
MARTIN DILGER

Understanding Eventsourcing

Planning and Implementing scalable Systems with

Eventmodeling, Eventsourcing and Axon



Copyright © 2024 by Martin Dilger

All rights reserved. No part of this publication may be

reproduced, stored or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording,

scanning, or otherwise without written permission from the

publisher. It is illegal to copy this book, post it to a website, or

distribute it by any other means without permission.

First edition

This book was professionally typeset on Reedsy.

Find out more at reedsy.com

https://reedsy.com


Contents

1 Table of Contents 1

2 Why I care 4

3 Why you should care 9





1

Table of Contents

Why I care

Part I - Foundations

Why you should care

Event Sourcing - what is it?

Planning Systems using Event Modeling

CQRS, Concurrency, (eventual) Consistency

Internal versus external data

The Anatomy of an eventsourced Application

Event Streaming , Event Sourcing and Stream Design

How about Domain Driven Design?

Sagas - Handling transactions in distributed systems

Vertical Slicing

1



UNDERSTANDING EVENTSOURCING

Part II - Modelling the System

Brainstorming

Modeling Use Cases with Wireframes

“Given / When / Then” Scenarios

Use Case: Clear Cart

Use Case: Submit Cart

Use Case: Inventory Changed

Use Case: Price Changed

Structuring Eventmodels

Part III - From Zero to Running Software

Technology Stack

Brief introduction to Axon

Implementing the first slice - “Add Item”

Implementing State Views Slices using Live-Projections

Implementing Remove-Item and Clear-Cart

Example Integration with Apache Kafka and Translations

Implementing a database projection for inventories

Implementing Automations

Submitting the Cart

Handling breaking changes

Part IV - Implementation Patterns

What this part is about

Pattern: Database Projected ReadModel

Pattern: Live Model Pattern: The (partially) synchronous

2



TABLE OF CONTENTS

Projection

Pattern: The Logic ReadModel

Pattern: Snapshots

Pattern: “Processor-TODO-List” - Pattern

Pattern: The Reservation Pattern

Where to go from here?

Notes

3



2

Why I care

Initially this chapter wasn´t planned. But many people asked,

why I actually cared. Why do I make this effort. What drives me.

I began developing software around 2005, so I’m nearing my

20th anniversary in this business. It’s kind of incredible, as I

don’t feel like it’s been 20 years at all. But one thing has not

changed: Software Development seemed hard back then, and it

seems hard today.

However, I have also seen different projects. Projects that did

well. That worked, were carefully planned and successful. I

think overall we can do better, if we learn to ignore all the

distractions that divert us fromwhatwe should truly be focusing

on—delivering value.

I once had a client say, “Software developers are like pizza

deliveries: they’re always late, often deliver only half of what

they promised, and it’s never as good as it looks on the shiny

prospect.”

4



WHY I CARE

In essence, he’s right. In my opinion, software development

hasn’t changedmuch in the last 20 years—maybe not even in

the last 40 years. Agile, microservices, cloud, and AI haven’t

fundamentally altered that fact. Software development is still

like the pizza nobody wants in the end. But you have to eat it

because you ordered it.

However, in 2021, I learned about Event Modeling as something

that was about to change everything for me. I finally could talk

to my customers in a language they understood. I could discuss

the problems that truly bother them without confusing them

with technical terms and details they neither understood nor

cared about.

We could suddenly focus entirely on one thing: the real problem

to solve.

We found that the root of many issues wasn’t premature opti-

mization, asmanydevelopers think. Itwas the lack of a common

language—the lack of a structured way to communicate.succes

sful

This is not a new thing. The Book “Domain Driven Design”

by Eric Evans talks about this common language between IT

and Business at length. He famously named it the “Ubiquitous

Language”. We will discuss this in more detail in chapter 8.

Alberto Brandolini, the inventor of Evenstorming1 famously

said, “It’s developers understanding, not your business knowl-

1 https://www.eventstorming.com/

5



UNDERSTANDING EVENTSOURCING

edge that becomes software.”2

But what if the developer simply gets it wrong? What if the lack

of a common language, the absence of clarity in terminology

used, and the lack of time to properly discuss the problems to

solve result in constant misunderstandings between business

and development? What if this is the problemwe’ve been trying

to tackle for 20 years with one technical solution after another?

