

Learning Event-Driven PHP With
ReactPHP

Sergey Zhuk

This book is for sale at http://leanpub.com/event-driven-php

This version was published on 2020-09-29

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2017 - 2020 Sergey Zhuk

http://leanpub.com/event-driven-php
http://leanpub.com/
http://leanpub.com/manifesto

Contents

What is ReactPHP . 1
The Problem . 1
Asynchronous code . 2
Event-Driven Architecture . 4

Event Loop . 8
Basics . 8
Implementations . 9
Event loop and multiple CPUs . 10

Timers . 11
Periodic Timer . 11
One-off Timer . 13
Controlling Timers . 13
Conclusion . 16

What is ReactPHP
The Problem

I think that nowadays in PHP community there is no common agreement about
asynchronous code. One part of the community considers async PHP as something
new and interesting, that can solve some performance issues. While another part of
the community is strongly against asynchronous PHP and suggests using NodeJs or
Go for solving performance-sensitive tasks. Let’s try to understandwhy this happens,
why many people don’t consider PHP as a suitable tool for solving asynchronous
tasks. As for me, I like PHP and I want to use it to solve different tasks. Also, I don’t
want to limit myself with request-response circle. Moreover, I don’t want to extend
my stack with a new language with its ecosystem, just because someone on Twitter
or Reddit said that PHP is not the right tool for my problem.

The most popular reason is that PHPwas not created for it. For this sort of tasks. That
PHP is only about Web and rendering HTML pages. On the one hand, yes, it’s hard
to argue that PHP was not designed to be asynchronous. But truth be told, it also
was not invented as a language for creating large and complex applications. Let’s be
honest, in those times there was no JavaScript at all, and people even didn’t think
about the asynchronous staff. Everybody just rendered HTML synchronously and
people were happy with it.

What is ReactPHP 2

But since then, almost everything has changed. Now we have Composer with a
huge community around it. The language itself has evolved a lot. Now we have
powerful frameworks that help us to create complicated enterprise applications on
PHP. And step by step PHP is no longer only about request-response. Now we have
backend and frontend, we develop different APIs, we make different integrations
with other infrastructure systems, and of course CLI commands are a very common
thing nowadays. Furthermore, the requirements for our program have also changed
a lot. Now we count milliseconds and want our scripts to execute very fast.

Asynchronous code

How does asynchronous code help us here? How can it improve application perfor-
mance? To better understand this, let’s classify what types of execution we have.

Synchronous code. Here we have one single thread. The code is executed sequen-
tially line by line. While one line of code is executed the program waits. This way
traditional PHP works. Asynchronous code.We still have one thread but we add a
concurrency here. The code is constantly busy doing something switching between
different tasks. Nodejs and ReactPHP work this way. Parallel code. We have many

What is ReactPHP 3

threads, each of them can execute their own task independently. For example, Python
can work this way.

We work with PHP it means that we are going to cover the async approach when
we have one thread that is constantly busy with something. The advantage of this
approach is that if we compare it with multithreading, then, in theory, we can do
more in the same period of time. Because our threadwill be constantly busy. This way
wewill maximize the use of resources. Parallel executionwith several threads is quite
complicated in terms of writing code: you need to synchronize threads, reallocate
memory, and so on and so on. While in theory, everything should be done in parallel
and quickly, but in reality chances high that it will become just a mess.

How can we make PHP asynchronous? To answer this question we need to talk
about input-output operations and the concept of non-blocking I/O when read/write
operations do not block the flow. The fact is that input/output operations are rather
slow. As a rule, they are executed many times slower than calculations. For example,
when we discuss operations that our CPU does, we use nanoseconds, but when
we deal with network interactions, such operations are measured in milliseconds
and sometimes even in seconds. So, the difference is huge. But input/output is
everywhere: API calls, filesystem operations, interaction with the database. Thus,
programs written in a traditional blocking way spend a lot of time waiting for
response from disk or until a network request is completed. If performance is critical
for us, and we want to speed up the execution of our application, then we need to

What is ReactPHP 4

somehow start such operations in background, execute them asynchronously.

