MARTIN DILGER

Understanding Eventsourcing

Planning and Implementing scalable Systems with
Eventmodeling, Eventsourcing and Axon

Copyright © 2024 by Martin Dilger

All rights reserved. No part of this publication may be
reproduced, stored or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording,

scanning, or otherwise without written permission from the
publisher. It is illegal to copy this book, post it to a website, or
distribute it by any other means without permission.

First edition

This book was professionally typeset on Reedsy.
Find out more at reedsy.com

https://reedsy.com

Contents

1 Table of Contents
2 Why I care
3 Why you should care

Table of Contents

Why I care

Part | - Foundations

Why you should care

Event Sourcing - what is it?

Planning Systems using Event Modeling

CQRS, Concurrency, (eventual) Consistency

Internal versus external data

The Anatomy of an eventsourced Application

Event Streaming , Event Sourcing and Stream Design
How about Domain Driven Design?

Sagas - Handling transactions in distributed systems
Vertical Slicing

UNDERSTANDING EVENTSOURCING

Part Il - Modelling the System

Brainstorming

Modeling Use Cases with Wireframes
“Given / When / Then” Scenarios
Use Case: Clear Cart

Use Case: Submit Cart

Use Case: Inventory Changed

Use Case: Price Changed

Structuring Eventmodels

Part lll - From Zero to Running Software

Technology Stack

Brief introduction to Axon

Implementing the first slice - “Add Item”

Implementing State Views Slices using Live-Projections
Implementing Remove-Item and Clear-Cart

Example Integration with Apache Kafka and Translations
Implementing a database projection for inventories
Implementing Automations

Submitting the Cart

Handling breaking changes

Part IV - Implementation Patterns

What this part is about
Pattern: Database Projected Read Model
Pattern: Live Model Pattern: The (partially) synchronous

2

TABLE OF CONTENTS

Projection

Pattern: The Logic Read Model

Pattern: Snapshots

Pattern: “Processor-TODO-List” - Pattern
Pattern: The Reservation Pattern

Where to go from here?

Notes

Why | care

Initially this chapter wasn’t planned. But many people asked,
why I actually cared. Why do I make this effort. What drives me.

I began developing software around 2005, so I’'m nearing my
20th anniversary in this business. It’s kind of incredible, as I
don’t feel like it’s been 20 years at all. But one thing has not
changed: Software Development seemed hard back then, and it
seems hard today.

However, I have also seen different projects. Projects that did
well. That worked, were carefully planned and successful. I
think overall we can do better, if we learn to ignore all the
distractions that divert us from what we should truly be focusing
on—delivering value.

I once had a client say, “Software developers are like pizza
deliveries: they’re always late, often deliver only half of what
they promised, and it’s never as good as it looks on the shiny
prospect.”

WHY | CARE

In essence, he’s right. In my opinion, software development
hasn’t changed much in the last 20 years—maybe not even in
the last 40 years. Agile, microservices, cloud, and Al haven’t
fundamentally altered that fact. Software development is still
like the pizza nobody wants in the end. But you have to eat it
because you ordered it.

However, in 2021, [learned about Event Modeling as something
that was about to change everything for me. I finally could talk
to my customers in a language they understood. I could discuss
the problems that truly bother them without confusing them
with technical terms and details they neither understood nor
cared about.

We could suddenly focus entirely on one thing: the real problem
to solve.

We found that the root of many issues wasn’t premature opti-
mization, as many developers think. It was the lack of a common
language—the lack of a structured way to communicate.succes
sful

This is not a new thing. The Book “Domain Driven Design”
by Eric Evans talks about this common language between IT
and Business at length. He famously named it the “Ubiquitous
Language”. We will discuss this in more detail in chapter 8.

Alberto Brandolini, the inventor of Evenstorming' famously
said, “It’s developers understanding, not your business knowl-

1 https://www.eventstorming.com/

UNDERSTANDING EVENTSOURCING

edge that becomes software.”?

But what if the developer simply gets it wrong? What if the lack
of a common language, the absence of clarity in terminology
used, and the lack of time to properly discuss the problems to
solve result in constant misunderstandings between business
and development? What if this is the problem we’ve been trying
to tackle for 20 years with one technical solution after another?