Event Modeling seemed magical to me back then. Every time

I used it, it worked, even with people I had never met before.

Suddenly, everyone understood. Suddenly, we could talk to each

other. I began using it whenever I could. At first, I was unsure

if I was doing it correctly, but more andmore, I felt confident

because it was actually simple—almost too easy.

Finally, there was clear communication. We could confidently

discuss the business and the problems we aimed to solve next.

More importantly, we could talk about the cost of delivering

valuable solutions that would address these problems once and

for all. We gained a lot of trust in the systems we planned and

got rid of that lingering uncertainty—the nagging feeling that

something important was being overlooked.

I’ve seen really bad things: huge amounts of money burned

for nothing, waste of time, labor, and knowledge. Meetings

with endless discussions but no outcomes. Requirements that

nobody truly understood but were used to estimate and plan

for months and years ahead - for a product that in the end took

2 https://x.com/ziobrando/status/1347126001340358656

6



WHY I CARE

much longer than initially planned.

Forme Idecided fromthenon, that Iwanted topursueadifferent

way. I decided that our industry can do better. And I realized,

that we don’t have to change everything to get there. It´s just

some minor tweaks. In January 2024, I said in a webinar 3,

Software Development will fundamentally change within the

next 2 years. And I think we are on the way as an industry.

This book is about everything I learned in the last 15 years. It is

about what I discovered in 2021. Tiny changes in the process,

focus on the real problems, communication in a language that

is understood by everyone makes all the difference you need.

Internally, we have a name for it. We call it “accelerate”.

Teamsworkingwith these ideas should feel “accelerated”pretty

quickly. The longer you work with this approach, the faster you

iterate. Software development can be a well-oiled machine,

constantly going from planning to development and back. Em-

bracing change as part of the game, without slowing down. You

will find a description of this development process and how I

typically work in the Appendix about “Accelerate”.

I´m standing on the shoulder of giants. None of the ideas

presented in this book are my very own. I just combine what

some people way smarter than me came up with like Adam

Dymitruk, Greg Young, Jimmy Bogard, Eric Evans and Vaughn

Vernon.

3 https://nebulit.de/bessere-software-2024

7



UNDERSTANDING EVENTSOURCING

This is what drives me and I can´t wait. I want to see what will

change when we start to do things this ways.

Martin, July 2024

PS: One more thing maybe.. I put my heart into this book and

with the help of many, many people managed to write it in 3

months. I hope it´s a great book, but it´s certainly not perfect.

Not yet.

If you find issues, help me to make it better. Open issues here

on github:

https://github.com/dilgerma/eventsourcing-book/issues

Let´s make this the best book it can be.

8



3

Why you should care

What is Event Sourcing and why should you care as a developer,

teammanager, or company? Event Sourcing is far from a new

technology; it emerged around 2006 in the software industry.

So it’s about 15 years at the time of writing this book since it hit

the software development mainstream (andmuch older if you

trace it back to its ancient origins).

So why would you care?

Event Sourcing as an implementation pattern is rather simple.

Instead of storing your data in tables and relations, you store

the facts that actually happened in the system in the order they

happened.

Thismeans the data in your system is like a simple story of what

happened recently.

First, the customer was created, then the customer moved to a

9



UNDERSTANDING EVENTSOURCING

new address. Then the customer made a big purchase. Because

of that, the customer got promoted to premium status, and so

on.

If you add up all these facts (in Event Sourcing we call the facts

“events”), you get a customer with a new address in premium

status.

Although you get the same customer with the traditional CRUD-

based approach, where a system stores data in a normalized

relational schema, what you lose is the history of how the

customer became a premium customer over time.

Fig 1.1 - Historical Data (top) / flattened data (bottom)

So in the end, you have the same result. Why would it matter in

the first place?

It starts to matter when your company wants to work with the

10



WHYYOU SHOULD CARE

data. What if it was important to know if the customer became

premium before or after a certain point in time?

What if you wanted to know howmuchmoney people spend on

new furniture within two weeks after the customer has moved

to a new address?

What if you needed to know when the customer’s address was

changed and how often?

