

Paperback available on Amazon:

https://www.amazon.com/dp/B0BW2MGYG4

Murat Durmus

A Hands-On Introduction to

Essential Python

Libraries and Frameworks

(With Code Samples)

https://www.amazon.com/dp/B0BW2MGYG4

Copyright © 2023 Murat Durmus

All rights reserved. No part of this publication may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or other

electronic or mechanical methods, without the prior written permission of the

publisher, except in the case of brief quotations embodied in critical reviews and certain

other noncommercial uses permitted by copyright law.

Cover design:

Murat Durmus

About the Author

Murat Durmus is CEO and founder of AISOMA (a Frankfurt am Main

(Germany) based company specializing in AI-based technology

development and consulting) and Author of the books "Mindful AI -

Reflections on Artificial Intelligence".& “A Primer to the 42

Most commonly used Machine Learning Algorithms (With

Code Samples)"

You can get in touch with the author via:

▪ LinkedIn: https://www.linkedin.com/in/ceosaisoma/

▪ E-Mail: murat.durmus@aisoma.de

Note:

The code examples and their description in this book were written

with the support of ChatGPT (OpenAI).

https://www.amazon.com/dp/B08Z4BWN1X/ref=cm_sw_em_r_mt_dp_0CD1G3ZM1E85R72ZHAF3
https://www.amazon.com/dp/B0BT911HDM
https://www.amazon.com/dp/B0BT911HDM
https://www.amazon.com/dp/B0BT911HDM
https://www.linkedin.com/in/ceosaisoma/
mailto:murat.durmus@aisoma.de

"Python is not just a language,

it's a community

where developers can learn,

collaborate and create wonders."

 - Guido van Rossum

(Creator of Python)

