Intelligent Forecasting, Project Control and Client Relationships Management

Dimitre Dimitrov

Copyright © 2017 by Dimitre Dimitrov

All rights reserved. This book or any portion thereof

may not be reproduced or used in any manner whatsoever
without the express written permission of the publisher

except for the use of brief quotations in a book review.

Toronto, Canada
First Edition, 2017

Editors: Roger Hardnock, Robert Acton

Tlustrations: Dimitre Dimitrov

ISBN 0-0000000-0-0

To a friend

Estimation, Software Project
Estimation

Intelligent Forecasting, Project Control and Client
Relationship Management

Table of Contents

Why This Book?
Who Is The Reader of This Book and What Can You Find In It?
H#NoLEstimates

How Is The Book Organized
Frequently Used Pronouns, Collective Nouns, and Terms

Chapter 0

Chapter 1

The People
The Problems

The Desires
Summary

Chapter 2
What’s Wrong with (overly) Simple Answers?

What’s Wrong with Complicated Answers?

Simple Constructs that Capture Complex Reality

Summary

Chapter 3

Probability
Getting Accurate Information Based on Imprecise Inputs

Control, Lack of Control, and Precision

Summary

Chapter 4
Determining The Chart Area
Sizing The Project
Plotting a Dot
The Other Two Pillars
Forecasting
Summary

Chapter 5

Adjustments
Available Thrust

Takeoff and Level Off
Health Factors

Scope

Driving the Projections

Summa

Chapter 6

Performance Index

Borrowing Index

Working Smart

Navigating Issues
Navigating Issues with the Team

Chapter 7
The Big Kahuna

Estimating

Tidbits (Chapter 8)

Software Development Laws

Manifesto for Agile Software Development

Common Gaps, Environment Needs and Tiny Details
SCARF

Invert, always Invert

Appendix
Cheatsheet

Variations of the Intellicent Forecasting Method

Spreadsheets and Sample Charts

Index

References

Landscape

Why This Book?

Have you been on projects where halfway down the road it seems increasingly
unlikely that you will finish as desired, but you can’t put your finger on it and simply
push through with a growing resentment? Have you been in meetings where scope
discussions get increasingly difficult and depressing, ultimately sucking the energy
out of everyone instead of enabling them to move forward with certainty and
determination? Wouldn’t it be good if a confident assertion for the project’s ability
to deliver is made as eatly as one or two months into the effort? What additional
value and quality of working relationships can you generate if the time for
estimation, tracking, and change management is slashed by a factor of 10, while
simultaneously providing clients and team members with true peace of mind so they
can focus on other important business activities? This book provides a practical tool
that will help with all of this - it is a how-to book. But ultimately it is about the
relationships we develop during projects and the appreciation of our colleagues and

business partners.

It is 2017! Yet estimation and forecasting in the software development industry is
still considered mystifying at best, and an archaic and obsolete concept at worst.
Reliable forecasting continues to present a challenge for many teams and software
development organizations. The practices associated with the two predominant
software development methodologies are inadequate. Methods related to waterfall
development are notoriously bad for long-term forecasting because they encourage
too much information processing too eatly, and have a tendency to skew reality into
a Gantt chart. And methods that relate well to agile software development are not
as notoriously bad, however, mostly because long-term forecasting is avoided
altogether. This is problematic in many cases because it pushes important decisions
too late in the project, adds unnecessary stress on people’s relationships, and

ultimately diminishes the chances for successful projects.

Where forecasting on projects utilizing agile software development is done, it is
with short-term commitments - an iteration or a few at best. Such small-span
commitments have minimal value for business people who want to look a year or
two ahead. When teams practicing agile software development commit to a longer

term delivery, they suffer many of the same issues as people working on waterfall

projects do - the desired “project targets” get missed and there is lack of confidence
throughout the project about what will be delivered or when. Senior businessmen
and businesswomen lose the capacity to trust the delivery teams and organizations.
People who work together for years remain at a distance and never build true

partnerships. Many business teams and development teams are openly adversary.

One reason behind much of these issues is the inability for meaningful long-term
commitment. And while reliably providing accurate and precise software estimates
is close to impossible, reliably providing accurate and precise forecasts is not. This
book shows you how to do this and commit to a purpose eatly. A satisfactory
solution can be reached with a small investment in understanding people’s
problems, and through the adoption of simple statistical principles. The security and
reliability that you will be able to contribute to projects will improve your team’s
performance, morale and motivation, and will have a positive impact on long and

healthy client relationships.

Who Is The Reader of This Book and What Can You
Find In It?

“Estimation, Software Estimation” is for anyone who wants to have a fresh and
adequate outlook on the process of software estimation and forecasting, and how
these activities facilitate the conversations and relationships among people. It is
directly relevant to the roles of scrum masters and project managers, and provides
practical tools for intelligent project control. The book is also valuable for business
people who want insight into the type of problems that delivery teams face, and for
programmers and other delivery team members who want to gain an understanding
of the project manager’s day-to-day challenges. While life experience as a member
of a software project is useful for quickly recognizing some of the situational

nuances, this book will appeal to curious people who are early in their careers.

The described forecasting method relies on the ability of a technical team to deliver
working software with consistency. Many of the technical practices enabling such

delivery have been perfected and popularized by what came to be known as agile

software development. Thus, in practice, the forecasting and control methods align
well with the operational mode of many teams delivering software with an agile
development methodology. However, this is not a book about agile software
development. If you and your team are practicing solid software development and

do not label yourself as agile or extreme, then this book will be valuable for you too.

Estimation by itself is of limited use. We do it to forecast and plan. Forecasting and
planning are in turn done to improve the chances of making good decisions and
taking appropriate actions. A forecast, does not improve a project’s performance. It
is only a tool for visualizing that performance. This book shows us how to use an
intelligent forecast for making timely decisions and applying measured project

control for steering towards a valuable goal.

side note

Before going any deeper in this book, we need to establish that estimation and
forecasting are two different things. This book is more about forecasting and control.
However, the term “estimation” has been misused for so long, that it has become the
normal term for describing what amounts to forecasting. Estimation is only the initial
guess about the size of something. Forecasting is the activity of processing input data,
including the estimates, and formulating an intelligent prediction.

Where this book ventures into a longer treatment on a subject, or establishes an
explicit view on the meaning of a concept, it is not done with the intent to educate
the reader, rather it is done with the intent of providing context so the reader can
align their understanding with the ideas in the book. For more information on some
of the relevant concepts, you can reference the literature provided in the Reference

section at the end. Feedback is welcome at estimationbook.com.

The method presented here scales well over any size of a software project, provided
the organizational structure and the development methods are such that

continuously delivering working software is achieved.

Small projects, consisting of a few developers working for a couple of months are
harder to control through the approach provided by this book, but you can still find

useful ideas to guide your future discussions with clients and teammates.

http://estimationbook.com/

10

For those who work in the context of legacy systems, the applicability of the
approach depends on whether the system is healthy or not. For projects within
healthy legacy systems you can apply the concepts almost directly. For projects
within legacy systems with compromised codebase integrity, you can cherry pick

ideas that make sense in your context and apply them when there is an opportunity.

This book will be of particular value to people who provide software project
delivery as a service to other companies or departments within larger organizations.
Teams utilizing modern development techniques and automation have often
achieved the technical excellence required for reliable forecasting and intelligent
project control. These teams often serve big corporate clients who are not well
dispositioned, or are downright allergic to the concept of no estimation and no
long-term planning. By providing a viable alternative to the dreaded work
breakdown structures and bottom up estimation, this book will help delivery teams
speak the language of business people without sacrificing software development

performance or quality of delivery practices.

Finally, ”Estimation, Software Estimation” will provide clues for achieving a
mindset which allows us to bridge an important gap - to see each other (delivery
teams and clients) as human and to appreciate each other’s and our own needs and

abilities.

#NoEstimates

Since this book has the word estimate in its title, it seems appropriate to address the

idea of #NoEstimates.

#NoEstimates is about searching for alternatives to estimates. The method
described in this book might actually fall in this category of alternative to the
broadly accepted methods of estimation. However, it can be also seen as a logical
extension of traditional estimation. I will leave it to the reader to make their own
judgement as to whether the method described here is alternative or not - if that

categorization matters to the reader at all.

Exploring alternatives is interesting when context is maintained. Still, much of the

discussions in the #NoEstimates blogs and articles move haphazardly from project

11

delivery to product development to software development. These are vastly
different contexts. The book you are reading is about estimating, forecasting and

controlling software projects.

In contrast, the concepts of business value and guided product experiments are
primarily about product development. Software quality, continual integration and
automation are primarily about software engineering. All three - product delivery,
software delivery, and project delivery are complementary and when done right
each draws on the strengths of the others. While product delivery and software
delivery present just as interesting and important problems, they are not the main
subject of this book and are only examined where it facilitates the discussion of

intelligent project forecasting.

How Is The Book Organized

The concepts in the book build upon each other. Concepts covered earlier are
needed to fully appreciate those covered later. Ideally the reader will take on a

sequential approach and read the book from front to back.

That said, many of the sections in the book can be read without having read the
previous sections or chapters. Some readers might be familiar with a few of the
ideas presented in this book and could dive straight into a later chapter. The
sections within chapters are kept brief, making it easier to locate topics when

reading non-sequentially.

Chapter 0 initializes a minimalistic context for the rest of the book.

Chapter 7 describes a fictional, but realistic software development project where the
estimation and forecasting techniques described here are exercised. It can be read

independently or used as a reference.

The Tidbits chapter is a compilation of ideas and techniques that are important for

supporting the practical application of this method.

12

Frequently Used Pronouns, Collective Nouns, and
Terms

A few words appear repeatedly throughout the text:

"People" is often used as all the people on a project, which includes both client and
the software delivery team. Or, "people" can sometimes refer to only one of these

groups - either the client team or the software delivery team.

"We" is mainly from the perspective of the software delivery team, but it is also
used from the perspective of all the people involved on a software project.

Occasionally “we” stands for project managers and scrum masters only.

“Business people” and “client” are used for the people who request the software
solution. Sometimes these people are external clients and sometimes they are from

another department within the same company.

"Software developers" is generally meant as the programmers, designers and testers
from the delivery team, but is sometimes used to describe all the people who
contribute to the delivery of a software project, including the scrum master and

pro]ect manager.

“The team” and “project team” - these and similar expressions are used to mean all
the people on a project, including people from the client team who are actively

engaged with the project.

“Delivery team” is basically “the project team” less the “business people”. If there
are 5 scrum teams working on the same project then all of these are considered “the

delivery team”, since the major discussion in this book focuses on estimating and

b

forecasting complete projects and not individual team’s performance.

“Accurate” is generally used to mean both accurate and precise, since we are only

interested in the pragmatic side of forecasting.

13

“Project” is a collaborative enterprise for achieving a particular valuable goal over a

set period (and within certain limitations).

“Project management” is meant as the activities related to decision making and
application of control over project parameters in a way that is most conducive to
the project’s success. It also includes the activities related to securing the people’s

wellbeing within the project boundaries.

“Project manager” is generally meant to describe a role and not a job title. Anyone
who is participating in project management activities on the project can play the
project manager’s role. A scrum master can often be a project manager, but so can a
team lead, a director or a manager. Occasionally, the whole team can be the project

manager.

“Project performance” captures the project’s progress towards success in terms of
delivered functionality and expanded effort. It is not exactly the same as team
performance, although both are certainly related. It is important to keep in mind
that the definition of success might shift during a typical project as people adjust to
reality.

14

“Invert, always invert”

~ Carl Jacobi,
19th Century mathematician

15

Chapter 0

These are the beliefs and assertions which give meaning to much of the discussion

in this book.

“Certainty or safety is a basic need’ - At some level every person needs safety. At the
most elementary level a person needs physical and psychological safety. This is true
even when a person engages in an inherently risky endeavour like starting a new

software project.

“A software team can deliver continnously within a controlled productivity range” - Modern
delivery teams have mastered proven software engineering practices and have
repeatedly demonstrated that their productivity can remain within constant limits
throughout the duration of a project. We will take “constant limits” to mean that if
there are two comparable pieces of functionality then the team will complete these
by expanding comparable amounts of effort. And we can expect this to hold true
throughout the project (with the possible exception of the first few weeks when
people are picking up speed).

“Project control is more important than record keeping’ - On a software project, the primary
responsibility of the people involved is to take actions with the intent to control and
steer the project to success. Book keeping is of secondary or ternary importance.
The benefit of forecasting is to pull certain important decisions earlier in the
project’s life. We are not forecasting to prove something right or wrong, nor are we
estimating to keep a record and hold people accountable for the estimation

numbers they produced.

“It is only worth forecasting when there is ability to act” - A forecast on its own does not
change the outcome of a project. There must be a real possibility that we make
control decisions, which lead to measured and timely actions, and change the
project’s parameters. If such readiness for action does not exist on a project, and

will never exist regardless of new knowledge, then forecasting becomes useless.