How can this be implemented in PHP? How can we run tasks without waiting
for them to be completed? Well, we can ask the operating system to process all
operations related to input/output. For example, we need to read data from a file. If
we don’t want our PHP script to wait for the filesystem to respond we don’t directly
communicate with it. Instead, we go to the operating system and ask it to open a
stream in the filesystem and read some data from it. And that’s it, then our script
can go away and do something else. Once the operating system does its task, we
will receive an event from it - saying that the data is read so we can come back and
process it.

Event-Driven Architecture

And to be able to listen to such events, to be able to come back and process them, we
need a special architecture. Event-oriented architecture, which is used for example
in NodeJS. Here PHP and NodeJS have something in common: both are executed
in one single thread. And this does not limit us. Everything that can be performed
slowly, input/output operations, will, be executed not by our PHP script, but by the
operating system. We will only process events received from the system.

Let’s consider this approach in detail. All work, all interaction between different
parts of the code in such an architecture is built on events. We have one running
process, our PHP script with a running event loop. The event loop under the hood

What is ReactPHP 5

is just an endless loop that listens to specific events and calls handlers for them. For
example, we have some kind of input/output task - reading a file. We start it and
tell the OS to read the data from this file. That’s it. Then the execution thread can
do something else. We started this task and do not wait until it is completed. Once
the OS read some portion of data from the file it sends us an event with the data
that has been read. A record of this event is added to the event queue. The execution
thread takes the first event from the queue and calls the corresponding handler for
this event. For example, we calculate something based on this data from a file. The
handler itself can also start for example two more I/O tasks. Let’s say we want to
send this data via HTTP. And these new tasks can also generate their events. Once
the event handler is completed, the thread returns to the event queue and takes new
events that have occurred while the thread was busy. The loop executes until it has
something to do: either tasks are performed in the background, or something else
has not been processed in the event queue. As soon as all tasks are completed and
the event queue is empty the loop stops. Having this kind of architecture, we can
start several I/O operations, and we do not need to wait until they are done. Instead,
we will know about their completion through events, and then we can go back and
respond to these events. We don’t waste time anymore. These I/O tasks will run in
the background for as long as they need.

What is ReactPHP 6

Hello world

What about PHP? Of course, in the language itself, we still do not have built-in
support for writing asynchronous code. Yes, there are low-level things, but we don’t
have such high-level abstractions like event loop, streams, and promises. But this
does not mean that we cannot use PHP to solve asynchronous tasks. With the rise
of Composer, the problem with the lack of tools was solved by the PHP community
and ReactPHP is the tool that makes it easy to write asynchronous code in PHP. This
is how it looks. Let’s quickly consider a very simple example of JavaScript code to
demonstrate asynchronous code.

setTimeout(function () {

console.log("world");

}, 0);

console.log("Hello ");

The setTimeout() function defers code execution, in our case printing the word
“world”. This code will be executed in the specified number of milliseconds. Here we
have 0 milliseconds. So, common sense tells us that a delay of 0 seconds is basically
the same as doing right here right now. And we think that the word “world” will
be printed first, and only then JavaScript will print the word “hello”. However, if we
run this code, “hello world” will be printed. This happens because setTimeout() is
an asynchronous function. It executes nothing. Under the hood it takes this callback
and puts it in the queue to execute later. And like our chef in the kitchen, who puts
the pot on the stove and goes further, the code is executed the same way and the
line that prints the word “hello” is executed. Then the event loop looks through the
timers queue, finds out that the delay of 0 seconds has already passed and runs
this code. That is, here we break the traditional sequential flow. The second call to
console.log()will be executed before the call inside setTimeout(). Thus we receive
the message “hello world”. And the exact same code written with ReactPHP looks
like this:

What is ReactPHP 7

$loop = Factory::create();

$loop->addTimer(

0,

function () {

echo 'world';

}

);

echo 'Hello ';

$loop->run();

What’s going on here? Examine the execution flow from top to bottom. At first, we
create an event loop. Yes, in PHPwe don’t have an event loop running in background.
Therefore, we need to suffer a little and explicitly manually create it. Next, we add a
timer, indicating that after 0 seconds this code should be executed. Then we print the
word “hello” and manually start the event loop. At the time the event loop starts, the
word hello is already printed. The event loop starts, it sees that a timer has already
gone off. The corresponding event is fired and in response to this event, this handler
is called - the code inside addTimer(). The word “world” is printed. With this simple
example, you can see the basic structure of any ReactPHP application:

1. We create an event loop once at the beginning of the program.
2. We write code that uses an event loop. This part describes the behaviour of our

application: how we are going to react to different events.
3. And at the end of the program we start the event loop once.