vi

A BRIEF HISTORY OF PYTHON PROGRAMMING LANGUAGE 1

DATA SCIENCE ... 5

PANDAS .. 6

Pros and Cons ... 8

NUMPY ... 10

Pros and Cons ... 12

SEABORN .. 14

Pros and Cons ... 16

SCIPY ... 18

Pros and Cons ... 20

MATPLOTLIB ... 22

Pros and Cons ... 24

MACHINE LEARNING ..26

SCIKIT-LEARN .. 27

Pros and Cons ... 29

PYTORCH ... 32

Pros and Cons ... 36

TENSORFLOW ... 38

Pros and Cons ... 40

XGBOOST .. 43

Pros and Cons ... 45

LIGHTGBM .. 47

Pros and Cons ... 49

KERAS .. 51

Pros and Cons ... 52

PYCARET.. 54

Pros and Cons ... 55

vii

MLOPS .. 57

MLFLOW ... 58

Pros and Cons .. 60

KUBEFLOW ... 61

Pros and Cons .. 66

ZENML .. 69

Pros and Cons .. 72

EXPLAINABLE AI .. 74

SHAP ... 75

Pros and Cons .. 77

LIME .. 79

Pros and Cons: ... 81

INTERPRETML ... 84

Pros and Cons .. 87

TEXT PROCESSING ... 89

SPACY ... 90

Pros and Cons .. 91

NLTK ... 93

Pros and Cons .. 94

TEXTBLOB ... 96

Pros and Cons .. 97

CORENLP... 99

Pros and Cons .. 100

GENSIM .. 102

Pros and Cons .. 104

REGEX ... 106

Pros and Cons .. 107

viii

IMAGE PROCESSING ... 109

OPENCV .. 110

Pros and Cons ... 112

SCIKIT-IMAGE .. 114

Pros and Cons ... 116

PILLOW ... 118

Pros and Cons ... 120

MAHOTAS ... 121

Pros and Cons ... 123

SIMPLEITK ... 124

Pros and Cons ... 125

WEB FRAMEWORK ... 127

FLASK .. 128

Pros and Cons ... 129

FASTAPI ... 131

Pros and Cons ... 133

DJANGO .. 135

Pros and Cons ... 137

DASH ... 139

Pros and Cons ... 140

PYRAMID ... 142

Pros and Cons ... 143

WEB SCRAPING .. 145

BEAUTIFULSOUP ... 146

Pros and Cons ... 148

SCRAPY .. 150

Pros and Cons ... 153

ix

SELENIUM ... 155

Pros and Cons .. 156

A PRIMER TO THE 42 MOST COMMONLY USED

MACHINE LEARNING ALGORITHMS (WITH CODE

SAMPLES) ... 158

MINDFUL AI .. 159

INSIDE ALAN TURING: QUOTES & CONTEMPLATIONS

 .. 160

1

A BRIEF HISTORY OF PYTHON

PROGRAMMING LANGUAGE

Python is a popular high-level programming language for

various applications, including web development,

scientific computing, data analysis, and machine learning.

Its simplicity, readability, and versatility have made it a

popular choice for programmers of all levels of expertise.

Here is a brief history of Python programming language.

Python was created in the late 1980s by Guido van

Rossum, who worked at the National Research Institute

for Mathematics and Computer Science in the

Netherlands. Van Rossum was looking for a programming

language that was easy to read and write, and that could

be used for various applications. He named the language

after the British comedy group Monty Python, as he was a

fan of their TV show.

The first version of Python, Python 0.9.0, was released in

1991. This version included many features still used in

PythonPython today, such as modules, exceptions, and the

core data types of lists, dictionaries, and tuples.

Python 1.0 was released in 1994 and included many new

features, such as lambda, map, filter, and reduce. These

features made it easier to write functional-style code in

PythonPython.

Python 2.0 was released in 2000, introducing list

comprehensions, a new garbage collector, and a cycle-

detecting garbage collector. List comprehensions made

 PANDAS

2

writing code that operated on lists and other iterable

objects easier.

Python 3.0, a significant update to the language, was

released in 2008. This version introduced many changes

and improvements, including a redesigned print function,

new string formatting syntax, and a new division operator.

The latest version also removed some features that were

considered outdated or redundant.

Since the release of Python 3.0, there have been several

minor releases, each introducing new features and

improvements while maintaining backward compatibility

with existing code. These releases have included features

such as async/await syntax for asynchronous

programming, type annotations for improved code

readability and maintainability, and improvements to the

garbage collector and the standard library.

Python's popularity has grown steadily over the years, and

it is now one of the most popular programming languages

in the world. Web developers, data scientists, and

machine learning engineers, among others, widely use it.

Python's popularity has been driven by its simplicity,

readability, and versatility, as well as its large and active

community of developers who contribute to the language

and its ecosystem of libraries and tools.

In conclusion, Python programming language has come a

long way since its inception in the late 1980s. It has

undergone many changes and improvements over the

years, but its core values of simplicity, readability, and

versatility have remained constant. Moreover, Python's

 PANDAS

5

DATA SCIENCE

Data science is an interdisciplinary field that involves

extracting, analyzing, and interpreting large, complex data

sets. It combines elements of statistics, computer science,

and domain expertise to extract insights and knowledge

from data.

Data scientists use various tools and techniques to collect,

process, and analyze data, including statistical analysis,

machine learning, data mining, and data visualization.

They work with large, complex data sets to uncover

patterns, relationships, and insights that can inform

decision-making and drive business value.

Data science has applications in various fields, including

business, healthcare, finance, and social science. It informs

different decisions, from product development to

marketing to policy-making.

 PANDAS

6

PANDAS

Python Pandas is an open-source data manipulation and

analysis library for the Python programming language. It

provides a set of data structures for efficiently storing and

manipulating large data sets, as well as a variety of tools

for data analysis, cleaning, and preprocessing.

Some of the key data structures in Pandas include the

Series, which is a one-dimensional array-like object that

can hold any data type; and the DataFrame, which is a two-

dimensional tabular data structure with rows and columns

that can be thought of as a spreadsheet or a SQL table.

Pandas also provides a range of data manipulation

functions and methods, such as filtering, sorting, merging,

grouping, and aggregating data. It also supports data

visualization tools that allow users to plot and visualize

data in a variety of ways.

It is widely used in data analysis and data science, and is

considered one of the essential tools for working with data

in Python. It is also frequently used in conjunction with

other popular data science libraries such as NumPy,

Matplotlib, and SciPy.