16

Chapter 1

Let’s have a short stroll and meet the people who are involved in a software project.
It is important to look at their typical problems so that we have confidence in the
adequacy of the forecasting method and the approach to project control that we
develop later in this book. It is the people and their problems who establish the

solution’s adequacy.

The People

The Client (a.k.a. Business Person). These are the people who generate business
solutions. They take business risks, sometimes having to power through
considerable fears and doubt. They hustle and discover valuable things that other
people need and are willing to pay for. Their ideas and resolve for action
accomplish the visionary work needed for the creation of something new.
Sometimes they need software tools in order to move their business ideas forward.
Even when they take on a project for building a software solution, they are not

software developers, rather they are business developers.

The Developer (a.k.a. Programmer, Tester, Designer). These are the people
whose brains and hands perform the implementation work and bring a software
solution into existence. They are skilled in software techniques and in making
computer systems perform complex things. They understand how users interact
with software. Many of these people can keep large amounts of information and
abstractions in their brains. They enjoy seeing these abstractions materialize in the
form of working software and sharing this miracle with the rest of us. A certain
element of playfulness and doing things purely for the sake of having them done

can be found in many software developers.

The Project Manager and the Scrum Master. These are the people charged with
facilitating and organizing various project activities. They help other people make
decision and thus have an effect on how a project is being controlled. Key activities

affecting decision making on a project are forecasting and scope control. While

17

project managers and scrum masters do not themselves produce estimates, they play
a central role' in how these estimates are used into planning, and subsequently how
the plans are enacted throughout the project’s execution. The facilitation work that
project managers and scrum masters perform is critical for the overall project tone

and the quality of the work environment.

The Product Owner and the Business Analyst. These are the people who have
the skill of converting the ideas of business people into a format consumable by
software developers. Product owners can also make confident decisions on what is
valuable and what is less valuable in a software solution. Business analysts, and
many product owners, help describe, and to a degree define, the solution that brings
about the capabilities desired by business people. Their work greatly affects the
quality of information that developers get to process, the volume of implementation

work and the end product suitability.

The Manager and the Team Lead. These are people who are tasked with getting
the job done. They manage teams of developers with finite capabilities and less
finite potential, and are responsible for creating the environment where developers
can do their work well. These are also often the people who provide initial estimates
for software projects. They may delegate the actual estimation to their teams, but
they remain personally accountable for the information that gets communicated to
clients. When it comes to project sizing, Managers and Team Leads often use
experience and gut intuition for producing an overall project estimate that is safe

and sufficiently accurate.

The Problems

A problem is something to be worked out or solved, but it is also something that
allows people to self-validate and to ultimately grow as human beings. The way a
person approaches their own problems has a noticeable effect on their quality of

life and those around them. The way one person approaches other people’s

! Technically, scrum masters are absolved from the responsibility of planning out the full project.
They only focus on helping the team work better and remove impediments. However, I consider
client discomfort and uncertainty to be major impediments for the team’s work. As such, the scrum
master is responsible for minimizing them. One of the things that can be done is to have a better
project forecast, reliable long term commitment and a working plan for effective project control.

18

problems has a noticeable effect on the trust and relationships they will be able to
establish.

Making a Decision. This is one of the main problems for businessman and
businesswoman. Making decisions is how they make their living and create the
ecosystems for other people to make their livelihood too. The actual mechanics of
deciding is not what creates difficulty for them, but it is the build-up to that
decision which costs them time, effort and comfort. It is a complex problem since
the business context involves various bits of information and many unknowns that
are all in flux. Business people deal with this complexity and handle the unknown

by taking risks and venturing into business experiments.

The challenge that software projects present is the high variability of just about
everything - which basically translates into more uncertainty. Some feel uncertainty

is what business is all about.

Making a Promise. This is one of the main problems for makers. Software
developers are makers. People who make things with their hands love seeing the
products of their labor being used by other people. These people enjoy providing
solutions to other people’s problems. A maker wants to say “I will solve your

problem. Just tell me what it is.”

Whether the promise is explicit or implicit, it is real and both the maker and the
client appreciate its power. How to make the promise carry through is the problem

that makers wrestle with.

Making a Plan. Making a plan is a problem for anyone who is accountable for
seeing a project to an end. On software development projects this is often the

person tasked with project management responsibilities.

One way or another - every project ends. What activities happen between the
project’s start and the project’s end, and what is the result of these activities,
ultimately has a crucial impact on whether the project ends successfully or not.
Consequently, identifying the activities with the best chance of contributing to a

successful outcome is of primary interest for a planner.

19

Typically, there is an expectation, or at least a wish, for a reliable plan to be in place
sooner rather than later through the life of a project. Even when the “plan” is to
simply work through the mountain of challenges, the project manager is expected to
guide the effort on a path of success and to have sufficient foresight into why the

chosen path is the one leading to success.

side note

Who catres!

It is easy to say “Don’t promise”, and “Don’t plan”. It is less easy to say “Don’t make
decisions”, although some people do say it in a roundabout way. Even though these
approaches look seductively simple, and there is a hint of bravery in choosing them,
none leads to a satisfactory solution. They invariably lead to unwelcome compromises

that people need to accept at the expense of comfort and happiness.

In the context of a single project, managers have a similar problem to planners, they
want to see the project on time. And business analysts have a similar problem to

makers, i.e. they need to see their ideas materialize and produce valuable results.

The Desires

An adequate solution should solve a problem and align with desires. So let’s make a
few more generalizations. You will notice this as a pattern that applies to estimation
and forecasting too - by making careful simplifications we can get good enough

understanding of a complex problem.

To make decisions on reliable information. For business people this is one of
the primary desires. By the nature of what they do, they need to make so many
decisions that any opportunity for making a quick and clear decision, based on little

but reliable information, is welcome.

The next best thing is the knowledge that reliable information will be available at a
defined moment in time. When businessmen and businesswomen are faced with
uncertainty they can tolerate it for a while, but it helps them a lot if they have an

idea of what to expect once the waiting is over.

20

Why is this important? It is important so that we can properly sequence the input
we are providing to people who are making decisions. We need to appreciate what
suits them best at a given moment in the life of the project. This makes
communications much more meaningful and allows us to move through seemingly

difficult situations with ease.

To be able to work. Makers and artists, which software engineers are, enjoy
working. They like being useful and spending time tinkering with whatever happens
to be in their field of interest. What they typically don’t enjoy is to deal with
something they cannot perceive to be real, valuable and true. They markedly dislike

the situations where they are the originator of things with questionable worth.

For makers, it is preferable to describe a complex problem in a complex way, rather
than sacrifice the truth and provide simplistic and untrue answer. Makers can bend
a little and deal with uncertainty, but only for short periods of time. They prefer to
spend their time making things.

Why is this important? Because it is important to understand that software
developers detest estimation, and forecasting by extension, since they can not be
proven to be true. They are only a guess. And for makers a guess represents little
value. For this reason, we need to be sensitive and empathetic to their dislike when
we need their input and cooperation. When developers see that we understand the
binary unsustainability of our own request, they will oddly be more willing to help.
But it is also important for another reason - when developers see that our
forecasting efforts are ultimately designed to provide them with a more sensible
environment for work, there is a material improvement in the relationship’s

dynamics.

To be able to apply control. For people who make plans and who are responsible
for delivering a project, like project managers, team leads, and scrum masters, it is
highly desirable to have control over how things roll out towards the project
objective. Of course a project manager is not judged by their ability to strictly
follow a rigid plan. Rather, the project manager is ultimately valued for their ability
to deliver a satisfactory project, changing plans if necessary, and even steering in the

absence of a ratified plan.

21

Guiding things along a known plan of action is typically easier than making all the
right calls in real time without the benefit of planning and anticipation. A plan
provides a useful reference and an opportunity to rehearse some scenarios in
advance. It puts us in anticipatory mode and not in reactive mode of being. In this
way we can roughly gauge if things are panning out well and we can set interim
course direction which helps us move through obstacles without getting distracted
by too much fear and unnecessary considerations. The more control a planner can
exert on how work is being completed during the execution of a project, the more
likely it is the end result agrees with the plan and, by assumption (please see the side
note), with the expectations and wants of the people affected by the project.

side note

Project Management? So 20th century!

Waterfall is a method for software development and project management, which relies
heavily on thorough and exhaustive pre-planning. It has come to be that Waterfall is a
bad thing in many cases, mainly for not being able to adjust to reality. Planning and
software project management, as practices, have been associated with Waterfall for so
long that many people treat them as equivalent. We need to separate them though,
because they are not the same. There are ways to plan and to manage a project that are

dramatically different than what Waterfall has established as a standard.

The Manifesto for Agile Software Development says - we (the software developers)
value responding to change over following a plan. Suggesting that following the plan
might be the better thing to do sounds like a contradiction to the manifesto.

However, there are two assumptions, or rather oversimplifications, which are baked into
this particular postulate of the Manifesto for Agile Software Development. The first is
that we value responding to change only when we have assessed that the change merits a
response. We are not merely responding to any change that comes along. The other is
that we value responding to change over following a szatic plan, not over following a plan
in general. A plan can be revisited and adjusted (even within the constraints of a
contract). When the plans adapt to the relevant changes in reality, we can confidently

follow these plans, while simultaneously responding to change.

Of course here we are talking about effective project control - steering the project
reliably into producing the desired outcomes. For example, having power control

over people’s overtime is not effective control in this sense, while minimizing

22

context switching by suggesting or enforcing a smaller WIP (work in progress) rule,
or by improving feedback time, can be considered an application of adequate

project control.

side note

What Control?

In this book, when we talk about control, we are talking about project control. And we are

explicitly not talking about control over people.
There are three primary project controls we can manipulate:

® Scope - controls the “what” of the solution
e Effort - represents the power we apply towards building the solution

® Duration - represents the time we have available for finishing the project

By adjusting each of these controls within the project envelope, we can affect the
project’s progress and ultimately can drive the project towards desired objectives. There
are other project aspects that can be recognized as distinct secondary controls. They
have direct and indirect impact on the primary controls, and they are also very important
in their own right for managing the less tangible outcomes of a project. These are the

Environment, Software Quality, Metrics, and Value.

Environment, the well being and collaborative capacity of people, can be treated as a
secondary control. It almost directly converts to Effort - motivated people deliver more
effectively. In this sense Environment can be considered part of the Effort primary
control, and by improving the environment we increase the available effort that can be

expanded towards the project goal.

Software Quality, the well being and capacity for change in the code base, can also be
treated as a secondary control. However, for most teams this is only a theoretical control
since the quality that the team can attain is constant (and maximum) within the envelope
of a single project. Lowering the quality is of course possible, but it can not be
considered a control since it doesn’t make sense. In any case, improving softwate quality,
if it can be done sustainably within the project, also translates to Effort because once the
team is working at an improved quality level they get to expend less effort for achieving

a comparable result.

23

Metrics, the health of the adopted development processes. Driving towards more
controlled processes improves the predictability of events on the project and the
likelihood of a forecast being close to the actual outcome. To the extent that an
improved process can be proven to facilitate better productivity, we can consider it an
effective project control. However, we should not forget that individuals and
interactions come before processes and tools. Enforcing rigid processes will backfire
when creativity and thinking are the primary activities of people (which is the case on

software development projects).

Value of the end product. Prioritizing functionality, so that we first complete the more
valuable pieces, is a critically important derisking technique. Prioritization is a variation
of the Scope control. Occasionally people will discover valuable functionality that has
not been previously recognized as an objective for the project. Pivoting for value
represents product control, not project control. However, the value of the end result is so
crucial for the project success, that the project should accommodate changes to scope
where this has been deemed the correct course of action. If the change in scope can not
be contained within the current project envelope then the whole project needs to be

reframed.

However, it should be noted that within the context of a given project the appropriate,
and sufficient value is assumed to be guaranteed by the project’s definition itself. A
project starts with a specific goal, and it is expected that this goal has enough value to
justify the project.

With forecasting we are seeking insight on where and when to apply project control.

Summary

There are a few typical roles on any software project. Sometimes these roles might
be fulfilled by people whose daily roles are different. For example, a developer
might be a maker primarily, but can double as a project manager and planner. It is
less likely to see a business person play the role of a maker and deliver solid

software code, but it is not unheard of.

Clients, developers and facilitators (scrum masters, project managers, team leads)

have various problems and desires. Most of the time they prefer to do what they do

24

best. People don’t mind occasionally spending time on things they do not consider
their primary interest, and they don’t mind temporarily hanging in suspense, but
they seek the things that make them comfortable and happy. They desire some

form of certainty and autonomy.

Outside these generalizations lies a diverse set of highly nuanced human wants,
fears and relationships. But the bulky characterizations we discussed in this chapter

define the landscape on most software development projects.

25

Chapter 2

In this chapter we look at simplicity and explore why is it good to keep things
simple. We will go over a few concepts which allow to view complex matter

through simplified but correct models.