If we remove the creation and the start of the loop and it turns out that the code
written in ReactPHP looks almost exactly like the code in JavaScript. The only
difference here is that in PHP we need to explicitly create and run the loop.

Event Loop

Package: EventLoop
Version: 1.1
Installation: composer require react/event-loop

Basics

Event loop¹ is the core of ReactPHP, it is the most low-level component. Every other
component uses it. Event loop runs in a single thread and is responsible for scheduling
asynchronous operations. It sequentially processes the queued events by executing
the associated with each event callback. We register these callbacks for certain types
of events before running the loop. Callbacks should be short-running functions and
they do not block the CPU for a long period, since the whole loop will be blocked.
Once a callback execution is finished the event loop dequeues the next event and
processes its callback.

There is no other code being executed in parallel. Event loop is the only synchronous
thing. Another words:

Everything except your code runs in parallel.

Event loop implements the Reactor Pattern. You register an event, subscribe to it and
start listening. Then you get notified when this event is fired, so you can react to
this event via a handler and execute some code. Every iteration of the loop is called
a tick. When there are no more listeners in the loop, the loop finishes.

From the consumer point of view, you don’t have to deal a lot with it, unless you
are doing something special on top of the loop. You construct it once via the factory

¹http://reactphp.org/event-loop/

http://reactphp.org/event-loop/
http://reactphp.org/event-loop/

Event Loop 9

and then you just pass it along through the dependency injection to set up the other
components, and then you simply run it once to start the loop.

1. You create it once at the beginning of the program.
2. Set up it.
3. And run it once at the end of the program.

$loop = React\EventLoop\Factory::create();

// some code that uses the instance

// of the loop event

$loop->run();

Once you call run() on an instance of the event loop, it will run until there are no
more tasks to perform. Then the program stops. To force the loop to stop you can
explicitly call stop().

Implementations

ReactPHP provides several implementations of the event loop depending on what
extensions are available in the system. The most convenient and recommended way
to create an instance of the loop is to use a factory:

$loop = React\EventLoop\Factory::create();

Under the hood this factory simply checks for available extensions and selects the
best implementation for the current system. All implementations of React\EventLoop\LoopInterface
support the following features:

• File descriptor polling.
• Timers.
• Deferred execution of callbacks.

Event Loop 10

While each implementation of the event loop is different, the program itself
should not depend on the particular loop implementation. There may be
some differences in the exact timing of the execution or the order in which
different types of events are executed. But the behavior of the program
should not be affected by these differences.

Event loop and multiple CPUs

Since the loop is single-threaded does that mean it will only utilize one
CPU?

Yes, PHP is single-threaded and uses only one CPU core. The problem with running
some code on multiple CPU cores at once is that it requires some sort of coordination
between these multiple threads of execution. To split the work between the multiple
CPU cores each thread has to talk to each other about the current state of the
program. But the idea behind ReactPHP is not to exploit your server 16 CPU’s, but
to fully exploit your processor time. If you want to use your 16 CPU, you just launch
16 servers on different ports and put a load balancer like nginx in front of them.

Timers
Timers can execute some code at a later time, at a number of seconds in the future
(just like setTimeout() and setInterval() do in JavaScript). They are not the same
as a sleep() function, instead, they are events in the future. Timers will run as early
as possible after the specified amount of time has passed.

Asynchronous vs Parallel
Asynchronous is not the same as parallel. Asynchrony is the possibility of
inconsistent code execution. Parallelism is the ability to execute the same
code at one time. Event loopworks asynchronously, but not in parallel. That
means that timers are not time-accurate and can run a little late. Also, if
you have several timers that are scheduled to execute at the same time,
the order of their execution is not guaranteed. Any timer will be executed
not earlier than the specified time. The code runs in the one thread and
cannot be interrupted. That means that all timers are executed in the same
thread as the event loop runs. In the situation when one timer is being
executed too long, all the other timers will wait, until this timer will be
done. Also, it is possible that some timers will never be executed.