An example of how you can use Pandas to read in a CSV

file, manipulate the data, and then output it to a new file:

import pandas as pd

Read in the CSV file
data = pd.read_csv('my_data.csv')

Print the first few rows of the data

 PANDAS

7

print(data.head())

Filter the data to include only rows where
the 'score' column is greater than 90
filtered_data = data[data['score'] > 90]

Create a new column that calculates the
average of the 'score' and 'time' columns
filtered_data['average'] =
(filtered_data['score'] +
filtered_data['time']) / 2

Output the filtered data to a new CSV file
filtered_data.to_csv('my_filtered_data.csv',
index=False)

In this example, we first import the Pandas library using

import pandas as pd. We then read in a CSV file called

my_data.csv using the pd.read_csv() function, which

creates a DataFrame object. We then use the head()

method to print out the first few rows of the data.

Next, we filter the data to include only rows where the

'score' column is greater than 90 using boolean indexing.

We then create a new column called 'average' that

calculates the average of the 'score' and 'time' columns

using basic arithmetic operations.

Finally, we use the to_csv() method to output the filtered

data to a new CSV file called my_filtered_data.csv, with

the index=False parameter indicating that we do not want

to include the DataFrame index as a column in the output

file.

 PANDAS

8

Pros and Cons

Pros:

• Easy-to-use and highly versatile library for data

manipulation and analysis.

• Provides powerful tools for handling large

datasets, including fast indexing, filtering,

grouping, and merging operations.

• Supports a wide range of input and output formats,

including CSV, Excel, SQL databases, and JSON.

• Offers a rich set of data visualization tools,

including line plots, scatter plots, histograms, and

more.

• Has a large and active community of users and

developers, which means that there is a wealth of

online resources and support available.

• Can be used in conjunction with other popular data

science libraries such as NumPy, SciPy, and

Matplotlib.

Cons:

• Pandas can be memory-intensive when working

with very large datasets, and may not be the best

choice for real-time applications or very high-

dimensional data.

 PANDAS

9

• Some of the functions and methods can be

complex and difficult to understand, especially for

new users.

• Can be slow when performing certain operations,

such as applying functions to large datasets or

performing multiple merges or concatenations.

• May not always produce the desired results,

especially when working with messy or

unstructured data.

• Some users have reported issues with

compatibility and portability between different

versions of Pandas or between Pandas and other

libraries.

 MATPLOTLIB

26

MACHINE LEARNING

Machine learning is a subfield of artificial intelligence that

develops algorithms that can automatically learn and

improve from data.

In machine learning, a model is trained on a large dataset

of input-output pairs, called a training set, and then used

to make predictions on new, unseen data. The goal is to

develop a model that can generalize well to new data by

learning patterns and relationships in the training data

that can be applied to new data.

There are several machine learning types, including

supervised, unsupervised, and reinforcement learning. In

supervised learning, the training set includes labeled

examples of input-output pairs, and the goal is to learn a

function that can accurately predict the output for new

inputs. In unsupervised learning, the training set does not

include labels; the goal is to discover patterns and

relationships in the input data. Finally, in reinforcement

learning, an agent learns to interact with an environment

to achieve a goal by receiving rewards or penalties based

on actions.

Machine learning has many applications, from image

recognition and natural language processing to

recommendation systems and predictive analytics. It is

used in various industries, including healthcare, finance,

and e-commerce, to automate decision-making, improve

efficiency, and gain insights from data.

 SCIKIT-LEARN

27

SCIKIT-LEARN

Python scikit-learn (also known as sklearn) is a popular

machine learning library for the Python programming

language. It provides a range of supervised and

unsupervised learning algorithms for various types of data

analysis tasks such as classification, regression, clustering,

and dimensionality reduction.

It was developed by David Cournapeau as a Google

Summer of Code project in 2007 and is now maintained by

a team of developers. It is open-source software and is

available under a permissive BSD-style license.

Scikit-learn is built on top of other popular scientific

computing libraries for Python, such as NumPy, SciPy, and

matplotlib. It also integrates with other machine learning

and data analysis libraries such as TensorFlow and Pandas.