A model is a composition of ideas which help us understand a subject that the
model represents. A correct model is one which introduces little or no skew to the
particular aspect of interest, i.e. there is a reliable mapping between what we
understand through the model and what we would see if we were to look directly at
the subject we are observing. A model can provide significant simplification and still
be correct for a given purpose. For example, if we are considering shipping books
through the mail then modeling a book as a solid box with some weight might be a

decent simplification.

An oversimplified model distorts reality in a way that makes the model
unacceptable for what we are trying to accomplish. An overly complicated model is
too hard to work with and is not worth the knowledge it provides - even if it’s a
correct model. For example, if we model the book as simply a “unit” it might be
oversimplified. Consider: “I will ship 4 units.” - it doesn’t carry the necessary
information for size and weight. On the other hand: “I will ship 4 doohickeys for
reading, each consisting of two 8”x11” flat unbendable cardboard surfaces
hinge-attached longitudinally along the 11” edges and encompassing a set of 250
collated flexible paper sheets suitable for printing” is overly complicated, useless,

and probably wrong, even if we could derive the weight of each doohickey.

When looking for simple solutions it is important to keep in mind that we still want
a true representation of the reality. Sometimes, to stay true, we need to combine a
few simple concepts, and even build a more complex model - as long as it is not
significantly more complex than it needs to be, the solution can be considered

simple in the context of the specific problem.

Why is simplicity important in the context of software estimation, forecasting and
planning? One of the reasons is that these activities do not represent a primary

interest for any of the people on the project. Business people want to make

26

decisions and move on. Developers want to be working and creating software
solutions. And project managers want the project to be rolling, and they want to be

able to control it towards a successful outcome.

And while everyone on the project understands the importance of a schedule, it is
not the schedule or the plan itself that makes anyone happy. Thus, it is best if this

aspect of the project planning” is approached in a simple and painless way.

It is useful to examine simplicity on its own before we try to capture it within the
specific techniques for estimation, forecasting and planning. This will allow us to

confidently accept the validity of the method discussed later. Whence this chapter.

What’s Wrong with (overly) Simple Answers?

Simple answers are very much okay and desirable when they reflect a similarly

simple reality.

But software projects are rarely simple. Thus, providing a simple answer to almost

any question about a software project risks oversimplification.

For example, let’s consider the simple question, “When is this project going to
end?” This can be easily answered by producing a calendar date - July 2nd. A simple
answer like this leaves too many unanswered questions which are implied in the
original inquiry. Is the project going to be successful? Is everyone going to feel it
was a successful project or only some peopler Is the project goal project going to be
met fully or partially? Is there anything else, that needs to happen after this project

ends, for it to be a useful project?

It is unlikely that someone on a project cares only about the end date. The reality
for which people care is complex and it is also constantly changing. Producing

overly simple answers in this context is not adequate. But sometimes people get lazy

2 1t is important to distinguish between the portion of planning, which takes care of the schedule,
and project planning in general. Project planning encompasses a diverse set of business activities
which can be immensely interesting to many people. We are not talking about that planning here and
we will limit ourselves to discussing the part of it which deals with estimation, forecasting and
scheduling.

27

and want to “nail” the problem, with a silver bullet’ - a single metric, or a single best
practice, a single simple answer. And instead of simplifying the matter they only
introduce uncertainty, increase the likelihood of a misunderstanding, and ultimately

reduce the chances for a successful outcome.

What’s Wrong with Complicated Answers?

Complicated answers do not instill trust. They require too much intellectual
investment to be understood and they are only adequate when everyone is deeply

interested in the subject matter in question.

When producing a project forecast we need to be careful with exposing the
underlying complexities. People will increasingly doubt the method with each layer

of complexity.

What people need is a simple and fast process - producing simple and trustworthy

answers.

Complicated answers are not always unwanted. Some of the speculations we make
during forecasting depend on non-trivial relationships among things. We want to
hide these when possible, but if someone is explicitly inquiring about the source of
our reasoning, we should be able to dive in and provide satisfactory answers
regardless of how complicated the reality around them happens to be. In a scenario
like this, maintaining simplicity will frustrate people more than inadvertently

over-complicating an answer.

Simple Constructs that Capture Complex Reality

Range. Range is the more adequate alternative of a singular value in almost any
project context. For example, if a client asks “How long do you think this project
will be?”

answer of “Between 10 and 12 months” can be satisfactory and more adequate.

an answer of “11 months” can be suspicious, while the equally simple

b

? “No Silver Bullet — Essence and Accidents of Software Engineering”
https://en.wikipedia.org/wiki/No Silver Bullet

https://en.wikipedia.org/wiki/No_Silver_Bullet

28

Ranges allow us to say things that are sufficiently true. These statements generate all

the trust needed without exposing the underlying complexities and uncertainties.

Of course, if we answer “Between 6 and 16 months”, we are just as correct (or
more) but the uncertainty increases unacceptably. The client will have the same
doubts as if we hadn’t provided an answer at all, only now they will also question
our ability to adequately understand their problems. The anser “Between 10 months
and 20 days, and 11 months and 10 days”, which can be correct and very precise,

triggers similar suspicions.
To build a meaningful range we need to know two things:

® What is an adequate accuracy for the listener. This can also be called
“acceptable error”. It is a value that represents how far off the true answer

someone is willing to go and still consider the result good.

e What is a meaningful and sufficiently true value that the range should

encompass.

Often, guessing is acceptable replacement of knowledge, so we don’t really need to
know the above two, but only to be able to guess them with some level of comfort.
Try this next time you are challenged to produce a seemingly simple answer,
especially when it is about estimates and dates - instead of a number, produce a
range. If people still insist on a singular answer then use “most likely” and pick a

value within the range. We talk about probabilities later.

Conditionals. Conditionals help us when there are a few possibilities that would
make for an unacceptably wide range if we were to wrap them all into a single

range.

Sometimes an answer can be dramatically different based on various factors.
Instead of producing a single range encompassing the many possible outcomes, it is

better to have an answer that represents the disparate possibilities.

For example, when talking to a client, instead of saying, “This project might take
between 8 and 12 months,” we can say, “This project will take between 10 and 12

29

months if we add Chtis to the team. And it will take between 8 and 10 months if we
add Avery.”

By using conditionals we provide the client with a clearer picture at the expense of

minimal extra complexity. The end result is a simple reality for the client.

If we spare the conditionals and provide a wider range, say “between 8 to 12
months” from the example above, we overload the listener with a different type of
complexity - they need to consider whether the range is acceptable for them in its
entirety. It may be that the project must end in less than 10 months. The client can
wrongly assume that it is more likely for us to be on the upper end of the provided
range, which is 12 months, and they can decide not to do the project with us. We

were technically correct but didn’t provide the needed information.

Boundary. Setting boundaries is an important technique for simplifying the reality
and for staying safe. It is the emanation of responsibility. When we stay within
reasonable boundaries, the people we work with get the healthy message that we are
taking measures for our own safety, and as a result they tend to see us as more
trustworthy. However, let’s quickly consider what a reasonable boundary is and how

does the nature of the work change the meaning of reasonable.

People often say “Don’t drive beyond your headlights”. This is as valid in software

project context as anywhere else.

One of the difficult things when communicating ideas is to make sure that other
people understood accurately what we had in mind. For example, when we say that
the estimates show it will take 10 months to complete the project, it is likely that
people understand this as “The project will take 10 months to complete.” But what
we said is that an estimate we made is 10 months, not the (actual) length of the

project.

Let’s see how setting a boundary can expose the important limits in our statements
and help with this problem. We may say this instead: “We only have looked at the
next two modules with enough detail to speculate on effort cost and duration.
Based on what we have estimated, and on all the assumptions we made, we think it
will take us 1.5 months to complete this. We have identified a few risks as well. If

you want us to discuss the assumptions or the identified risks, it can help us all stay

30

more aligned through the next 2 months. If the projection for these two modules
turns out correct, we will be comfortable forecasting the whole project at 16 to 18

months.”

The boundaries we set in this statement are:
® Only part of the system has been assessed
® There are assumptions, so we only feel safe within them being true

® There are also some risks

Now, it’s true that the statement is not twitter friendly*. But it sets boundaries
within a relatively concise articulation, and these boundaries make it more likely that
the client’s understanding of what we said is closer to what we meant. A listener
might need some extra time for processing it, and we might need to furnish help,
but this extra time is in the order of minutes. If we spare the few minutes here and

try to be short, we risk people working with incorrect understanding for months.

This is important because when we allow the discrepancies in people’s
understandings to accumulate for long periods it drains their trust and will
eventually exhaust it - people become convinced that there is no chance for
common understanding. When this happens towards the end of a long and complex
project, there might not be enough will-power left to discuss issues rationally and
make collaborative decisions that work for everyone. Instead, it is likely that people
start blaming each other. Someone will invariably say “But you said 12 months! We

,,7

are now only two weeks from that!” - estimation and forecasting have turned into

tools for assigning blame and controlling people, not tools for controlling projects.

Let’s now see how the meaning of reasonable boundary can change based on the
essence of the work. Consider the driving through the night analogy again. While
we are driving the vehicle, it is reasonable to only stay within the headlights. It
might be even more reasonable to stay within half of what the headlights cover. But
let’s imagine that we stop driving and take a short break on the side of the road.

There is nothing wrong with envisioning how long it will take us to the next little

* Many people these days take pride in emulating Steve Jobs and emit ridiculously succinct messages
(in emails or otherwise), only to then have other people perform inordinate amount of juggling and
mental trickery before finally arriving at the “correct” rendition of the intent in the commanding
message. We need to be careful when pretending to be Steve Jobs!

31

town, so we can find a restaurant to eat, or how long it will take to cross a

continent, if that’s what the trip is about.

When the nature of our work is to envision the future, it becomes unproductive to
maintain the same boundaries that make sense when we work on the immediate

tasks propelling us towards that same vision.

When the future is unknown, we can still maintain enough limiting conditions - for
example, we can say, “Provided we maintain the same pace, we will deliver the first
phase of the project in 6 months, so 9 months in total. Based on the high level
specifications it seems the second phase is similar in size. It is likely to take a similar
amount of time, but this is a speculation which I’'m not comfortable with at the

moment.”

We can share our fears and not push through by force and commitment only. Fear
is a type of boundary too, and we state that we are not willing to venture too far
beyond it. This way we stake a claim into the unknown and still maintain
boundaries that make sense to us. Opening up with our fears takes courage. And we
show others that we are both brave and smart. It is important that we are brave at
work, and it is also important to stay responsible. As we get more data we can

sharpen the boundaries and engage with commitments without fear.

Void. Void is the construct signifying the absence of something. The importance of
this construct is that it allows us to not have to invent information about something

that is simply not there.

When we can intelligently deal with uncomfortable situations we are creating trust.
It is much more responsible to acknowledge an (ideally temporary) inability to
provide information than to supply fake data masquerading as information.
Whether we work for other people or we risk our own money, being responsible is
the behavior which creates and builds trust the most. Being irresponsible can
destroy trust quicker than any other misstep, even when it doesn’t cause material

loss.

Business people can handle void fairly well if they know when information will be
available. They can also handle cost associated with obtaining information sooner.

The cost might be in money or in increased risk. This allows us to say: “I cannot

32

provide meaningful information for the target date at the moment, but if we start
now, with the team we considered, I can provide an outlook with 90% certainty in

two months, and with 70% certainty in four weeks.”

Business people are capable of managing this type of situation well, and provided
we can supply the additional information as promised, void is more meaningful

than something that we only wish to be true.

Probability. This leads us to the next construct - probability. Because it is such a
central notion in estimation and forecasting, it has its own section in this book. But
let’s quickly sketch it here as a tool for simplifying the reality, and talk more about

its other properties in the next chapter.

Probability is in a way similar to a range. With a range we guarantee the value is
within the upper and lower limits. With a probability we avoid providing that
guarantee, but provide a measure of how likely it is that the actual value matches

some target instead.

When it comes to software estimations, probabilities do translate to a range almost
directly. For example if I say, “I’m 80% certain the project will end 10 months from
now” this can be translated like “The project will end between 10 and 12 months
from now.” Where if I say, “I'm 90% certain the project will end 10 months from
now” then this can be interpreted as “The project will end between 10 and 11

months from now”.

It is interesting to note that, when we make software projections, we talk about
things taking longer than expected and not shorter - “I'm 80% certain that the
project will end 10 months from now” rarely means the project might turn out to
be 8 months. There is an implied “at least” in front of the number of months - “I'm

80% certain that the project will end a7 /east 10 months from now.”

Summary

Software projects are complicated. However, there are communication tools we can
use to simplify things considerably and still have a correct understanding of the
relevant issues. These tools are common structures that make it easier for us to

comprehend problems, to find and share options, and make decisions.

33

People have different demands for information and different tolerance levels to
simplification. We need to learn how to use these simplification tools in ways that
fit organically with everyone on the project - clients, developers and managers. If we
can help others feel comfortable we can secure a better environment for effective

collaboration.