Event Modeling seemed magical to me back then. Every time
I used it, it worked, even with people I had never met before.
Suddenly, everyone understood. Suddenly, we could talk to each
other. I began using it whenever I could. At first, I was unsure
if I was doing it correctly, but more and more, I felt confident
because it was actually simple—almost too easy.

Finally, there was clear communication. We could confidently
discuss the business and the problems we aimed to solve next.
More importantly, we could talk about the cost of delivering
valuable solutions that would address these problems once and
for all. We gained a lot of trust in the systems we planned and
got rid of that lingering uncertainty—the nagging feeling that
something important was being overlooked.

I’ve seen really bad things: huge amounts of money burned
for nothing, waste of time, labor, and knowledge. Meetings
with endless discussions but no outcomes. Requirements that
nobody truly understood but were used to estimate and plan
for months and years ahead - for a product that in the end took

2 https://x.com/ziobrando/status/1347126001340358656

6

WHY | CARE

much longer than initially planned.

For meIdecided from then on, that Iwanted to pursue a different
way. I decided that our industry can do better. And I realized,
that we don’t have to change everything to get there. It’s just
some minor tweaks. In January 2024, I said in a webinar 3,
Software Development will fundamentally change within the
next 2 years. And I think we are on the way as an industry.

This book is about everything I learned in the last 15 years. It is
about what I discovered in 2021. Tiny changes in the process,
focus on the real problems, communication in a language that
is understood by everyone makes all the difference you need.

Internally, we have a name for it. We call it “accelerate”.
Teams working with these ideas should feel “accelerated” pretty
quickly. The longer you work with this approach, the faster you
iterate. Software development can be a well-oiled machine,
constantly going from planning to development and back. Em-
bracing change as part of the game, without slowing down. You
will find a description of this development process and how I
typically work in the Appendix about “Accelerate”.

I'm standing on the shoulder of giants. None of the ideas
presented in this book are my very own. I just combine what
some people way smarter than me came up with like Adam
Dymitruk, Greg Young, Jimmy Bogard, Eric Evans and Vaughn
Vernon.

3 https://nebulit.de/bessere-software-2024

7

UNDERSTANDING EVENTSOURCING

This is what drives me and I can’t wait. I want to see what will
change when we start to do things this ways.

Martin, July 2024

PS: One more thing maybe.. I put my heart into this book and
with the help of many, many people managed to write it in 3
months. I hope it’s a great book, but it’s certainly not perfect.

Not yet.

If you find issues, help me to make it better. Open issues here
on github:

https://github.com/dilgerma/eventsourcing-book/issues

Let’s make this the best book it can be.

Why you should care

What is Event Sourcing and why should you care as a developer,
team manager, or company? Event Sourcing is far from a new
technology; it emerged around 2006 in the software industry.
So it’s about 15 years at the time of writing this book since it hit
the software development mainstream (and much older if you
trace it back to its ancient origins).

So why would you care?

Event Sourcing as an implementation pattern is rather simple.
Instead of storing your data in tables and relations, you store
the facts that actually happened in the system in the order they
happened.

This means the data in your system is like a simple story of what
happened recently.

First, the customer was created, then the customer moved to a

9

UNDERSTANDING EVENTSOURCING

new address. Then the customer made a big purchase. Because
of that, the customer got promoted to premium status, and so
on.

If you add up all these facts (in Event Sourcing we call the facts
“events”), you get a customer with a new address in premium
status.

Although you get the same customer with the traditional CRUD-
based approach, where a system stores data in a normalized

relational schema, what you lose is the history of how the
customer became a premium customer over time.

T e Promoted
Promoted Customer
Y,
Promoted
Customer

Fig 1.1 - Historical Data (top) / flattened data (bottom)

Customer
Created
J

So in the end, you have the same result. Why would it matter in
the first place?

It starts to matter when your company wants to work with the

10

WHY YOU SHOULD CARE

data. What if it was important to know if the customer became
premium before or after a certain point in time?

What if you wanted to know how much money people spend on
new furniture within two weeks after the customer has moved
to a new address?

What if you needed to know when the customer’s address was
changed and how often?