Scikit-learn provides a wide range of machine learning

algorithms, including:

• Linear and logistic regression

• Support Vector Machines (SVM)

• Decision Trees and Random Forests

• K-Nearest Neighbors (KNN)

• Naive Bayes

• Clustering algorithms (e.g. K-Means)

 SCIKIT-LEARN

28

• Dimensionality reduction techniques (e.g.

Principal Component Analysis)

It also provides utilities for model selection and

evaluation, such as cross-validation, grid search, and

performance metrics.

Scikit-learn is widely used in academia and industry for a

variety of machine learning tasks, such as natural language

processing, image recognition, and predictive analytics. It

is considered one of the essential tools in the Python data

science ecosystem.

An example code snippet that demonstrates how to use

scikit-learn to train a simple logistic regression model:

from sklearn.linear_model import
LogisticRegression
from sklearn.datasets import load_iris

Load the iris dataset
iris = load_iris()

Split the dataset into features (X) and
labels (y)
X, y = iris.data, iris.target

Create a LogisticRegression object
logreg = LogisticRegression()

Fit the model using the iris dataset
logreg.fit(X, y)

Predict the class labels for a new set of
features
new_X = [[5.1, 3.5, 1.4, 0.2], [6.2, 3.4, 5.4,
2.3]]
predicted_y = logreg.predict(new_X)

 SCIKIT-LEARN

29

print(predicted_y)

In this example, we first import the necessary modules

from scikit-learn (LogisticRegression for the model and

load_iris for the iris dataset). We then load the iris dataset,

which is a well-known dataset in machine learning

consisting of 150 samples of iris flowers, with four features

each.

We then split the dataset into features (the X variable) and

labels (the y variable). We create a LogisticRegression

object and fit the model to the dataset using the fit

function.

Finally, we use the trained model to predict the class labels

for two new sets of features (new_X). The predicted class

labels are printed to the console.

This is just a simple example, and scikit-learn has many

more advanced features and models for a wide range of

machine learning tasks.

Pros and Cons

Pros:

• It’s a powerful and comprehensive machine

learning library that offers a wide range of

algorithms for various tasks.

• Scikit-learn is easy to use and has a relatively

simple API compared to other machine learning

libraries.

 SCIKIT-LEARN

31

• It does not include some newer or more advanced

machine learning techniques that have been

developed more recently, such as deep learning.

• Scikit-learn does not include built-in support for

some popular machine learning frameworks such

as TensorFlow or PyTorch, which may limit its

flexibility in some use cases.

 ZENML

74

EXPLAINABLE AI

Explainable AI (XAI) is a set of techniques and practices

that aim to make machine learning models and their

decisions more transparent and understandable to

humans.

XAI aims to provide insights into how a machine learning

model works, how it makes decisions, and what factors

influence its predictions. This is important because many

modern machine learning models are complex and

challenging to interpret, and their choices may

significantly impact individuals and society.

XAI techniques include feature importance analysis, local

and global model interpretability, counterfactual analysis,

and model visualization. These techniques can help to

identify the most critical factors that influence a model's

predictions, provide explanations for specific predictions,

and highlight potential biases or inaccuracies in the model.

Explainable AI is particularly important in applications

where decisions made by machine learning models have

significant consequences, such as healthcare, finance, and

criminal justice. By making machine learning models more

transparent and understandable, XAI can help build trust

and confidence in these systems and ensure that they

make fair and ethical decisions.

 SHAP

75

SHAP

SHAP (SHapley Additive exPlanations) is a popular open-

source library for interpreting and explaining the

predictions of machine learning models. SHAP is based on

the concept of Shapley values, which are a method from

cooperative game theory used to determine the

contribution of each player to a cooperative game. In the

context of machine learning, SHAP computes the

contribution of each feature to a particular prediction,

providing insight into how the model is making its

predictions.

It provides a range of tools for visualizing and interpreting

model predictions, including summary plots, force plots,

and dependence plots. It can be used with a wide range of

machine learning models, including both black box and

white box models.

Overall, Python SHAP is a powerful tool for understanding

how machine learning models are making their

predictions, and can be useful in a range of applications,

including feature selection, model debugging, and model

governance.