Things need to stay as simple as possible, especially in the context of estimation and
forecasting. But sometimes we need to think beyond simplicity in order to capture it
truly. We are discussing a few slightly more complex phenomenons in the next

chapter and this gets us ready to start on the core of this book.

34

Chapter 3

In this chapter we touch on statistics and probabilities. We will look at a few
interesting applications of statistics and will focus on how they affect decision
making, because the main purpose of intelligent forecasting is to facilitate decision

making and project control.

Probability

What is probability? What does it mean to you? For example, what does it mean if I
say that you have 80% chance of winning $100 when you invest $100?

It doesn’t mean much as a number on its own. It doesn’t tell us whether you will
win $100 or not. It only starts meaning something when we put it in context of
other things. For example, are you willing to take on the 20% probability that you
lose $100? Do you only have $100 available? Are you only allowed to bet one time,
two times, or more? Is it your goal to win the extra $100 in the first place? The

answers to these questions provide real meaning to the probability number.

Probability is a number that helps us decide if we want to try something with the
intent of obtaining a certain outcome. If we are not interested in the specific
outcome, the probability number is of only superficial interest. But if we do care

about the outcome then this number starts having a more material meaning.

When we talk about a singular event, probability represents a binary reality -
something either happens or it doesn’t happen. The probability number informs us
how likely are we to win or lose. If we are willing to take the risk of losing we might
proceed. If the risk is too high, or the potential prize too insignificant, we might
chose to not proceed. But regardless of the likelihood, if we decide to proceed, we

still either win or lose.

/P01 Singe /P-02 "\ Single

event AR event

P=08 : 5
resalt result

35

Fig. With a single event there will be only one result and although the blue result

is more likely, there is no guarantee there will be a blue result.

When we work with a stream of events, we observe something else - the probability
number starts describing how frequently the desired outcome occurs. It is now
almost guaranteed that the desired outcome will happen - we just don’t know how
many times exactly. As the number of events gets bigger, the guarantee becomes
stronger, and so does the likelihood of the actual number of successful outcomes

being closer to the probability number.

@ 0% °p
5 O SDO o Op OO x] R~
E)I___%er\tS O NR @ events ooooo ooo g: [
UM A
P=08 O O = P=08 ° %00y
O ® 'e®po
(") o0
result

resu\t

Fig. At 5 events the actual number of blue dots might not represent 80% of the
total. At 500 events the actual number of blue dots is very close to 80% of the
total.

When we apply a probability number on multiple independent events, things line up
to what is known as normal distribution curve. It is a line that describes what is the

likelihood of things happening as we move along a range of probable states.

36

200 300 LI'DO 500

Fig. If we ran 1000 independent experiments with P=0.8 for a blue dot, and with 500
samples in each experiment, and if we measure the actual number of blue dots per
experiment, we would have a result similar to the graph above. In 68% of the cases the
number of blue dots will be between 370 and 430, and in 95% the number of blue dots will
be between 330 and 470.

In a normal distribution, the most likely outcome is called “mode” (400 is the mode
above). Almost all, 99.6%, of the possible outcomes fall within within the 3
standard deviations from the mode. A standard deviation is a span on the
dimension of interest, which span helps statisticians discuss the probability
distribution easier. Each shaded area above is one standard deviation.
Approximately 70% of all outcomes fall within *1 standard deviation from the
mode, and approximately 95% fall within *2 standard deviations from the mode.
These numbers might seem contrived, but it turns out they apply over a very large

set of natural phenomena.

Let’s say we have a team of 2 developers and have estimated (guessed) a project at 1
"2 years. Let’s say we have information to think that the absolute best we can do is
1 year, and based on other assumptions we think that 2 /2 years is the worst we can
do. We can build a cumulative probability curve describing how likely the estimates

seem based on what we know at this moment.

37

=
8
2.

1 | L/
'{7“‘ 1% 2 2%
Fig. Cumulative distribution curve indicating about 80-85% probability that the

project will be less than 2 years, and only about 15-20% that it will be less than the
estimate of 1 V2 years. .

Even with a grossly oversimplified model like this, we can start making some crude

decisions and we can improve communications on the project.

Getting Accurate Information Based on Imprecise
Inputs

The Central Limit Theorem tells us that the sum of many random and independent
variables is approximately normally distributed regardless of the specific
distributions of the variables. This is of great significance, and is a powerful tool we
can use for project planning, because projects are such a sum of large number of
variables. True, they are not always independent, and they are not always completely
random, but it is a good enough approximation that we can use to bypass hefty sets

of complexities.

38

Control, Lack of Control, and Precision

The statistical controls we are discussing here can be rather loose when there is a
low number of sample variables on which to model the distribution. For example, if
we have only delivered 3 or 4 chunks® from a system, and we are trying to use the
available information to forecast the remaining 97 chunks, then we cannot apply
statistical controls yet. Our decisions will be pootly informed. We need to work
with a sample of at least 20-30 variables, and ideally more than 50, before statistical

principles start to work reliably for us.

What this means in practice is that we cannot approach the management of a

project purely as a statistical problem.

> A chunk can be of any size and is not the same as a user story or a functional specification. A
chunk represents a set of functionality which we have decided to estimate together. We will talk
about resolution and splitting the whole scope in chunks later. For a large project a single chunk can
represent 3-4 weeks worth of work for a single person or a programming pair, and for smaller
projects a chunk can comprise 4-5 days worth of work.

39

Chapter 4

side note

The essence of project control is observe, think, act, observe. It is a variation of the PDCA
cycle (Plan-Do-Check-Act) of many continuous processes. The essence of project

management, and planning, is to secure the environment where this type of control is
feasible.

Prnjea'{,'

_ N control //:;7[,,;,.& _,LE]
N
T

envi T0hment

Estimating the work. Now that we have the estimation ranges defined, we need to
break the known scope of work into pieces, and start estimating. We estimate in
days worth of effort per single track’, i.e. if the developers had the day exclusively
for delivering working software - programming, designing and testing. If we
observe that most chunks get in the S and M buckets we can just keep going. Some
pieces will end up being XS, and some will end up L or even XL, but the bulk of
the pieces should be in the S and M ranges.

5 Sometimes a track might be a small team. I worked on a project where two programmers would
couple with a single tester. The three developers would be working almost exclusively together. On
that project we estimated the functionality that the whole trio could complete in a day/week worth
of work.

40

@E@'L =

Fig. Aim to have chunks split in a way that makes them suitable for the S and M
buckets. It is okay to have a few spill over into the other buckets.

Fig. Do not ask developers to provide high precision estimates for intricate
functionality based on detailed specification. Ask them to provide high resolution
estimates even if each individual estimate is of lower accuracy.

Estimating at a very high resolution is wasteful. We need to pay the cost of business
analysts and developers looking at too many details, and scrum masters or project
managers having to track too many pieces of data. It can slightly speed up the
forecasting when we start collecting data, and it can provide a (false) sense of
certainty, but it costs more than the value it contributes. We should work at a
resolution that makes sense and be careful every time we lead people into thinking

we are working at too fine of a precision. Most likely we can not achieve that

41

precision for the final forecast’, and no one needs it - people only need an adequate

guidance towards the objective.

S5
1
1 y 5
19 3
L
—
95 ¥

I

bowee = 104 + 5x1.5 + 41x25

wpper = Ix 2 +3x3 1 1 x5 6

Iy

Fig. We can calculate the lower and upper estimation limits for the whole project
by summing the lower and upper range limits of all pieces. The numbers here can

be days, weeks, or months worth of effort.

Keep in mind that this is the implementation effort. For duration range we need to

adjust for calendar time.

side note

Beware of the relative estimation technique which is discussed in many books on agile

software development. It looks something like this picture

71 worked with a new CTO some time ago and he announced that we were going to start estimating
and delivering all projects with a precision of +/- 1 day. He was reasoning that if the aitlines are able
to schedule transcontinental flights with precision of minutes, we should be able to deliver 3-4
month long projects with a precision of 1 day. The frequency of deployment to production was once
every three weeks because of dependencies with marketing campaigns and with other departments.
Even if we were able to forecast within 1 day of the actual delivery, it would bring small practical
value.

42

Looks twice as big
_ g e

hew
cofAwace

old
o [ruare

//4/

////////;

and says that a “stone” that looks twice the size of another “stone” is twice as big.
However, every schoolkid in 10" grade can tell us that this is not true. A stone that looks
twice as big as another stone will be 8 times larger, because a stone is three dimensional,
and two raised to the third power is eight (2° = 8). In software, the work is often
multi-dimensional and the effect of this visual “illusion” can be even larger. (Some of the
typical dimensions are: business rules, software architecture and design, database access,
performance, security, usability, accessibility, visual design, automation and

documentation.)

When initially estimating the chunks of work, we would do better if we looked at each
one separately and give it our best shot of placing it in the right bucket, without
comparing it too much with chunks we have already estimated. This way we don’t

inadvertently compound the estimation “errors”.

The technique of relative sizing is adequate when applied on an iteration level estimation
in “story points”, because at that time developers are intimately familiar with the context.
Story points are not useful for initial project estimation and forecasting, but they serve a

different and very important role. We will talk about it later in this chapter.

Adjusting for calendar time. It is wise to not confuse effort estimates with
calendar time. Such a confusion is a naive mistake, but sometimes people do it
when rushed to produce a convenient answer. When we ask developers whether
something takes 2-3 days, we are really asking whether it is 2-3 days of
implementation work (a.k.a programming), not whether it is 2-3 days on the

calendar. If developers need to attend meetings for 3-4 hours a day, the effective

43

time for implementation work becomes 2 hours per day, and a piece of work

estimated at 2-3 days might take 8-12 days on the calendar, i.e. 2-3 weeks.

One way to translate between effort and calendar time is to add certain buffers that
make sense in the particular situation. Meeting time is only one of the things we
need to consider when converting effort estimates to calendar time. On a longer
project people need to take vacation, which might be up to 10% of the calendar
time. We can apply this buffer without asking people for actual vacation plans®.
There are many other activities that do not directly contribute to software. (There is
a longer discussion on this type of safety buffers in the “Navigating Issues” section
of Chapter 6.)

Multiplying the optimistic and pessimistic end of the effort range by 1.5 might be an
honest thing to do when converting to calendar time as long as we can explain what
goes into the extra .5 (50%) that we are factoring in. We can also produce a
“realistic” estimate by using PERT calculation, or by locating a point reasonably

spaced between the optimistic and pessimistic limits.

gowu (LHW{) =% = \1 oo hat

ug t¥ (eeck) =V6 = I calenlu

gekwk she = \L \?{355‘..1‘5\"\c=1\{ lj%\‘osj(C\Lelj = 0

0+ L|gM-I-P 3 \2_4' L0+ 24 ~ l@
G b

Fig. PERT formula for realistic estimate is E = (O + 4xM + P)/6, where O is
optimistic, M is most likely, and P is a pessimistic prognosis. (The

Pt =

effort-to-calendar conversion ratio is 1.5)

¥ Treating people with respect should be considered a project control. By planning around people’s
needs instead of having people adjust their needs according to a forced plan, we improve the
chances for a wholehearted commitment throughout the duration of the project.

44

The Other Two Pillars

The Central Limit Theorem works very well for the application described so far.
But it is not sufficient by itself. There are two other crucially important principles
that must be satisfied for us to be able to forecast intelligently. They are

“Sustainable pace of work” and “Done”.

Sustainable pace of work. We often see software development teams, who work
in an agile style, estimating user stories in story points. The number of points
delivered within an iteration is called as velocity. Story points and velocity don’t
relate directly to the estimation or forecasting for the whole project. One reason for
this is that they change meaning throughout the project, as they are affected by
what the team learns each iteration. Another reason is that sometimes we don’t
have enough detail to estimate everything in points. Even if we had enough detail, it
would not make sense to spend time understanding features and dependencies at

the level needed for story points.

However, story points and measuring velocity, are of paramount importance for the
forecast’s worthiness. Their value is in setting a sustainable pace for the team. A
team not working in a sustainable way cannot deliver a project that can be reliably
forecasted. One of the three principles on which the method of intelligent
forecasting is based is that the team must be capable of working consistently, and

story points are the tool for ensuring this consistency.

45

ustainable Pace of Workﬁ- '\

l,‘

Fig. Statistics alone is not enough to support intelligent forecasting. The project team
must be capable of sustaining an optimal pace of work throughout the duration of the

project.

Sustainable pace does not necessarily mean a constant pace, as teams typically need
time to reach their optimal pace. Teams can also innovate and accelerate. During
innovative periods the pace of delivery might suffer at first and then it can pick up
again. There is also normal fluctuation based on the work complexity. As long as
the team’s productivity remains within a satisfactory bandwidth we can consider this

mode of operation sustainable.

If there are short bursts of output followed by deep troughs of endless bug fixing
and zero or negative architectural progress then the team is not capable of

delivering in a sustainable way.

