. ssential
Git

Jorge Escobar

fromzero

Essential Git

Why spend hours learning all Git and
Github? Learn the parts professional
developers use and get on with your
coding

Jorge Escobar

This book is available at http://leanpub.com/essential-git

This version was published on 2024-10-21

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2017 - 2024 Jorge Escobar

http://leanpub.com/essential-git
https://leanpub.com/
https://leanpub.com/manifesto

Contents

Types of version control systems . . .

Is Git better than other similar tools?

AN W N R

Introduction

Welcome to “Essential Git - Third Edition”. My name is Jorge
Escobar and I have been managing development teams that use
Git on a daily basis for many years and I know first hand how
important it is to be fluent in this fundamental tool.

I also happen to have started my online instructor career teaching
this course. And after thousands of students enrolled, I have decided
to make this second edition that improves and expands the material
on this wonderful piece of software.

Git has a lot of quirks and it does have a wide range of features,
but to be honest, most professional developers only use a subset of
the tool in their day to day job. So the goal of this course is that
you understand from the very beginning and without any previous
experience the essential parts of Git that you will use managing
software development in any professional tech company.

We will begin our journey by introducing the concept of version
control and why it’s important; we will then install Git, go over the
File Status Lifecycle, get comfortable through hands-on exercises
with our first project and finally learn all about branching and
remote repositories. At the end of the course we will look at some
of the different workflows used today and finally we will all work
together in a real worldwide open source project called “The Global
Restaurant Guide”.

So let’s start learning the “Essential” Git!
What is Git?

Git is a version control system, or VCS, that allows developers to
improve the way they work on their code as well as collaborate

Introduction 2

easier with other developers in software development projects.
Since its inception in 2005, Git has become an essential tool for
anyone wanting to work in the computer software industry.

What is Version Control?

Version control is a system that records changes to a file or set
of files over time so that you can recall specific versions later.
Every time the developer finishes his work and gets to a new
version, he notifies or “commits” this version to the Version Control
software, and each version is kept within the system. Additionally,
other developers working on this project can get notified and they
incorporate the changes made by other developers into their own
codebase.

Here are some advantages to using version control:

Serves as a backup method

Every time you make a change to a file, a new version is saved, but
the previous version is kept, so that you can go back to that or any
previous versions if, for example, you have an error you want to
undo. Additionally, it will transmit these changes to a remote server
on another computer or to a service like Github, which means that
if something happened to your computer, your work will be saved
elsewhere.

Allows a historic revision of the project

With version control you can easily see what the project looked like
at any specific time and how it organically grows. You can also see
things like how each developer has contributed to the project and
what decisions have been made in the past.

Introduction 3

Enables collaboration between project
members

Version control systems make it easy for the changes being made
to the project to be disseminated across the team without having
to have everyone in sync or announcing new changes. This makes
version control specially well suited for geographically distributed
teams to work seamlessly.

Types of version control systems

Historically, there have been three main types of version control
systems: - Local (LVCS) - Centralized (CVCS) - Distributed (DVCS)

In local version control systems (rcs, is an example) a computer has
all the files and all the versions of those files locally. Of course a big
problem with this setup is that you can’t share your work easily and
if your computer or hard drive fails, you lose all the work.

'https://www.gnu.org/software/rcs/

https://www.gnu.org/software/rcs/
https://www.gnu.org/software/rcs/

Introduction 4

Local Computer

Versioning Software

(- =
[Version2 }
[Verson. J

Figure 1.1

In a centralized version control system (CVS?, Subversion®) there
is a central server that holds all the files and its versions and
then computers connect to this centralized server and commit the
changes to their files to this server. The problem is that if that
server fails or there is a network connectivity problem between the
computers and the central version control server, you are basically
stuck and can’t do any commits or receive any new changes until
the servers comes back online.

*http://www.nongnu.org/cvs/
*https://subversion.apache.org/

http://www.nongnu.org/cvs/
https://subversion.apache.org/
http://www.nongnu.org/cvs/
https://subversion.apache.org/

Introduction 5

Computer A Central VCS Server

File

Versioning Database

Version 3
Version 2

Computer B)
Version 1
File

Figure 1.2

In a distributed version control system (Git*, Mercurial®) each
computer has a full history of all the versions of the files and each
person that works in this project has a local list of changes, so
there’s no issues with backing up or with connectivity. If you’re not
connected to the internet, you can still work. Additionally you can
have a server that works as the main repository, and all computers
can connect to this server, but they also can connect with each
other.

“https://git-scm.com/
*https://www.mercurial-scm.org/

https://git-scm.com/
https://www.mercurial-scm.org/
https://git-scm.com/
https://www.mercurial-scm.org/

Introduction

Computer A e Computer B

I

Versioning Database

Versioning Database

Versioning Database

Figure 1.3

Is Git better than other similar
tools?

After working with many types of version control systems through
the years, there are many reasons I believe Git is better than other
version control systems, but here’s a few key ones:

« Git follows the distributed model, which as we saw earlier is
the best model for a VCS, since we don’t need an internet con-
nection to continue working with it or even have a centralized
server available.

« Git offers better control over history, thanks to its ability to
change commits that happened in the past, and we’ll see in
the course how to do that.

Introduction 7

« Git manages branching better than other distributed version
control systems. Branches are an important part of the devel-
opment workflow and we will be looking at branches in this
course.

« Git allows you to temporarily save your work using Git stash.
This is a timesaver when you want to just store a snapshot of
your work to move to other branches or pull changes to work
on. Then you can return to your work easily.

	Table of Contents
	Introduction
	What is Git?
	What is Version Control?
	Types of version control systems
	Is Git better than other similar tools?