An example code usage of Python SHAP:

import shap
from sklearn.ensemble import
RandomForestClassifier
from sklearn.datasets import load_breast_cancer

Load the Breast Cancer Wisconsin dataset
data = load_breast_cancer()

 SHAP

76

Create a random forest classifier
clf = RandomForestClassifier(n_estimators=100,
random_state=0)

Train the classifier on the breast cancer
dataset
clf.fit(data.data, data.target)

Initialize the SHAP explainer
explainer = shap.Explainer(clf)

Generate SHAP values for the first 5
instances in the dataset
shap_values = explainer(data.data[:5])

Plot the SHAP values for the first instance
shap.plots.waterfall(shap_values[0])

In this example, we first load the Breast Cancer Wisconsin

dataset and create a random forest classifier using the

RandomForestClassifier class from scikit-learn. We then

train the classifier on the dataset.

Next, we initialize a SHAP explainer using the Explainer

class from the shap library. We then generate SHAP values

for the first 5 instances in the dataset using the explainer.

Finally, we plot the SHAP values for the first instance using

the waterfall function from the shap.plots module. This

generates a waterfall plot showing the contribution of

each feature to the model's prediction for the first

instance.

This is just a simple example of how SHAP can be used to

interpret the predictions of a machine learning model. In

practice, SHAP can be used with a wide range of machine

 SHAP

77

learning models and datasets, and can provide valuable

insights into how these models are making their

predictions.

Pros and Cons

Pros:

• Provides a powerful tool for interpreting and

explaining the predictions of machine learning

models.

• Works with a wide range of machine learning

models, including black box models.

• Can be used for a variety of tasks, including feature

selection, model debugging, and model

governance.

• Provides a range of visualizations for exploring and

interpreting model predictions.

• Based on a well-established concept from

cooperative game theory (Shapley values).

• Has an active community and is widely used in

industry and academia.

Cons:

• Can be computationally intensive, especially for

large datasets or complex models.

 SHAP

78

• Can be difficult to interpret and understand,

especially for users who are not familiar with the

underlying concepts and methods.

• Requires some knowledge of Python and machine

learning concepts to use effectively.

• Can be sensitive to the choice of hyperparameters

and other settings.

• May not always provide clear or definitive

explanations for model predictions.

SHAP is a powerful and widely-used tool for interpreting

and explaining machine learning models. However, as with

any tool, it has its limitations and requires some expertise

to use effectively. It is important to carefully consider the

trade-offs and limitations of any model interpretability

tool when choosing the right one for a particular

application.

 REGEX

106

REGEX

Python Regex (Regular Expression) library is a powerful

tool used for pattern matching and text processing. It

provides a set of functions and meta-characters that allow

us to search and manipulate strings using complex

patterns. The regular expression is a sequence of

characters that define a search pattern. Python's built-in

re module provides support for regular expressions in

Python. It is a widely used library for performing various

text manipulation tasks such as string matching, searching,

parsing, and replacing.

An example of using Python's regex library re to extract

information from a complex string:

import re

Example string to search through
text = "My phone number is (123) 456-7890 and
my email is example@example.com."

Define regex patterns to search for
phone_pattern = re.compile(r'\(\d{3}\)\s\d{3}-
\d{4}') # Matches phone numbers in (123) 456-
7890 format
email_pattern = re.compile(r'\b[\w.-
]+?@\w+?\.\w+?\b') # Matches email addresses

Search for matches in the text
phone_match = phone_pattern.search(text)
email_match = email_pattern.search(text)

Print out the results
if phone_match:
 print("Phone number found:",
phone_match.group())

 REGEX

107

else:
 print("Phone number not found.")

if email_match:
 print("Email found:", email_match.group())
else:
 print("Email not found.")

Output:

Phone number found: (123) 456-7890
Email found: example@example.com

In this example, we use regular expressions to define

patterns to search for a phone number and an email

address in a complex string. The patterns are compiled

using the re.compile() function, and then searched for

using the search() function. The group() function is used to

retrieve the actual matched text.