46

outpe &)

(w Eﬁ\)w\fi\“w v \W@S

s

=)

ime, ime
(i{tw\{'uns) (iterationg)

Fig. The diagram on the left shows sustainable work, and the one to the right
shows unsustainable work. Even if the average output ends up relatively equal for
the depicted period, the project on the right is too volatile and it is also

accumulating bugs, which will eventually drive it out of usable power.

Engineering techniques like automated unit testing, test driven development
(TDD), refactoring, continuous integration and continuous delivery (CI and CD)
greatly contribute towards a team’s capability for sustainable work. These practices
are not the domain of iterative delivery models, and if a team is practicing them

proficiently they can maintain sustainable pace.

If these software delivery practices are absent, and if regression issues consume
progressively larger bandwidth, we need to account for it in the forecast. Regardless
of whether we use scrum or we follow a big waterfall plan, we have to be honest
about the team’s capabilities. Deteriorating code base and regression issues can

render the team’s productivity to zero quickly.

Done. Done is a concept I first encountered in a formalized way when working
with Scrum. So I attribute it to Scrum. Wherever it originates, probably in XP, the
effect it has on our ability to intelligently forecast, plan and manage the project is
binary - i.e. if we cannot work within a definition of Done’, we cannot intelligently

plan or manage a project.

? Definition of Done is a set of conditions that the team determines as sufficient for guaranteeing valuable
software. For a more thorough description please see here: https://www.scruminc.com/definition-of-done

https://www.scruminc.com/definition-of-done/

47

?1@; @ Ta
di A m(ﬁ ian

£ x
[0 (@] L]
5 = =
@ = (]
= - =
= 3 =
: : 2
g £ 2
S e S
O S %
2 4 -
|._

L
:

Fig. “Done” is the third pillar to support scientific forecasting. The project team must
be capable of disciplined software delivery within desired and agreed upon parameters.

“Done means coded to standards, reviewed, implemented with unit Test-Driven
Development (I'DD), tested with 100 percent test antomation, integrated and

documented.”

Scrum Ine.

If we are delivering code, but we cannot claim that a specific piece of functionality
is done, then for all practical purposes we should not include the effort we
expanded towards this code in the progress tracking. And if none of the stories can
be claimed as done, we should not account for any of the effort expanded - i.e. even

if we labored for 1 month we have to account for zero delivered scope.

48

OU\JEPV\-\:) OLAJCPV\AE)
(\Y\ ponad jon W \ou%& (\“ gﬁ\}w\"‘{\:‘w $e \"“@5
/ ==, /’ - ‘L o — \—
/ L--1n /
T time A = Lime
(f{zrv\{'vns) (.‘{erp*hp.\g)

Fig. When we can not claim Done then the useful output is imaginary. The diagram
on the left shows a project pretending to be delivering consistently, but without
anyone validating that the software is Done. The bugs might be underreported since
the software is not being tested or demonstrated to clients. The diagram on the right
shows a project with accumulating bugs, but people still insist that the software is
Done. Ideally people should agree to not claim Done when there are uncontrollable

functionality bugs, or they will get disillusioned further into the project.

It is often the case on waterfall projects that people claim 80% readiness on some
functionality, only to have this same status reported week after week without the
ability to identify any single piece that is 100% done. On such projects the
assessment for completeness is expected by a developer. The 80% readiness level
claimed by the developer is not suitable for forecasting, since it is not validated by a
business person or a user. Project managers and business people on such
dysfunctional projects usually say that they need 100% complete functionality
before engaging with verifying it, thus leaving the developers in a perpetual state of

uncertainty.

Please note that this is dramatically different than having small pieces of
functionality claimed as 100% done and confirmed by a business person. In this
case we can still say we are 80% done with a larger component of work, but it
actually means that about 80% of the work towards the large component is done.
We can reasonably expect to have about 20% work left. When we asked the
product owner to assess the completeness levels of work items (in the Mapping
activity earlier), it was based on “demonstrably done” functionality, not on how

many lines of code developers believe are needed before the code is done.

Working within a definition of done is more difficult on waterfall projects. This is
primarily because business people wait for the hand off at the end of the

development phase. However, the technical practices of test automation and

49

refactoring, which enable a team to work within a definition of done, are not
exclusively reserved for iteratively run projects. Teams using these techniques can
get very close to the benefits of working within a definition of done, even if they

can not secure the continual interaction with business partners.

The two pillars that support predictability and confidence - “Sustainable pace of
work” and “Done”, go hand in hand. If a team does not maintain sustainable pace
they will start cutting corners and step outside the definition of done; if the team
does work in a sustainable pace but starts casually going out of the definition of
done then they will very soon become incapable of sustaining the pace - they will
get bogged down in problems. “Done” gives us confidence about the validity of

present claims, and “Sustainable pace” provides for predictability of projections.

Software delivery practices like test driven development, automation and
continuous integration, and product development practices like relentless
prioritization, continuous deployment, and continual usability testing greatly
facilitate a mode of operation where teams can consistently work within a definition

of done and deliver at a pace which is sustainable and commercially viable.

Chapter 5
Adjustments

In software projects, like in most situations involving human relationships, it is
worth the effort to provide meaningful information to people so that they gain
situational awareness and make intelligent choices. Complete awareness is of course
neither possible nor needed, but a small effort can go a long way towards significant
improvements and avoiding major contentions. Uncertainty of 30%-50% or more is
likely to create unneeded pressure and turmoil on any project. Many people operate
at these levels of uncertainty routinely and for long periods. On the other hand,

verbally maintaining that we work at 10-15% uncertainty, without being able to

50

support the claims with data, is as unnerving if not more so. If we can find a
workable method for bringing the uncertainty level reliably to 10-15%, supported
by meaningful data, it will spare the team and clients valuable energy, unnecessary

worty and loss of time.

We were already careful to not confuse effort estimate with calendar time, and we
autocorrected the “plans” based on estimation input by tracking the actual
completion times. We are now going to look at a few more adjustments to the
forecasting model that will further enhance our understanding of the project’s

progress and the accuracy of the resulting projections.

Available Thrust

Now that we have a forecast diagram we need to figure out how to translate the
information into intelligent decisions in order to adjust the project’s progress closer
to the path we want. Plotting the diagram and looking at the forecast is only the
observational part of the effort. Applying project control is the real purpose of this
observation. Remember, once the end date of a project is near, we have very limited
ability to make significant changes. Consequently, we want to apply adequate
control as early in the project as possible. The more stabilized the project
performance is in its early and mid stages, the greater the probability of arriving at

the desired destination.

I was delighted when I read that the burndown chart in Scrum is based on Jeff
Sutherland’s experience landing fighter jets'’. 1, too, enjoy flying and have always
found flying and project management to be close in many ways. When I was
developing this forecasting technique, one such important similarity that took a
central spot in the model was available thrust. The available thrust of an airplane is
the force with which the propeller or jet engine can push the airplane forward. The

available thrust determines the maximum angle of climb the airplane can perform.

1 ”Scrum: The Art of Doing Twice the Work in Half the Time”

51

A
\ max
‘ available
\\ thrust £
4 &
%)
o P
BaS o
> b
q/’e \\
L Tl Q,\-j\a\ St
— ' -
most | max
economical horizontal
speed speed

Fig. There are a few forces acting on an airplane in flight and this graph captures
how the required power for sustaining horizontal flight changes with speed. When
plotted together with the available power, some important speeds can be
determined. The difference between required and available power defines the

excess available thrust.

At first, when trying to produce a projection, I was working with “percent
allocation” of people on the project. However, allocation alone did not propetly
reflect the contribution people were making to software and it also did not propetrly

reflect the discrepancy between the actual team composition and my plans.

Since I was working as a scrum master I knew about all the intricate issues people
were having on the project. All these impediments were taking away from the time
that people had available to devote specifically to writing software. Some
impediments were random or temporary by nature, and some were part of the

process.

For example, I found that because we were working with an offshore team there
were occasional issues with using the English language. Sometimes we had to repeat
things multiple times, sometimes we had to hold an entire meeting a second time to
clarify issues that were at least partly the result of the inability to use common
language. I “calculated” that these diversions cost us 3% to 5% of our work time.

This is about 15-20 min a day for the whole team, and it adds up. Another time-sink

52

was caused by a series of process related meetings, and these meetings provided
close to zero value for us as a delivery team. In the first two months we attended
the meetings twice a week for an hour and a half each. This alone was consuming

10% to 15% of the effective time for computer programming.

I knew that the situation would improve with time - people would start
communicating more effectively, and we would be not attending the process related
meetings for much longer. Everyone was allocated 100% to the project, but I still
wanted to reflect that the real contribution was less. Thus, I came up with the
concept of available thrust to signify that although the team may be assigned 100%
of the time on the project, the thrust people put into developing working software
can be handicapped by all sorts of reasons. (I couldn’t use the term “utilization” as I
dislike it when applied to people or teams. It implies viewing people as utilities,
which I didn’t appreciate. Additionally, it was not representing my perception
correctly, since people are still utilized when they are in a meeting, only they are not
always utilized very effectively. And I also felt that “available thrust” is a more
positive term and contains within itself the notion of progressive forward

movement, something I kind of wanted for the project’s forecast.)

Fig. The actual team’s throughput capability depends on multiple factors and this
affects a number of project conditions, such as maximum sustainable productivity
and team’s ability to climb out of a setback. On the left the team is handicapped by
bureaucracy, and on the right by being hasty.

I needed to expose this relationship because I wanted to claim a certain increase in
the angle of the projection every time the team was able to remove any resistance

factor. Thus, instead of just being able to say that performance will improve, I could

53

speculate by how much it will improve. This allowed me to aim at the target with
great precision. It also helped me have an adequate response when someone had
overly optimistic expectations for the benefits from an expected improvement. Or
when someone was too negative and was diverting time into unneeded solutioning
of transitory problems. Often such arguments are fear driven and not based on real
data. When meaningful data was available I was able to shift discussions towards

constructive outcomes more often.

W team 5
"V\W;e AV [,;L L&
50 Lhrus
I\ Ji
planned available thrust P \’)6 I 80/
PR
~3©
. N = ;6(\<\e
actual available tArust e o
; X’:"}
"0
'/@{‘ﬁw ’ “
= . 1
Lw [‘l gw\ .
" "t| wm e

Fig. The plan here was to have 70% available thrust for the first half of the project
and 85% for the remainder. The actual available thrust for the first three months is
50%. The project team can determine which course of action has a real likelihood of
getting the project to a desired state - whether it is freeing capacity, reducing scope or

adding new people.

I also wanted to reflect the fact that my team might not be at the planned staffing
level. For example, if I had planned to start with 2 developers, and then to have 6
developers working by week 8 of the project, but there were only 4 developers by
that time, then even if they were all fully dedicated to writing software for 80% of
their time, this is still only 50% of the theoretical available thrust (4 x 80% / 6 =
53%). This is important because it is surprisingly easy for people to forget what the
plan is in terms of staffing commitments, yet to retain unfaltering commitments to
scope and deadlines. By plotting everything on the timeline, clarity, with all its

benefits, is restored.

54

‘ \
09t Harust
2 4
/ 100./4
/
/
S/ pamedavaiaetust | 7 T T T T] g0/
actual
4 wr
available / 60 /,
thrust 7
EV) o 1, ~2/
o 4p /e
\-3‘(\“9 ==
o
- AP L 20/,
- \}((—\ LO D
'y \)ﬁ\‘o
~ 30\
[l - -‘ : : L L L il : N S
) T ’\\I d tithe
planned actual planne
team team team
increase increase increase

Fig. When we fail to increase the team as planned, the project starts
underperforming, yet the current delivery team performs as expected. With
available thrust depicted, people have a clear picture from which to produce a new

plan of action.

With available thrust we can also account for more exotic factors affecting the
project, like team dissatisfaction and project politics. If we have ample information
to make an argument that team members are so dissatisfied that they actually need
time during the day to cope with their frustrations - more frequent walks outside,
more conversations, more arguments - we can assign a % of time for these
additional activities and subtract from the available thrust. Similarly, we can assign
cost to politics and process - if team members are being pulled into meetings only
to serve as a backup for arguments, or if they are pulled into unnecessary process

related meetings, a cost in terms of percentage available thrust can be assigned.

Context switching. We can “generate” available thrust, and up the angle of the
projected line, by minimizing the amount of context switching. Context switching is
caused by constant interruptions and fragmentation of the work in progress when
working on too many things simultaneously, even if all of them contribute to the

software solution.

By reducing context switching, and providing an environment where programmers

can zone in on their work for longer periods, we can increase the available thrust

55

compared to an environment where these factors are not in consideration.
Measuring how much effective time we gain by minimizing context switching is not
very difficult. The non-scientific way to do it is to ask a developer about how much
time a day they feel is being lost from interruptions, or to add 5-15 minutes for each

interruption and get an average number of interruptions.