By using Event Sourcing, we are adding the dimension of time

to our system. The system records the facts that happen along a

timeline. This dimension gets lost when data is flattened to a

relational database schema.

Of course, you can consult your datawarehouse (if you have one)

to get back some of the data. In simple terms, a data warehouse

is a big database to capture all relevant data changes over time.

But what would happen if all this data would be freely available

and could be used for whatever ideas your business unit comes

up with in the future?

What if you could feed an AImodel with the data you collected in

the last 10 years? And what if this model would help you explore

newmarkets based on hard facts rather than blank theories?

The only way for your company to truly learn and benefit

from the past is keep detailed records. This all requires some

new thinking and a different approach. And it requires the

information to be accessible in a flexible format.

11



UNDERSTANDING EVENTSOURCING

Using Event Sourcing makes it easier to reason about your

systemwithout quickly falling into the trap of thinking in purely

technical terms. It’s much easier to understand a system if it’s

modeled the way it really works.

Instead of saying, “We need to set this blocked flag on the

customer” (which no business person would ever understand),

it’s muchmore natural to create a new event named “Customer

Blocked.” This event indicates that a customer was blocked at a

certain point in time and for a specific reason.

But unfortunately, this way of thinking is rarely taught in

schools or universities, and that’s whymany developers strug-

gle with this simple concept even after years in the software

industry.

“Not losing information” is the foundation of Event Sourcing.

We keep information readily available at all times because you

never know what it might be useful for in a few years.

Learning Event Sourcing is similar to learning a new language.

You often need to search for how things are done using this

approach. However, if you try googling or asking ChatGPT,

you’ll quickly realize that finding information about these

concepts isn’t as straightforward as youwould expect. Although

the information is out there, it’s scattered acrossmany different

sources. Plus, there are significantly fewer books on Event

Sourcing compared to those covering traditional information

systems.

So now, again the question: why would you care?

12



WHYYOU SHOULD CARE

Because information is the new gold. Data helps you make

informed business decisions. And keeping data available comes

basically as a by-product when working with Event Sourcing.

In this book, we will dive deeper into Event Sourcing and

everything around it, mainly focusing on the implementation

side of it. That is what we lack most - clear guidance of how to

actually do it using real world examples.

Of course, we will discuss the theories around it and what it

means to work like that. But compared to other books and

information available, we will try to dive much deeper into the

real implementation of it to really understand what it means to

build an event-sourced system.

But not only that.

We’ll also delve deeper into the planningphase of event-sourced

systems, using collaborative modeling techniques you might

or might not be familiar with. Our main focus will be on Event

Modeling, a technique developed and refined by AdamDymitruk

over the past decade4. EventModeling helps us plan and discuss

information systems in a clear language. While it’s not limited

to event-sourced systems, you’ll find that it’s a particularly

good fit for them.

So what will you learn in this book?

You will learn pretty quickly what tookme 15 years to learn.

4 https://eventmodeling.org/

13



UNDERSTANDING EVENTSOURCING

It’s entirely possible to build plannable, scalable, and well-

structured information systems consistently, not just once,

with the right approach and a solid plan. In this book, I’ll

share how I create these plans. Some of the content reflects my

own perspectives, and youmay disagree with certain points—

that’s understandable. This book is not abstract; it dives deeply

into the details of Event Modeling, Event Sourcing, and the

implementation aspects behind them. I recognize that some

readers might find this challenging, and I apologize if that’s the

case.

We’ll dive into Event Sourcing patterns, where you’ll learn some

techniques that aren’t secret but aren’t widely shared either,

which can help you implement an event-sourced system in a

scalable way.

I’ll share how, after 15 years of developing information systems,

I’ve structured my architectures and systems in a modular way.

This may not be the ‘best’ or ‘perfect’ approach, but it’s the one

that has worked well for me.

I’ll keep things as brief and focused as possible, leaving out

anything that isn’t crucial to your success.

Believe me, implementing event-sourced systems is simpler

than you might expect—as long as you have a clear roadmap

and someone to guide you. I wish I’d had a resource like this

when I started, so my goal is to help you along your journey and

get you started today.

14


	Table of Contents
	Why I care
	Why you should care