Pros and Cons

Pros:

• Powerful: Regular expressions are a powerful way

to search and manipulate text.

• Efficient: The Python Regex library is optimized for

performance and can handle large amounts of text

quickly.

• Versatile: Regular expressions can be used for a

wide range of tasks, from simple string matching to

complex text parsing and manipulation.

mailto:example@example.com

 REGEX

108

• Flexible: The Python Regex library allows for a great

deal of customization, allowing you to create

complex patterns and match specific patterns in

text.

Cons:

• Steep learning curve: Regular expressions can be

difficult to learn, particularly for those new to

programming.

• Easy to misuse: Because of their complexity,

regular expressions can be prone to errors and can

be difficult to debug.

• Limited functionality: While the Python Regex

library is powerful, it has some limitations and may

not be suitable for all text processing tasks.

• Less readable: Regular expressions can be less

readable than other forms of text processing code,

making it more difficult to maintain and update

code.

 SIMPLEITK

127

WEB FRAMEWORK

A web framework is a software framework designed to

simplify the development of web applications by providing

a set of reusable components and tools for building and

managing web-based projects. It provides a standardized

way to build and deploy web applications by providing a

structure, libraries, and pre-written code to handle

everyday tasks such as request handling, routing, form

processing, data validation, and database access.

Web frameworks typically include programming tools and

libraries, such as templates, middleware, and routing

mechanisms, that enable developers to write clean,

maintainable, and scalable code for web-based projects. In

addition, they abstract away much of the low-level details

of web development, allowing developers to focus on the

high-level functionality of their applications.

There are many web frameworks available in various

programming languages, including Python (Django, Flask),

Ruby on Rails, PHP (Laravel, Symfony), and JavaScript

(React, Angular, Vue.js). These frameworks vary in

features, performance, ease of use, and community

support.

Web frameworks have become essential for web

development because they provide a standardized way to

build and maintain web applications, making it easier for

developers to build complex web-based projects in less

time and with fewer errors.

 FLASK

128

FLASK

Flask is a micro web framework written in Python. It is

classified as a microframework because it does not require

particular tools or libraries. It has no database abstraction

layer, form validation, or any other components where

pre-existing third-party libraries provide common

functions. However, Flask supports extensions that can

add application features as if they were implemented in

Flask itself. There are extensions for object-relational

mappers, form validation, upload handling, various open

authentication technologies, and more.

An example code usage of Flask:

from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello():
 return 'Hello, World!'

if __name__ == '__main__':
 app.run()

This creates a simple Flask web application that listens for

requests on the root URL (/) and returns the string 'Hello,

World!' as a response. When you run this code and

navigate to http://localhost:5000/ in your web browser,

you should see the message "Hello, World!" displayed on

the page.

 FLASK

129

Pros and Cons

Pros:

• is a lightweight web framework that is easy to set

up and use.

• has a simple and intuitive API that makes it easy to

develop web applications.

• provides great flexibility when it comes to

database integration, allowing developers to use

any database they choose.

• The framework is highly customizable, with a large

number of third-party extensions available to add

functionality to your application.

• has good community support, with a large number

of tutorials, resources, and examples available.

Cons:

• is not as powerful as some of the larger web

frameworks, such as Django, which may make it

less suitable for larger and more complex projects.

• requires developers to make more decisions about

how to structure their application, which can make

it more challenging for beginners.

• does not provide built-in support for tasks like form

validation or user authentication, which can add

additional development time for these features.

 FLASK

130

• As Flask is not an opinionated framework, it

requires more configuration and setup, which can

be daunting for developers who are not familiar

with web development.

• It is not suitable for developing high-performance

web applications that require a lot of concurrency,

due to its single-threaded nature.

 SELENIUM

155

SELENIUM

Selenium is a library that enables web automation and

testing by providing a way to interact with web pages

programmatically. It allows developers to automate web

browsers, simulate user interactions with websites, and

scrape web data.

Selenium is widely used in testing and automation of web

applications. It supports various programming languages

including Python, Java, C#, Ruby, and JavaScript, and can

work with different browsers such as Chrome, Firefox,

Safari, and Internet Explorer.