Since context switching can easily contribute to 30-50% effective time loss (you
read this correctly), it is imperative for a scrum master or project manager to
familiarize themselves intimately with ways to minimize it:

® keeping an open and functioning communication network within the team
(communication does not equal chatter)
ensuring people are available for feedback when needed
guarding the team from undesired external communications (when
someone, a manager maybe, comes with a random and unrelated request)
scheduling meetings according to how developers work'!
applying WIP limits and facilitating short cycle times

having stories clearly specified"

promoting direct interaction, communication and collaboration between all

team members (improving sociometrics)"’

These are all examples of things we can do to minimize context switching for the
team. The time loss is not the only negative that comes with context switching,.
Sometimes brilliant ideas will disappear or never appear because the creative
context was not preserved for long enough. These are losses that are difficult to

measute, but not so difficult to feel.

Climbing faster. When we want to drive the angle up by adding more people to
the project, we need to recognize that this is not a linear relation. Adding 30% more

people does not necessarily translate in 30% gain in rate of climb.

" Maker’s Schedule, Manager’s Schedule - http://www.paulgraham.com/makersschedule.html

2 Clearly specified requirement does not mean voluminous specifications. To make it more
complicated, a clear specification does not guarantee shared knowledge and ease of communication.
A great way to specify requirements is the subject of the book “Specification by Example”

¥ Having teams where people freely communicate with each other is crucial for many aspects of
high performance. Where this has a positive effect on context switching is that a novice developer
will not feel the need to interrupt a chain of people and ask for assistance in initiating a discussion
with another project member.

http://www.paulgraham.com/makersschedule.html

56

People are the single most important factor on a project, and it can affect the
project both ways - adding a person might have a positive effect on team’s
performance, and removing a person might also have a positive effect. We also
need to account for warm up time when adding people. This typically shows as a
short dip in the team’s output followed by an increase in productivity (if the new

people are contributing).
Something to keep in mind is Brook’s law, which states:
" Adding people to a late software project makes it later”
We need to only add people before the project is late. By acting promptly on the
available forecast indications we can add capable team members early enough to

ensure net positive effect on the project. Of course it helps if scaling is planned and

is not an afterthought.

Fig. The ramp up period depends on the experience of the team members, the
complexity of the domain, the relative enlargement of the team, and other factors.
If there are two or three planned team increases throughout the project, the

cumulative “delay” from ramp up activities can be substantial and should be

accounted for in planning.

When applying project control by adding more people, we need to follow up with
new data collection, measurements and plotting. If the expected performance
improvement is not supported by the data we need to readjust the forecast and

expectations.

57

Takeoff and Level Off

Take-off and Level off. Usually, work on a project starts slower and then
accelerates a little before it stabilizes at a sustainable pace. If we simply draw a
straight line from the zero point through a single data point, the performance line is
more slant than needed. If we have more than one data point then the true project
performance is captured better. For this reason, if we ever forecast on a single data
point, which can be the case on a shorter project, we should adjust for this effect

manually and slightly up the burn-up angle of the projection line.

adjusted projection ~ %
7

A/
P -
’ _ - e
g
L
-
-
-
- - -
P <" —adjusted burn-up
-
>

Fig. Adjusting for take-off is not only accounting for the ramp-up activities at the
onset of the project, but is also properly reflecting the real team’s productivity at
the time of the single data reading.

Somewhat similar visually, but for a different reason, is the situation at the end of a
project. Assuming a project ends with a deployment or a hand-off, then if we are
aiming straight for the final date, we are effectively planning for a controlled crash
on the last day of the project. Even if it is only for other people’s comfort, we
should consider allowing for a slow-down and level-off prior to the project’s final
day. The project performance line should gradually go horizontal an iteration or two
before the end date so that people have time to work with the software in a
stabilized state. This means that we need to account for the level-off duration as it

requires a slightly steeper performance slope throughout the bulk of the project.

58

) = level off
P
~
,\)Q/ -
-
60\)(/ - o0
xe”, 77 0P
AP (o)
N7 P
(PP
PR\
P .O‘O
P
/‘\669.
///

Fig. The required level-off at the end of the project effectively pushes the target
scope completion sooner, thus steepening the necessary burn-up rate. This is an
important consideration, especially when behind schedule and figuring out a
burn-up rate that will put the project back on target.

The level-off adjustment might seem small but we can’t underestimate the increase
in project performance that is needed to support it. The adjustment only seems
small on the piece of paper on which we are plotting the graph. In reality it requires
thoughtful application of the team’s energy resources and a sustained effort of

shielding the team from detractors throughout the project.

Scope

Dealing with new scope and scope creep. When people are faced with an
increase in scope, the tensions often run high and project teams get demoralized.
Developers feel that business people are trying to load them with out of scope work
without comprehending the project realities, and business people feel that
developers are attempting to avoid work without comprehending the need for

SucCcCess.

This is one more area where charts and diagrams can simplify things significantly
and bring everyone closer to agreement. For this reason alone, an intelligent
forecast pays for itself multiple times along the life of a single project - removing

tension and allowing people to focus on meaningful problems.

59

When new scope starts sneaking in, we need to:
® position the new target on the forecasting diagram
® track new scope and original scope separately
® demonstrate the situation
® outline the available options - aim at the new target; cease the addition of
new scope; extend the project; defer other scope; or anything else that can

be inferred from the forecast.

This clarity in choices dissipates tension in the team significantly. The situation is
very different than adding new scope directly to a product backlog and mixing it
with original scope, without a clear picture of the impact that this is having on

target dates and expected features.

side note

Scope Destinations

When dealing with scope there are a few things we can do other than completing it:

® Deferral of scope is when we agree to postpone implementation until all other
scope is complete, i.e. there is an agreement that deferred scope can be omitted

from the project deliverables and still have a successful project.

® Descoping is when we remove scope from the project with the explicit

understanding that we will no longer revisit it.

® Reprioritization is when we change the importance of scope with the intent to
focus on the more important functionality eatlier, but we still need the less

important scope to be part of the project deliverables.

Additionally, if scope is organized by releases, it is useful to have fake releases labeled
“Deferred” and “Orphaned”’. Deferred scope should be kept visible on the release level
because it is still for consideration. Orphan scope is scope that has not been assigned to
a release. But just because it has not been assigned to a release does not mean there is an
explicit agreement to not complete it as part of the project. It is dangerous because
sometimes it becomes “invisible” and then all of a sudden shows up in the most

inconvenient moment.

60

Scope, and the approach that people take to change in scope, is another junction
where multiple competing concepts confuse the situation and make it easier to get

in conflict. These competing concepts are: product, project, and contract type.

Let’s look at the common confusion between “product” and “project” first. The
product oriented view is that we can simply prioritize work by business value, in an
ever evolving backlog, and with this we guarantee that what is valued most gets
completed first. However, for the people who look at the effort from the project
oriented view, it is also important to know when and at what cost will the whole
effort be complete. Both views are meaningful from the perspectives of the people
who maintain them. It becomes important to have a tool that can bridge the gap

and help people develop an understanding and empathy for the different view.

The other pair of concepts that are easy to confuse, and affect people’s attitude to
scope change, are “project” and “contract”. There are two main contract types in
software development - one is “Fixed Price” and the other is “Time & Material”.
Both contract types apply some structure to the relationship of the parties. A
project on the other hand, by definition, is an enterprise with a specific goal. The
goal is often defined in terms of specific functionality or capabilities. The issue here
is that a Fixed Price contract puts a lot of stress on software developers, while Time
& Material contract puts the stress on the client. Clients working on a project with
Fixed Price contract can become insensitive to the pains of software and product
developers, who are trying to stay within a set budget. And software developers
working on a project with Times & Material contract might become insensitive to
the client, who is trying to accomplish a defined set of functionality before their
money runs out. It is important to keep in mind that the fact that a project has a
“Time & Material” contract, does not invalidate the fact that the project also has a

set goal (at least in the hearts and hopes of the people who initiated the project).

When we use a simple visual tool things become clearer, with less possibility for
misunderstanding. Finding satisfactory solutions becomes a controllable effort, and
people are free to make clear choices from mutually complementing options. In this
sense the value of a forecast goes beyond its potential accuracy. The forecast
becomes a tool for communication between people who struggle finding a common
language, thus saving time, projects, and relationships. This is the true power of a

good forecast.

61

There is nothing bad with scope creep. As it happens, people discover new
things they had not thought about at the start of a project or things they simply
forgot to mention. This newly discovered scope often deserves to be included in the
project’s definition of success. As long as people are aware that it is “new”, and they
are still willing to keep it in the action plan, then the extra scope cannot be good or
bad. It becomes simply an additional factor to consider. What is not good, is when
people pretend that adding new work is as simple as adding new specifications to a
backlog, and has no implication on the rest of the project parameters like cost,

duration, complexity, work environment and more.

To facilitate ...

62

Chapter 6

In this chapter we will look at a tool providing additional insight into the health and
progress of a project. We will also look at a few situations that can be expected on a

typical project.

Performance Index

N\

1.2 // L ¥
x ﬁ/ s
TR
£ S

0.4

0 ==

1-Dec 15- 1-dJan 14- 1-Feb 14- 1-Mar 15- 1-Apr 15-Apr 1-May 15- 1-Jun 16- 1-Jul 17-Jdul 2-Aug
Dec Jan Feb Mar May Jun

The scope forecast that we explored in previous chapters enables us to apply
measured project control towards desired functionality and calendar targets. Scope
and schedule are important project dimensions, but to be confident and resolute in
the decision making process we need a clear view of the energy and financial state
of the project. This will enable us to not only steer the controls to where we want,
but also to have an informed expectation for the longer term capability of the

project.

The indication of available thrust already provides deep insight into the project’s
condition. However, available thrust is more about the team’s output than about the
project’s. The team might be hitting all the planned functionality targets, but at a
higher cost and thus the scope forecast alone is not sufficient. We can plot the

plzmned14 and actual dollar expenses, along with a few index values that provide

" For projects with a fixed scope and fixed budget contract, the planned cost is clear. For projects
with time and material contracts there is no agreed upon cost, but that does not prevent us from
planning or establishing a desired cost, or at least indicating the projected cost.

63

information for the financial health of the project. A set of simple indications which

improve awareness of the project’s financial and energy state are:

money burn - planned cost and actual cost

value index - scope (“value”) we have delivered to date compared to

planned

® relative cost index - money we have spent per unit of scope compared to
planned

® Dborrowing index - the overtime we have borrowed from employees in order

to be where we are

64

Chapter 7

The Big Kahuna

Adriana put her bag on the chair and her coffee cup on the desk. She brushed the
snow off her coat and took it off so she can soak the warmth of the office ait. Then
she typed a quick messenger note to Josh, one of the Scrum Masters with whom
she wanted to talk about an upcoming project, “Josh, can you please meet me for a

quick talk in my office. We might have a new project coming.”

Josh wrapped up with what he was doing and headed to Adriana’s office. “Hi,

Adriana, how are you!”

“Hi Josh! A little cold actually. It’s freezing outside.” she searched for something in
her bag and when she found it she continued “The company name is DT
International, and they want to build a mobile version of their daytime trading

system.”

“They need an estimate in order to sign a contract. We need to work out something
if we want to stay in the game. They are talking to at least one other software

company.”

“Ok. Do we know if they are looking for a ‘Fixed budget’ contract, or if they are

open to “Time & Material’> And do you know if there is a set calendar deadline?”

“Yes, they need it ready before next November, as there is an audit in January and
they need to be in compliance with new regulations. Big kahunas like these are
usually not open to Time & Material. We need to give them a fixed number and it

will be difficult to get them to pay more, we need to get it right from the first time.”

“Hmm. Ok.” said Joshed with just a little concern. “But they know that we work

iteratively and we need them involved and making decisions throughout the project,

65

right?... Do we know who are the lead developers who can work on this project? I

assume we have some documentation too.”

“Yes, I just emailed you the high level specifications. What they need from us is to
design and develop the mobile interface, and all the functionality is described in the
specification. They will provide APIs to their backend systems. And yes, we made it
clear that we work iteratively and that the product will evolve with active

collaboration from both ends.”
“And who are the developersr?”, asked Josh

“Oh, yes. I've already talked with Jackie. She might be already working on an
estimate, and you should go talk to her. I expect both of you to come up with the
estimate and a plan.” Adriana was looking at her phone and scrolling through the
appointments in her calendar. “How does it sound? Do you think you have what

you need for now?”
“For now, yes. How soon do we need to have an estimate?”

“We have 3 days to get back to them with an estimate. We will have some more

time to plan and adjust after that but probably not more than a week or two. ”

“Ok. I'll talk with you later today or tomorrow.” Josh was already building
hypothetical project plans in his mind and was considering the risks. Developers
loved the agile methodology. And fixed scope projects were hard to implement in a
truly agile fashion. He had to secure the environment and the working relationships
that developers got to anticipate and in fact to rely on in order to deliver high

quality products.

Estimating

66

“Hi Jackie! I'm happy we will be working together again. Did you start looking at it
already?”

