745.3 ohms
7774.6 ohms
15773.2 ohms
18752.2 ohms
1084.0 ohms
1032.7 ohms
1047.3 ohms

line 10, in <module>

flashy things...

user tasks...

up. ..

that to a light level?

37

The plot thickens 38

o Measuring light levels

Scientists measure the illuminance (brightness) of light in lux.

You can usually find out how an LDR’s resistance varies with the light level
from its datasheet, but we’ll use a rough calculation based on a typical LDR.

In total darkness the LDR has a resistance of 1M ohms (one million ohms).

When the LDR is indoors in a room lit by bright sunlight, it might be
exposed to about 300 lux. Its resistance would be about 3k ohms (3000
ohms).

When the LDR is shaded by your hand it might be exposed to about 1 lux.
Its resistance would be about 100k ohms (100,000 ohms).

Those values match fairly well with the measurements shown above in the
output from calibrate.py.

This table gives a rough guide to converting resistance to lux for that LDR.

Resistance Lux
3000 300

6000 100

10000 44.5
30000 7.8
60000 2.6
100000 1.2

This can be calculated in Python by
300 * (3.0**-log(resistance/3000.0, 2)).

The ** is Python’s power operator.

Mu can plot your data!

One of the great features of the mu editor is that it can plot data that’s output from
your programs.

All you have to do is print the data you want to plot in the right format, and ask mu
to plot it!

https://en.wikipedia.org/wiki/Lux

O© 00 1 O O b W N =

N
[~

The plot thickens

The first thing you need to do is to format the data in the way that mu
expects.
Mu plots Python tuples, which you met earlier.

To print a tuple, you just need to use an extra pair of round brackets in your
print statement.

Here’s a short terminal session that shows the difference:

1 >>> print(1, 2)
2 12

3 >>> print((1, 2))
4 (1, 2)

To plot the data from the mini-weather station, you need to

1. Use the same wiring as the weather experiment in the previous chapter
2. Loop forever. In the loop:
a) Read the two analogue values
b) Convert the two voltages to a temperature and a light level
c) Print a tuple consisting of the temperature and light level
d) Wait until it’s time to take the next reading
3. Run the program in mu
4. Tell mu to plot the data.

import explorerhat as eh
from time import sleep

from math import log

def lux(resistance):
return 300 * (3.0*%*-log(resistance/3000.0, 2))

r1 = 10000
delay = 1 # for testing
delay = 600 # every 10 minutes, for production use!

39

11
12
13
14
15
16
17
18
19

The plot thickens 40

while True:
vl = eh.analog.one.read()
celsius = 100.0 * (v1 - 0.5)
v2 = eh.analog.two.read()
ldr =11 * v2 / (5 - v2)
level = lux(1ldr)
print((celsius, level))
sleep(delay)

Enter the program using mu, save it as weather-plot.py, then run and stop it.

The first three lines import the libraries you’ll use. The log function from the math
library is needed for the calculation in the 1ux function.

Lines 5 and 6 define the 1ux function, which does the calculation you saw above. It
turns an LDR resistance into a light level.

Lines 8 and 9 set up a couple of values you will need later.

r1 is the value in ohms of the fixed resistance that’s connected to the LDR.

delay is the time to wait between readings (in seconds). For testing, a value of 1
second is fine, but for a real weather station you might want to set it to 600 (10
minutes).

Line 10 is commented out. To set the delay to 10 minutes for slower updates to the
plot, uncomment line 10 (remove the #) and comment out line 9 instead (add a # at
the beginning of it).

you want to plot them. If you don’t, the plotting code in mu will get
overwhelmed by the flood of data and things won’t work the way you
want.

P You should always make sure there’s a delay between printing values if

Lines 12-19 contain the main while loop.
Lines 13 and 14 read the first analogue voltage and convert it into a temperature.

Lines 15 to 17 read the second voltage, convert it to the resistance of the LDR, and
convert that to a light level.

The plot thickens

41

Line 18 prints the tuple, and line 19 waits until it’s time to take the next reading.

So far you’ve run programs using the terminal window, but you need to run this one
from mu itself to make the plotting work.

With the program open in mu, click mu’s Run button.

You should see tuples printed once a second. If you shade the LDR or touch the
TMP36 you should see the printed values changing.