With Selenium, you can create scripts to automate

repetitive tasks such as form filling, clicking buttons,

navigating through pages, and extracting data from web

pages.

Overall, Selenium is a powerful tool for web automation

and testing and can greatly simplify tasks that would

otherwise be time-consuming and laborious.

An example code usage of Selenium for web scraping:

from selenium import webdriver
from selenium.webdriver.common.by import By

Set up the driver
driver =
webdriver.Chrome('path/to/chromedriver')

Navigate to the website you want to scrape
driver.get('https://www.example.com')

 SELENIUM

156

Find the element you want to interact with
and perform actions
element = driver.find_element(By.XPATH,
'//button[@id="button-id"]')
element.click()

Extract the data you want from the website
data_element = driver.find_element(By.XPATH,
'//div[@class="data-class"]')
data = data_element.text

Clean up and close the driver
driver.quit()

In this example, we’re using the Chrome driver and

navigating to a website. We then find a button element

and click it, which causes some data to load on the page.

We then find the element that contains the data we want

to scrape and extract its text. Finally, we clean up and close

the driver.

Note that web scraping can be a legally and ethically gray

area, and some websites may have terms of service that

prohibit it. Be sure to check the website’s policies and be

respectful in your scraping activities.

Pros and Cons

Pros:

• Can interact with web pages as if you were using a

web browser, allowing for more complex scraping

tasks

 SELENIUM

157

• Supports a wide range of browsers including

Chrome, Firefox, Safari, and Internet Explorer

• Can handle dynamic content loaded by JavaScript,

AJAX, and other technologies

• Supports headless browsing, which allows you to

run the scraping tasks without a graphical user

interface

• Supports various programming languages

including Python, Java, Ruby, and C#

Cons:

• Can be slower than other web scraping libraries

due to its reliance on browser automation

• Requires more setup and configuration compared

to other libraries

• Can be more resource-intensive, as it requires a

browser instance to run

• May not be suitable for all web scraping tasks,

particularly those that require high speed and

scalability

 A PRIMER TO THE 42 MOST COMMONLY USED

MACHINE LEARNING ALGORITHMS (WITH CODE SAMPLES)

158

Also available from the Author

A PRIMER TO THE 42 MOST

COMMONLY USED

MACHINE LEARNING ALGORITHMS
(WITH CODE SAMPLES)

Whether you're a data scientist, software engineer, or

simply interested in learning about machine learning, "A

Primer to the 42 Most commonly used Machine Learning

Algorithms (With Code Samples)" is an excellent resource

for gaining a comprehensive understanding of this exciting

field.

Available on Amazon:

https://www.amazon.com/dp/B0BT911HDM

Kindle: (B0BT8LP2YW)

Paperback: (ISBN-13: 979-8375226071)

https://www.amazon.com/dp/B0BT911HDM

 MINDFUL AI

159

MINDFUL AI

Reflections on Artificial Intelligence

Inspirational Thoughts & Quotes on Artificial Intelligence

(Including 13 illustrations, articles & essays for the fundamental

understanding of AI)

Available on Amazon:

https://www.amazon.com/dp/B0BKMK6HLJ

Kindle: (ASIN: B0BKLCKM22)

Paperback: (ISBN-13: 979-8360396796)–

https://www.amazon.com/dp/B0BKMK6HLJ

 INSIDE ALAN TURING:

QUOTES & CONTEMPLATIONS

160

INSIDE ALAN TURING:

QUOTES & CONTEMPLATIONS

Alan Turing is generally considered the father of computer

science and artificial intelligence. He was also a theoretical

biologist who developed algorithms to explain complex

patterns using simple inputs and random fluctuation as a

side hobby. Unfortunately, his life tragically ended in

suicide in 1954, after he was chemically castrated as

punishment (instead of prison) for ‘criminal’ gay acts.

"We can only see a short distance ahead, but we can see

plenty there that needs to be done." ~ Alan Turing

Available on Amazon:

https://www.amazon.com/dp/B09K25RTQ6

Kindle: (ASIN: B09K3669BX)

Paperback: (ISBN- 979-8751495848)

https://www.amazon.com/dp/B09K25RTQ6