“Hi Josh! Me too. I'm glad we’ll get to be on the same team again.” Jackie was
flipping between a couple of files on her screen and it was visible she already

initiated the first stab at comprehending the problem.
“How does it look?” asked Josh.
“I haven’t looked at all of it yet. It looks big, but nothing scary so far.” said Jackie.

“Do you know who else will be working with us?” Josh knew that Jackie is one of
the more experienced developers and was wondering whether the things that didn’t
look scary to her would scare some of the other people who would eventually join

the team.

“Im thinking to create a WSB and estimate the hours of work.” continued Jackie.

“It worked well for the last project.”

“This one is much bigger though. Do you think we can break it down to hours?

Seems like a lot of work. And is there enough detail in the spec?”

“I know, right! It’s stressing me out already, but we need to provide an accurate
estimate. If we don’t break it down to the smallest possible detail we can’t estimate

accurately enough.”

Josh was looking at the screen and seemed unconvinced. As if he wanted to say

“Let’s try something else.”

“Do you have something else in mind?” asked Jackie. “I mean, what else can we do

other than breaking it down to a fine WSB and then summing up all the hours?”

“What do you think about estimating it in ranges?” said Josh. “It will be easier, less
stressful, and it represents the reality of what we know at the moment better than

an hour estimate. What do you think?”

67

“I like the less stressful part, but I'm not sure that this is going to give us an

accurate estimate.”
“How many pages is this high level specification document?” asked Josh.
“It’s about 45-50 pages, if we discount for some of the charts. Why?”

“And if we start in a two weeks we will have a little over 11 months, right?” said

Josh without pausing his thread of thought.

“Well yes, but we can’t really count the time around Christmas for much. I’d say 11
months sharp. And this is if we can get all the setup quick enough.” Jackie was
already feeling slightly pressured by the discussion of the limited time available for

the job.

“That’s true. So let’s plan as if we only had 10 months.” said Josh and continued
calculating something in his mind. “If we split each page in about 3-4 sections that
feel like independent chunks of related functionality, we’ll end up with 130-180
chunks, right?” Josh wanted to finish the explanation of his approach. “We can
then assign a t-shirt size to each chunk and total up all the ranges. Over 100 pieces

has to be enough to give us pretty good confidence. Statistically.”

“But this will be a very wide range. I’'m not sure that’s what Adriana needs.” said
y g
Jackie.

“Well narrow it down later. But for now it is what we can produce with the
information we have.” Josh seemed confident. “And I don’t want to put us in a
corner by providing a single number. It is a collaborative exercise. Let’s see if
everyone involved feels comfortable with a broader range first. And instead of
hours let’s use days or even weeks - 72 hours is difficult to comprehend as a

measure of effort.”

Jackie thought for a few seconds and said “Okay. I’'m in! What do we do next?”
Jackie seemed eager to see the result of this approach as it was already feeling

somehow natural.

68

“Well let’s look at a few of these chunks that we have and see how big they seem to

you.” said Josh. Even though she agreed to the experiment Jackie was still doubtful.

“But please think of the effort as if someone else will be coding it.” said Josh. “I
know you are one of the quicker programmers so when estimating, please imagine

it’s someone a little less skilful, but still competent enough.”

“Cool. I'm starting to get interested in this method of estimating. Almost sounds
like fun.” she smiled. “And actually, we code in pairs, so it might be better to
estimate it with that in mind. It’s close to lunch. Do you want to grab something?”

And the two of them took their jackets and went out of the office.

After lunch they got in a nice conference room which they decided will be their

office for the remainder of the day.

“Yes, you are right. It will be much better to estimate having in mind that it’s a
programming pair doing the work.” said Josh. He was happy that Jackie was such
an experienced developer and was making the plan more realistic. “And let’s assume
we also have one tester working with the programming pair. So with all these

assumptions, how are these first few chunks of work looking?”

Jackie was reading through the description of an editable personal information form
that had to be initialized by an external service. A few more details were spelled out
around the usage of the form and the information on it. “Hm, this looks like at least
a few days of work. With all the mobile platforms we need to test and support it
might be more than a week actually.” Jackie was thinking back to similar solutions
she had programmed in the past and she knew there might be tricky places when
dealing with personal information. She haven’t worked on a banking application
before so this made her willing to go with a safer estimate rather than an overly

aggressive one.

“So would you say about 2 weeks is adequate for this?”” asked Josh. “I also expect
that some of it will need to change when the users provide feedback. Not sure yet
how that process will be handled but you rely on their feedback during Sprint
Reviews, right?”

69

“That’s right. If we don’t have that process working well I will not be a happy
programmer on this project. A broken feedback process adds a lot of uncertainty.
Honestly, I'm not even sure if I want to be on this project if we are only going to
simulate being Agile.” Jackie was obviously passionate about the way the
programmers approached work and she didn’t want the subject to be just an

afterthought.

The next few chunks of work looked about the same. One looked a little more than
2 weeks, one looked about 3 weeks, and there were a few more that seemed a week
and a half, but both Jackie and Josh thought it’s fair to count them as 2 week effort.

“Ok. Let’s take the 2 week period as a mean and build a few ranges around it. I
think this will speed up the estimation for the remainder of the chunks as otherwise

we are looking at too much detail.” said Josh.

“Yeah, with this speed I was afraid we have to stay here through the night.” laughed
Jackie. “And you know how much we programmers dislike overtime.” She said it
with a smile, but Josh was paying attention. He didn’t like overtime either. An
occasional instance when everyone is so deeply engaged and in rhythm that they
forget to stop working at the end of the day was ok and even could be a fun team
building experience. But having to consistently work overtime just to sustain the
project was one of the things no one in the company liked. Most people had diverse
experiences with other companies and other software development methodologies,
and overtime was often part of the culture. Readiness to work overtime was even
regarded as a virtue in many of these places and people who wanted to live their

private lives were sometimes considered slackers, or poor team players.

An almost empty spreadsheet file was taking up the whole screen. “Okay. Let’s do
this!” said Josh.

“You can see the ranges. They are overlapping a little, but just place each chunk

where you feel it belongs most. I'll be recording the results here on the right side.”

70

71

Tidbits (Chapter 8)

A soup of related concepts, heuristics and practical details is mixed up in this
chapter with the intent to provide good starting points for anyone who applies

intelligent forecasting in practice.

Software Development Laws

Brook's Law. Brook’s Law talks about the effect of adding “manpower” to a

software project:

" Adding manpower to a late software project makes it later." (Brooks 1975)
Sometimes generalised as:

"Adding people to software development slows it down"

It is important to note here that the generalized form is just that, a generalization. It
is true, but only for a set period that follows immediately after adding people to the
project. Once the new team members have had time to ramp up and start
contributing, the net throughput of development might increase (depending on

many other factors).

The original version of this principle is important for project control because it tells
us that people should be added to a project only in anticipatory mode, i.e. planned.
If we are reactively adding people because we have realized that the project is late,

then it is too late.

As we said earlier in the book, forecasting can help with this situation since it puts
us exactly in the anticipatory mode needed for sensible project control. We can

decide whether more people are needed in advance of “being late”.

72

Gall’s Law. Gall's Law is about growing software systems. It explains how complex

but working systems become in existence:

"A complex: system that works is invariably found to have evolved from a simple system
that worked. A complex: system designed from scrateh never works and cannot be patched
up to make it work. You have to start over with a working simple system." (Gall 1986)

This principle can be applied to software teams as well and has important
implications on scaling teams or working on projects with large teams (10 small

scrum teams working on the same project comprise a very large project team).

"A complex: team that works is invariably found to have evolved from a simple team that
worked. A complex: team designed from scratch never works and cannot be patched up to

make it work. You have to start over with a working simple team'"

This law basically says that we need to grow teams, and not scale them or
“architect” them. This is important, since growing a team does not have to start
with adding more people. We should first exhaust the practical opportunities for
growth and improvement within the small and simple team, including teaching
them new skills. One of the benefits of this is that when we have a team of high
performing individuals, adding new individuals causes much less disturbance. The
new people tend to accelerate quicker because most of their interactions are
providing support and building their confidence. This feeds into an organically
sustainable growing mechanism - as long as we don’t exceed the intake capacity of

the highly proficient team.

Many frameworks for applying structure at scale attempt to slice and dice a large
project team into small groups and hope to achieve the efficiency of the small
group, but simply applied at scale. My experience with this approach is not positive.
Large teams that are broken in multiple small teams are still large teams. They need
to be grown. Once we start with a normal sized team and grow it beyond it’s natural
capacity, we can add more people and then split it in two. Then keep growing each
of the teams gradually until we are able to split in two again. Of course, we need to
account for a many great number of other factors if we are to build a high
performing team. But starting with a large team, or many small teams, is a sure way

to fail.

73

[a diagram for growing vs. scaling up|

Starting a project with a large team puts the project in a state of being late as soon
as it has started (because the team can not be patched to function). Projects like this
operate under Brook's law at all times and we are stuck in a death spiral where the

more people we add the less chance we have for making it out unscathed.
Parkinson's Law and Hofstadter's Law
"Work expands so as to fill the time available for its completion" (Parkinson's Law)

"It always takes longer than you expect, even when you take into account Hofstadter's
Law." (Hofstadter 1980)

These two principles are true when we look at a project as a single monstrous task
and we grand-total the small tasks into a single large effort. With the method of
intelligent forecasting, we in fact treat each chunk of work as a small project with its
own probability of being on time, early, or late. We then utilize the Central Limit
Theorem to work on all the probabilities together, accounting for the effect of each
one, while not focusing on any individually. We are also tracking the project
performance with additional project indexes, which provide a fine grained survey
and prevent the work from simply expanding and compressing within the full

project envelope.
Conway's Law

"Organizations which design systems ... are constrained to produce designs which are

copies of the communication structures of these organizations' (Conway 1968)

Conway’s Law can be applied to multiple aspects of software teams and the systems
they build. In the context of forecasting, it reinforces Gall’s Law because if we want
to start with a small and simple system, we also need a small team working on it.
Otherwise, if we start with a complex team, even if the system starts small, it will
inherit the complexities of the large team through an overly complex design and
architecture. A complex team will not be able to produce a simple solution. This
will immediately affect the team’s ability to work in a sustainable way and the result

is often legacy systems even before they have been deployed to production.

Manifesto for Agile Software Development

74

The Manifesto for Agile Software Development is a document that gives valuable

perspectives on a few core dimensions. I’ll share my thoughts here, and stay close to

what is relevant to forecasting projects. The manifesto is a document that is worth

reflecting on, and people working with scrum or other frameworks related to agile

development should take time to discuss what applies to their projects and where

they want to seek improvements.

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.
Fig. The Manifesto as printed on http://agilemanifesto.otg

The original manifesto text is below, in slightly larger font and is underlined,
and my thoughts are inline, and in slightly smaller and slanted type.

Manifesto for Agile Software Development

We are uncovering better ways of developing

software (A “hint” that this is primarily about software development and not about project
delivery. Better software development enables better project delivery but does not replace it or

guarantee it.) by doing it and helping others do it.
Through this work we have come to value:

75

Individuals (clients, managers, developers and scrum masters are individuals. We need to
treat them as such and value their problems and issues) and interactions over
processes and tools (agile development, scrum, XP, #noEstimates, and estimates, all fall in
this group. We should utilize the tools that facilitate interactions with individuals.)
Working software over comprehensive documentation
Customer collaboration (working together implies taking care of each other’s needs. It
cannot be one sided where developers only care for better software and business people only
care for business) over contract negotiation (positioning yourself well for a possible

negotiation, and enabling other people to reason productively during negotiation, is good.
Contract negotiation is different than negotiation.)

Responding to change (knowing what the change means, in the context of the project, is
important for an adequate response. Baselining, tracking, forecasting and planning are not

useless activities as they put change in context.) over following a plan (trying to follow a
static plan at any cost is the issue. Having a plan that you intend to follow, but you are willing to

revisit and adjust, is not a bad thing.)

You can read more and reflect here:

http://agilemanifesto.org

http:/ /agilemanifesto.org/principles.html

Common Gaps, Environment Needs and Tiny Details

Project set up. A common gap on many software development projects is to have
the parameters of the project negotiated, and to only then assemble a team with the

mandate to complete the project as defined. This creates issues on multiple levels.

If the delivery team and the PM (or the sole SM) are not involved in the project
setup then they have missed out on the opportunity to affect and manage one of
the most important stages of the project - its initiation. Once the project is set up,
the chances for success are irreversibly affected. Having participation from as many

of the team members as possible is an important step towards minimizing risk.

Many projects are defined within a Statement Of Work (SOW) that never gets
presented to the delivery team. The team is simply handed a set of requirements and

a final date. This is not the best way to approach a team if we want them to get to a

http://agilemanifesto.org/
http://agilemanifesto.org/principles.html

76

high performing state. People can sense that they are not being treated equally, and
predictably retract their full and committed participation in the endeavour. After all,
if people are to develop a sense of ownership, then they need to be treated as
proper owners of the problem. Also, important consideration in the form of
assumptions and dependencies might get completely overlooked by the people who

“crafted” the SOW, thus exposing the project to additional risk.