The mu window should look like this:

-
) (+)(&)(&) (%)
Mode New Load Save Stop Debug REPL

‘ untitled 3 weather-plot.py

)

1 import explorerhat as eh
2 from time import sleep
3 from math import log

4

5 def lux(resistance):
6

7

8

rl = 10000
9 delay = 1 # for testing

12 while True:

13 vl = eh.analog.one.read()

14 centigrade = 100.0 * (vl - 0.5)
15 v2 = eh.analog. two.read()

16 resistance = r1 * v2 / (5 - v2)
17 level = lux(resistance)

18 print((centigrade, level))

19 sleep(delay)

20

21

22

23

Running: weather-plot py

Explorer HAT Pro detected...
(28.900000000000002, 473.67646419850354)
(28.900000000000002, 479.7406917194966)
(28.900000000000002, 470.6845299526168)
(28.900000000000002, 461.8656616926175)
(28.900000000000002, 476.69507768976746)
(28.900000000000002, 482.8136325012966)

If you now click mu’s Plot button, you should see a plot like this:

Mu 1.0.2 - weather-plot.py

M-

Plotter

return 300 * (3.0*%*x-log(resistance/3000.0, 2))

10 # delay = 608 # every 1@ minutes, for production use!

QG &2 O

Zoom-in Zoom-out Theme Check Help Quit

Tuples

Python 0

The plot thickens 42

Mu 1.0.2 - weather-plot.py

P (+)(2) (&) (%)) (&) (M) () Q)(C) ()2)(O

Mode New Load Save Stop Debug REPL Plotter Zoom-in Zoom-out Theme Check Help Quit

untitled 3 weather-plotpy %
1 import explorerhat as eh A
2 from time import sleep
3 from math import log
4
5 def lux(resistance):
6 return 300 * (3.0**-log(resistance/3000.0, 2))
T
8 r1 = 10000

9 delay = 1 # for testing
10 # delay = 600 # every 10 minutes, for production use!

12 while True: v
Running: weather-plot.py Python3 data tuple Plotter
(29 200000000000003, 461.8656616926175) a
(29. 200000000000003, 453.27579398167853)
(29.208000000008003, 470.6845299526168) 500

(29.200000000000003, 464.7794380905922)

(29.200000000000003, 458.97732680624904)

(29.200000000000003, 464.7794380905922)

(29.200000000000003, 458.97732680624904) 250
(29.200000000000003, 450.46201319589454)

(29.200000000000003, 461.8656616926175)

(29.200000000000003, 464.7794380905922)

(29.200000000000003, 461.8656616926175)

(29.200000000000003, 450.46201319589454) 0
(29.200000000000003, 453.27579398167853)

(29.200000000000003, 464.7794380905922)

(29.200000000000003, 461.8656616926175)

(29.200000000000003, 461.8656616926175) 250
(29.200000000000003, 456.1141354323577)

(29.200000000000003, 453.27579398167853)

(29.200000000000003, 450.46201319589454)

(29.200000000000003, 453.27579398167853)

(29.200000000000003, 450.46201319589454) -500
(29.200000000000003, 456.1141354323577)

Python o

Plot 1

Click on Stop to stop the program.

There’s just one problem. The light level is around 500, but the temperature is around
29 degrees.

The plot would be easier to read if the two values were similar. You can make one
small change to the program to fix that.

Edit line 17 so that it reads level = 0.04 * 1lux(1ldr)

Save the file and run it again. Now the plot should look like this:

The plot thickens 43

1.0.2 - weatherp

P+ ()& (%) @ (W (@ (alc) &)?)(0

Mode New Load Save Stop Debug REPL Plotter Zoomin Zoom-out Theme Check Help Quit
untitled ¥ weather-plotpy X
1 import explorerhat as eh A
2 from time import sleep
3 from math import log
4
5 def lux(resistance):
6 return 300 * (3.0*x-log(resistance/3000.0, 2))
7
8 rl1 = 10000

9 delay = 1 # for testing
10 # delay = 600 # every 10 minutes, for production use!
11

12 while True: v
Running: weather-plot.py Pythond data tuple Plotter
(30.100000000000005, 25.30429391749013) A
(30.100000000000005, 24.594538342195873)
(30.100000000000005, 24.769329003059465) 50

(30.100000000000005, 25.30429991749019)
(30.100000200000005, 25.486300051654894)
(30.100000800000005, 25.124154954769732)
(30.100000800000005, 25.486300051654894) 5
(30.100000000000005, 25.486300051654394)
(29.800000000000004, 25.30429391749019)
(29.800000000000004, 24.769323003059465)