By using Event Sourcing, we are adding the dimension of time
to our system. The system records the facts that happen along a
timeline. This dimension gets lost when data is flattened to a
relational database schema.

Of course, you can consult your data warehouse (if you have one)
to get back some of the data. In simple terms, a data warehouse
is a big database to capture all relevant data changes over time.
But what would happen if all this data would be freely available
and could be used for whatever ideas your business unit comes
up with in the future?

What if you could feed an Al model with the data you collected in
the last 10 years? And what if this model would help you explore
new markets based on hard facts rather than blank theories?

The only way for your company to truly learn and benefit
from the past is keep detailed records. This all requires some
new thinking and a different approach. And it requires the
information to be accessible in a flexible format.

11

UNDERSTANDING EVENTSOURCING

Using Event Sourcing makes it easier to reason about your
system without quickly falling into the trap of thinking in purely
technical terms. It’s much easier to understand a system if it’s
modeled the way it really works.

Instead of saying, “We need to set this blocked flag on the
customer” (which no business person would ever understand),
it’s much more natural to create a new event named “Customer
Blocked.” This event indicates that a customer was blocked at a
certain point in time and for a specific reason.

But unfortunately, this way of thinking is rarely taught in
schools or universities, and that’s why many developers strug-
gle with this simple concept even after years in the software
industry.

“Not losing information” is the foundation of Event Sourcing.
We keep information readily available at all times because you
never know what it might be useful for in a few years.

Learning Event Sourcing is similar to learning a new language.
You often need to search for how things are done using this
approach. However, if you try googling or asking ChatGPT,
you’ll quickly realize that finding information about these
concepts isn’t as straightforward as you would expect. Although
the information is out there, it’s scattered across many different
sources. Plus, there are significantly fewer books on Event
Sourcing compared to those covering traditional information
systems.

So now, again the question: why would you care?

12

WHY YOU SHOULD CARE

Because information is the new gold. Data helps you make
informed business decisions. And keeping data available comes
basically as a by-product when working with Event Sourcing.

In this book, we will dive deeper into Event Sourcing and
everything around it, mainly focusing on the implementation
side of it. That is what we lack most - clear guidance of how to
actually do it using real world examples.

Of course, we will discuss the theories around it and what it
means to work like that. But compared to other books and
information available, we will try to dive much deeper into the
real implementation of it to really understand what it means to
build an event-sourced system.

But not only that.

We’ll also delve deeper into the planning phase of event-sourced
systems, using collaborative modeling techniques you might
or might not be familiar with. Our main focus will be on Event
Modeling, a technique developed and refined by Adam Dymitruk
over the past decade”. Event Modeling helps us plan and discuss
information systems in a clear language. While it’s not limited
to event-sourced systems, you’ll find that it’s a particularly
good fit for them.

So what will you learn in this book?

You will learn pretty quickly what took me 15 years to learn.

4 https://eventmodeling.org/

13

UNDERSTANDING EVENTSOURCING

It’s entirely possible to build plannable, scalable, and well-
structured information systems consistently, not just once,
with the right approach and a solid plan. In this book, I'll
share how I create these plans. Some of the content reflects my
own perspectives, and you may disagree with certain points—
that’s understandable. This book is not abstract; it dives deeply
into the details of Event Modeling, Event Sourcing, and the
implementation aspects behind them. I recognize that some
readers might find this challenging, and I apologize if that’s the
case.

We’ll dive into Event Sourcing patterns, where you’ll learn some
techniques that aren’t secret but aren’t widely shared either,
which can help you implement an event-sourced system in a
scalable way.

I'll share how, after 15 years of developing information systems,
I’ve structured my architectures and systems in a modular way.
This may not be the ‘best’ or ‘perfect’ approach, but it’s the one
that has worked well for me.

I’ll keep things as brief and focused as possible, leaving out
anything that isn’t crucial to your success.

Believe me, implementing event-sourced systems is simpler
than you might expect—as long as you have a clear roadmap
and someone to guide you. I wish I’d had a resource like this
when I started, so my goal is to help you along your journey and
get you started today.

14

	Table of Contents
	Why I care
	Why you should care