One of the first steps towards a sensible working environment on any software
development project is to have the full delivery team familiarized and ideally
involved with the creation of the SOW. This lays the groundwork for a participative
team and improves the risk profile of a project significantly. The delivery team
should define the assumptions which must hold true throughout the execution of
the project, as well as they need to identify any major dependencies and risks that

need to be worked out in order to have a realistic chance for success.

Project start. When the delivery team jumps into implementation work right away,
there is a huge risk introduced to the project immediately. The likelihood for a
successful project diminishes greatly when the delivery team is not allowed the
opportunity to familiarize themselves with the business problems, main users of the
proposed system and their primary pain points, the typical journeys these users take
through the current processes. Sometimes in an effort to save money, a select group
of individuals will go over some of these topics, and will produce written
documents, only to then have the documents stashed somewhere out of reach of
the delivery teams. People can go through year-long projects and then accidentally
stumble on useful descriptions of personas, success criteria, and intricate flow

charts with useful insight.

This is not what we want to save money on. Shared knowledge and understanding
is crucial for optimal flow and a solid solution. A preferable approach is to take a
few full days and have the delivery team and clients go over the pertinent items
together. There are various tools for facilitating this process and it is best if
completed by a professional facilitator. An investment like this will pay off on any

project longer than 2-3 months.

Project Manager vs. Scrum Master. The job title, of course, does not matter.
However, the attitude does, and the roles are different. Many Project Managers

(PMs) approach project management remotely and do not immerse themselves fully

77

in neither the details of the implementation work, nor in the relationships within the
team. A Scrum Master (SM) on the other hand has to be intimately involved in
everything that goes into the team, and also be willing to serve the people on the
team and provide assistance, guidance or anything else that is needed to keep the
team delivering great work. On the other hand, many SMs would refuse to expand
sizable amount of energy on long term activities like project planning. An SM is

mainly concerned with the work of the team within the scope of an iteration or two.

My approach, and recommendation is to always care about the team first. Not the
forecast or the project plan. This gives a more useful perspective for the whole
forecasting exercise as it becomes primarily a tool for helping the team and the
project move forward. When the PM aspect takes precedence over the SM aspect
then the person responsible for managing the project might get confused that the
forecast or project plan actually drives what is happening. This is usually
contra-productive and backfires, as people and reality refuse to conform to the
imposed plan. So for me it has always worked best to have the forecast and the plan
be driven by what is the real capability of the situation, but fully realizing the impact

that the forecast and plan have on the situation and various possibilities.

SCARF

“SCARF: A Brain-Based Model for Collaborating with and Influencing Others”
This model is based on neuroscience and provides a useful framework for any type
of social interactions, including negotiations. SCARF is an acronym for “Status,
Certainty, Autonomy, Relatedness, Fairness” and the model is based around

people’s reward and threat responses on these five aspects of an interaction.

Status - relative importance to others (in the context of the interaction)
Certainty - ability to predict the future

Autonomy - the sense of having control over events

Relatedness - the perception of safety with others

Fairness - the perception of fair exchanges between people

Here is how an intelligent and reliable forecast facilitates the practical application of
SCARF within the boundaries of the project:

78

Status. Within the context of a project, the status of a client is that of someone
who has asked for help in accomplishing something that is of value to them. And
our status is that of someone who has been entrusted with seeing their project to a
successful end. When we promote the use and application of precise forecasting, we
establish ourselves on the controls of the project and we are allowing the client to
take their natural status of someone who is being provided a service. This
normalizes the relationship, triggers the client’s reward response, and allows for the
right type of interactions to occur throughout the duration of the project. It is their
project, but they have already entrusted us with it, and by not shying away from the

responsibility to control the project, we cocreate the correct social structure.

Certainty. By providing a clear outlook and prognosis, based on provable tracking
data, we are delivering the ultimate in clarity and certainty to the client, and to the
team. When we confidently indicate the likelihood of not being able to achieve a
goal well in advance of the expected time, we provide the client with the
opportunity to work out solutions while there is still time. And when we confidently
state that there is a high likelihood of achieving a goal, we allow the client to divert
their precious energy to solving other important problems. In both cases, we are
triggering the reward response in the client - either by allowing them ample space
for working out the project problems, or by allowing them the comfort of actually
knowing that things are on track. (A very different sensation than the one provided
by claimed progress, but combined with a continual inability to provide an outlook

for the final result.)

Autonomy. By providing clear and viable options for steering the project, we
provide the client with the autonomy of choosing which option suits their situation
the best. The client can steer the project where they want, yet still within the safety
of what we have determined is doable. This way we maintain the “status” aspect of
the relationship and we are still responsible for the ultimate effect that the
application of a control has on the project, but we allow the client to choose which

control to apply.

Relatedness. By being transparent in presenting the factors affecting the project’s
progress, and by openly providing multiple options for dealing with difficult
situations, we show the client that we are working for them and that we are one
team. With a willingness to let go of negotiations that have become inadequate for

one reason or another, and by allowing clients to freely re-negotiate scope while

79

maintaining a clear picture of the involved costs, we become immediately relatable.
Simultaneously we continually maintain the client’s perception of our positive ability
to carry out our part of the relationship. This shows that not only do we care, but
we actually can, and will, do whatever it takes to get the job done (because we are

basing everything on the provable capability of the situation).

Fairness. By laying down all the options, and by demonstrating regard for every
percentage of throughput that we can apply towards the project’s success, we create
an environment where every action is treated fairly within the envelope of the
project. Everything has a clear cost and a clear benefit. Choices have clear expected
outcomes, and there are no secrets or intentional gotchas. By creating a fair playing
field we allow the client to have a reward response in this aspect of the negotiation

as well.

“Negotiation” - The dictionary definition of the word is “discussion aimed at reaching
an agreement’. However, 1 enjoy thinking about this word with its usage in the
expression “negotiating turns”. This way the whole project and all the people on it
become one unit with an immediate objective of handling an obstacle. Negotiations
on a software project take on a completely new meaning when I think of the word

this way.

Invert, always Invert

Carl Gustav Jacob Jacobi (1804 — 1851) was a German mathematician. One of his
maxims was: 'Tnvert, always inverf. He believed that the solution of many complex

problems can be facilitated by expressing the inverse form of the problem.

By studying the inverse of the complex problem we are presented with interesting
options, and a valid solution often emerges. Here is how this principle is exercised

in a few of the ideas in this book:

® To gain the ability to control the project with precision we agreed to rely on
things over which we don’t have control and can not evaluate with

precision. By inverting the focus from precision to imprecision, we allow for

80

valuable statistical properties to emerge in support of our objective.

In order to be able to change the parameters of the project we commit to a
specific outcome, seemingly putting ourselves in a situation that does not
permit change of parameters. By inverting the typical order of events, and
committing before we know the exact details, we allow details to emerge
once we are in motion and we are not simply working out a predefined
solution, but we are actively designing the problem itself. In true
collaboration with clients we examine what success means and we adjust the
details of its very definition in a way that supports the project’s practical

ability within a defined envelope.

By inverting our focus from personal dynamics and high performing
teamwork, and instead invest energy into developing a tool which is sourced
from a place that seems diametrically opposed to the human aspect of the
project, namely statistics and scheduling, we allow space for the human
relationships to develop around the critical supports of trust and safety
(which are facilitated by the tool). This then allows high performance team

dynamics to emerge and carry out the project.

81

Appendix

Cheatsheet

[a step by step poster/infographic style of cheatsheet]

Variations of the Intelligent Forecasting Method

Using a story map directly. If the forecast needed by business people is in broad
strokes, this approach can work well. It is a good alternative to zero forecasting
when the relationship with the client is strong and the team is performing well. In

essence it is very similar to what is described in this book.

This approach also provides no high-fidelity guidance for applying proper project
control, it does not indicate trouble soon enough, and it does not (directly) facilitate

differentiating “added scope” from “original scope”.

All stories as 1-point stories. This approach is worth considering if we already
have many stories that are similarly sized. Getting the whole backlog into similarly

sized small stories can be difficult and expensive, though.

Something else to be aware of with this approach is that some stories are still going
to be riskier than others. If we do the right thing, and take on the risky and difficult
stories first, then we might have a slower start. Plotted on 1-dot-per-story data this
will indicate we are tracking too slow for the project. We then need to convince
people not to worty, since we expect to be going quicker through the 1-dot stories

planned for later.

In practice, this method is better suited for iteration level planning and maintaining
consistent delivery pace across iterations. It can save time in place of the planning
poker game and it also nudges the team towards smaller stories, which can improve

the flow significantly.

82

Spreadsheets and Sample Charts

Index

References

https:/ /leanpub.com/xanpan2/read
https://www.amazon.ca/Xanpan-Centric-Agile-software-development-ebook/d
B012ZSYIHO /ref=sr 1 172s=books&ie=UTF8&qid=1481824924&sr=1-17&key

words=team+software

The Case For Project Management

https:/ /www.leadingagile.com/2011/10/the-case-for-project-management/?utm s

ource=feedburner&utm medium=feed&utm campaign=Feed%3A+I.cadingAgile
+%281 eadingAgile%29

http:/ /www.jamesshore.com/In-the-News/Estimates-or-No-Estimates.html

http://www.allaboutagile.com (this seems to be coupled with

www.leadingagile.com and also very good)

https:/ /en.wikipedia.org/wiki/Sample size determination

https://en.wikipedia.org/wiki/Central limit theorem

http://www.agilenutshell.com/cone _of uncertainty

https://leanpub.com/xanpan2/read
http://www.allaboutagile.com/
https://en.wikipedia.org/wiki/Sample_size_determination
https://www.amazon.ca/Xanpan-Centric-Agile-software-development-ebook/dp/B012ZSY9HO/ref=sr_1_17?s=books&ie=UTF8&qid=1481824924&sr=1-17&keywords=team+software
https://www.leadingagile.com/2011/10/the-case-for-project-management/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+LeadingAgile+%28LeadingAgile%29
https://www.leadingagile.com/2011/10/the-case-for-project-management/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+LeadingAgile+%28LeadingAgile%29
http://www.agilenutshell.com/cone_of_uncertainty
http://www.leadingagile.com/
https://www.amazon.ca/Xanpan-Centric-Agile-software-development-ebook/dp/B012ZSY9HO/ref=sr_1_17?s=books&ie=UTF8&qid=1481824924&sr=1-17&keywords=team+software
http://www.jamesshore.com/In-the-News/Estimates-or-No-Estimates.html
https://en.wikipedia.org/wiki/Central_limit_theorem
https://www.leadingagile.com/2011/10/the-case-for-project-management/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+LeadingAgile+%28LeadingAgile%29
https://www.amazon.ca/Xanpan-Centric-Agile-software-development-ebook/dp/B012ZSY9HO/ref=sr_1_17?s=books&ie=UTF8&qid=1481824924&sr=1-17&keywords=team+software

83

and-express-it-in-numbers-you-know-something-about-it

http://connection.mit.edu/wp-content/uploads/sites /29 /2014 /12 /hbr-new-scienc
e-teams-2012.pdf

https://en.wikipedia.org/wiki/Angle of climb

https://en.wikipedia.org/wiki/The Mythical Man-Month

http:/ /ithinktowin.blogspot.ca/2009/05/change-management-subtle-difference.ht

ml

https://en.wikipedia.org/wiki/Scientific method

Software Quality Management / Systems Thinking
Specification by Example

https://en.wikipedia.org/wiki/Conceptual model

the-psychological-landmines-of-negotiations/

http://ithinktowin.blogspot.ca/2009/05/change-management-subtle-difference.html
http://ithinktowin.blogspot.ca/2009/05/change-management-subtle-difference.html
https://www.gilb.com/blog/when-you-can-measure-what-you-are-speaking-about-and-express-it-in-numbers-you-know-something-about-it
https://en.wikipedia.org/wiki/Scientific_method
http://connection.mit.edu/wp-content/uploads/sites/29/2014/12/hbr-new-science-teams-2012.pdf
http://connection.mit.edu/wp-content/uploads/sites/29/2014/12/hbr-new-science-teams-2012.pdf
https://en.wikipedia.org/wiki/Angle_of_climb
https://www.gilb.com/blog/when-you-can-measure-what-you-are-speaking-about-and-express-it-in-numbers-you-know-something-about-it
https://viaconflict.wordpress.com/2015/04/30/using-the-scarf-model-to-navigate-the-psychological-landmines-of-negotiations/
https://en.wikipedia.org/wiki/Conceptual_model
https://viaconflict.wordpress.com/2015/04/30/using-the-scarf-model-to-navigate-the-psychological-landmines-of-negotiations/
https://en.wikipedia.org/wiki/The_Mythical_Man-Month