(29. 4, 24.250 45)
(29.800000000000004, 24.945839667568954) 0
(29.800000000000004, 25.30429991749019)
(29.800000200000004, 25.486300051654894)
(29.800000800000004, 24.945839667568954)
(29.800000800000004, 24.594598342195873) 5
(29.800000000000004, 24.421623490632047)
(29.800000000000004, 24.769323003059465)
(29.800000000000004, 25.124154954769732)
(29.800000000000004, 25.486300051654894)
(29.800000000000004, 25.124154954769732) 50
(29.800000000000004, 24.594598342195873)

Python O

Plot 2

Mu’s plotting capability is really cool!

Summary

You’ve covered a lot in this chapter. You've looked at

1. How to work out the level of light falling on an LDR
2. How to print tuples in Python, so you can plot them
3. How to plot values using mu.

The plot thickens 44

Next

The next chapter covers another really useful technique.
You’ll learn how to wire up push-buttons and write Python code that can detect when
a button is pushed.

Getting pushy

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

What's this about?

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Wiring up a button

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

How not to do it!

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Use a resistor

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Wiring up the button

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks

Getting pushy 46

Writing the code

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

What we haven’t done - debouncing

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Ssummary

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Next

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks

Now you're motoring

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

What's this about?

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

The motor you'll use

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Controlling motor direction

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Next

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks

Where next?

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Support for readers

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Next, two favours

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

Resources for the future

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/explorerhattricks.

http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks
http://leanpub.com/explorerhattricks

Appendix A

Resistor colour codes

You can read about colour codes on electronic components on Wikipedia.

There’s another really useful web page called resistors which you can use to convert
resistor values to colour codes.

Wiring colours

I have an additional convention if 'm using components that are connected
using something called I2C. Don’t worry about that if it means nothing to
you - I may add a bonus chapter about I2C when the main book is finished!
If you're already familiar with I2C, my convention is to use green for the
SDA connections and blue for the SCL connections.

https://en.wikipedia.org/wiki/Electronic_color_code
http://resisto.rs/

	Table of Contents
	Preface
	About the author

	How to have fun with this book
	What's this about?
	Get help if you need it
	Make sure you are registered!
	The Raspberry Pi
	Physical computing
	The Pimoroni Explorer HAT
	How much will the hardware cost?
	What skills do you need?
	What skills will you learn?
	Your choices
	A quick note about spelling
	A quick preview

	Ready, steady, go!
	What's this about?
	Prepare your Raspberry Pi
	Installing the HAT on the Pi
	Enabling interfaces
	Use Python 3
	Install software
	Summary
	Next

	Hello, explorer!
	What's this about?
	Turning an LED on and off from Python
	Control an LED from inside a Python program
	Blink an LED repeatedly
	Red is not the only LED
	Summary
	Next

	Traffic lights project - first version
	What's this about?
	UK traffic light sequence
	Some new Python features
	Defining Python functions
	The complete program
	Summary
	Next

	SOS! - send Morse code
	What's this about?
	The program
	Summary
	Next

	The touchy Explorer HAT
	What's this about?
	Touchpads
	Summary
	Next

	LED to the breadboard
	What's this about?
	Breadboards
	A quick experiment
	Blinking the LED
	Blinking program
	Touchpad control
	Summary
	Next

	What's the buzz?
	What's this about?
	Two sorts of buzzer
	Wiring up the buzzer
	Driving the buzzer
	Buzzing Morse code
	Summary
	Next

	Traffic lights project - second version
	What's this about?
	Summary
	Next

	Measuring analogue values
	What's this about?
	Analogue measurements with the Explorer HAT
	Start building a weather station
	Measuring light levels with an LDR
	Summary
	Next

	The plot thickens
	What's this about?
	Calculating the LDR's resistance
	Mu can plot your data!
	Summary
	Next

	Getting pushy
	What's this about?
	Wiring up a button
	Wiring up the button
	Writing the code
	Summary
	Next

	Now you're motoring
	What's this about?
	The motor you'll use
	Controlling motor direction
	Summary
	Next

	Where next?
	Support for readers
	Next, two favours
	Resources for the future

	Appendix A
	Resistor colour codes
	Wiring colours