Periodic Timer

This timer schedules it’s callback to be invoked repeatedly every specified number of
seconds. Periodic timer can be added to the loop with addPeriodicTimer($interval,

callable $callback)method. It accepts an interval in seconds and a callback, which
will be executed at the end of this interval:

Timers 12

$loop = React\EventLoop\Factory::create();

$counter = 0;

$loop->addPeriodicTimer(

1,

function () use (&$counter) {

$counter++;

echo "$counter\n";

}

);

$loop->run();

A periodic timer is registered with the event loop. Then we start event loop with
$loop->run(), when a timer is fired the code flow leaves an event loop and a timer
code is being executed. Every second, the timer displays an increasing number. Event
loop will run endlessly.

A callback can accept an instance of the timer, in which this callback is executed:

Timers 13

use React\EventLoop\TimerInterface;

$loop->addPeriodicTimer(

2,

function (TimerInterface $timer) {

// ...

}

);

One-off Timer

The only difference with the periodic timer is that this timer will be executed only
once and then will be removed from the timers storage.

$loop = React\EventLoop\Factory::create();

$loop->addTimer(2, fn() => print "Hello world\n");

$loop->run();

echo "finished\n";

In 2 seconds the script will output a Hello world string then the timer will be
removed and event loop will stop.

Controlling Timers

There are two more methods available in the loop object to control timers:

• cancelTimer(TimerInterface $timer) to detach a specified timer.

Timers 14

• isTimerActive(TimerInterface $timer) to check if a specified timer is at-
tached to the event loop.

We can use a passed instance of the timer to detach it from the event loop:

use React\EventLoop\TimerInterface;;

$loop = React\EventLoop\Factory::create();

$counter = 0;

$loop->addPeriodicTimer(

2,

function (TimerInterface $timer) use (&$counter, $loop) {

$counter++;

echo "$counter\n";

if ($counter === 5) {

$loop->cancelTimer($timer);

}

}

);

$loop->run();

echo "Done\n";

After the fifth execution, this timer will be detached. When event loop becomes
empty it stops.

Timers can interact with each other. Both methods addTimer() and addPeriodic-

Timer() return an instance of the attached timer. Then we can use this instance and
pass it to the callback of the another timer. This way we can specify a timeout for
some event:

Timers 15

$loop = React\EventLoop\Factory::create();

$counter = 0;

$periodicTimer = $loop->addPeriodicTimer(

2,

function () use (&$counter) {

$counter++;

echo "$counter\n";

}

);

$loop->addTimer(

5,

fn() => $loop->cancelTimer($periodicTimer)

);

$loop->run();

In the snippet above the periodic timer will be executed only first 5 seconds, after
that, it will be detached from the event loop.

Timers 16

Avoid blocking operations
Since all the timers are executed in the same thread, you should be aware
of blocking operations inside the callbacks. One blocking timer can stop
the whole event loop like this:

$loop = React\EventLoop\Factory::create();

$i = 0;

$loop->addPeriodicTimer(

1,

function () use (&$i) {

echo ++$i, "\n";

}

);

$loop->addTimer(2, fn() => sleep(10));

$loop->run();

The first periodic timer will wait for 10 seconds until the second one-off
timer will be executed.

Conclusion

Timers can be used to execute some code in a delayed future. This code may be
executed after a specified interval. Each timer is being executed in the same thread
as the whole event loop, so any timer can affect this loop. Timers can be useful for
non-blocking operations such as I/O, but executing a long living code in them can
lead to unexpected results.

You can find examples from this chapter on GitHub².

²https://github.com/seregazhuk/reactphp-book/tree/master/1-timers

https://github.com/seregazhuk/reactphp-book/tree/master/1-timers
https://github.com/seregazhuk/reactphp-book/tree/master/1-timers

	Table of Contents
	What is ReactPHP
	The Problem
	Asynchronous code
	Event-Driven Architecture

	Event Loop
	Basics
	Implementations
	Event loop and multiple CPUs

	Timers
	Periodic Timer
	One-off Timer
	Controlling Timers
	Conclusion

