

Episerver Commerce: A problem - solution
approach
Solving problems, one at a time

Quan Mai

This book is for sale at http://leanpub.com/epicommercerecipes

This version was published on 2019-02-23

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2014 - 2019 Quan Mai

http://leanpub.com/epicommercerecipes
http://leanpub.com/
http://leanpub.com/manifesto

For my daughter.

Contents

Chapter 1: Catalog System recipes 1
Problem 1.0: How to identify a catalog content 1
Problem 1.1: Get all catalogs 2
Problem 1.2: Traverse the catalog. 3
Problem 1.2.2: Find unpublished variants 6
Problem 1.3: Read only Catalog UT 7
Problem 1.4: Choosean URL style. 8
Problem 1.4.1: Switch between url styles. 9
Problem 1.5: Remove the catalog name from producturl 10
Problem 1.6: Multiple catalogs with samewurl 12
Problem 1.6.2: Building the outgoing URLs 15
Problem 1.6.3: Beyond multiple sites 16
Problem 1.6.4: Url without catalog name in multiple catalogs scenario 19
Problem 1.6.5: Url without categories 20
Problem 1.7: Get products belong to a specific market 23
Problem 1.8: Move catalog itemsaround L L. 25
Problem 1.8.2 Set the primarynode 27
Problem 1.8.3: Adjust sortorder 28
Problem 1.9: Build a breadcrumb oo o 29

Problem 1.9.2: Build a breadcrumb: multiple categories scenario 31

Chapter 1: Catalog System recipes

Problem 1.0: How to identify a catalog content

Level: Beginner

When you integrate Episerver Commerce with an external system, such as an ERP or PIM system
it’s common to identify a specific content, likely an entry. Normally, you are given a code, in form
a string, and you will have to get the content. How?

Let me introduce you a new friend: ReferenceConverter

This small (it’s not so small like before) allows you to convert between code and ContentRe ference,
and vice versa. To understand these conversions, we need to understand how Episerver Commerce
works with identity.

There are 3 ways to identify a catalog content:

« ContentReference, to identify a content through APIs. The ContentReference is only unique
within a system, and it consists of three parts: The Id of the content, the WorkId of the
content (can be empty), and the provider name (can be empty, in case of default CMS
content). An example for catalog content ContentReference is “123_456_CatalogContent”.
“CatalogContent” is a constant for all catalog content.

« The code. This is what external systems - price system, inventory system, etc. - understand.
As we will learn later, this is used to handle prices, inventories, as well as lineitems. Note that
code is only for Entry and Node, while Catalog uses Name.

« The guid. This is an internal identity (although it’s supposed to be unique globally). For
example, when you add a link to a catalog content to a ContentReference property, the
ContentReference will be saved to database as permanent link - so the guid will be used to
permanently identify the content. Like code, guid is permanent and should not be changed.

Now consider these scenarios:

« If you have a ContentReference, how to get the code of the product.
« If you have a code of a product, how to load it. (if you already have a ContentReference, it is

easy.)
« If you have a Guid of a product, how to load it.

The preferred way of doing such things is by using IContentLoader - or the combination of
IContentlLoader and ReferenceConverter. IContentLoader already has methods to load contents
by a ContentReference, or a Guid, so that’s the easy part. Other than that, ReferenceConverter can
be used to get the code from ContentReference:

Chapter 1: Catalog System recipes 2

var code = referenceConverter.GetCode(contentlLink);
and
var contentlLink = referenceConverter.GetContentlLink(code);

Simple, right?

You might not believe the number of times I saw code sample to load the content to get the code
from the content. While loading content seems to be easy and cheap to do, but thousands or tens
of thousands of such API calls will be a significant cost, both in term of IO and memory (contents
are supposed to be cached). ReferenceConverter is much more lightweight and faster - so use it
whenever possible. Even better, it also has APIs to get codes or content links in batches - which
mean you can have even better performance by reducing the overheads further.

’ One of the most important tips for great Commerce performance is to know which APIs to

v‘ use. For that purpose, I'd suggest you to go through the developer guide, once. I know the
documentation can be boring and dry to follow, but it can make a big impact in your daily
work. Trust me, your effort will be rewarded.

Problem 1.1: Get all catalogs

Level: Immediate

From time to time, you will need to get all catalogs in your site. How? As previously stated, the
catalog system is fully integrated to content provider system, so to get all catalogs, you would need to
call IContentLoader .GetChildren of the parent content. But what is the parent content of a catalog?

All of the catalogs are direct children of RootContent. This is a virtual and unique content that is not
saved anywhere to the database, but rather, is constructed on-the-fly. IContentLoader .GetChildren
actually uses a ContentReference, how to get that of the RootContent?

ReferenceConverter comes to rescue. To get the ContentReference to the RootContent, you can use
ReferenceConvert.GetRootLink().

’ To be honest, GetRootLink() should have been a property instead. It returns same value all
v‘ the time, so it does not make sense to be a method.

The code to get all catalogs looks like this:

© 00 1 O O b wWw N =

I =S =N
B W N s,

Chapter 1: Catalog System recipes 3

var catalogs = _contentlLoader.GetChildren<CatalogContent>(_referenceConverter.GetRoo\
tLink());

This code is actually with a gotcha. this overload of IContentLoader.GetChildren will use the
current culture of the site to get the catalog. So if your site has en language as active language,
but one of your catalogs is only available in sv language, you might be surpised to find that it will
not be returned in catalogs. If you develop a site with a known set of catalogs (or may be just one),
this issue can be discovered quite early. But if you are working on different catalog sets which are
unknown when you build the site, or even more, if you are working on a framework level (like I
am), then this can be well hidden from your testing, only to come back and bite you later. Solution?
You should use the other overload of GetChildren which takes a LoaderOptions parameter, which
allows you to fall back to master language.

This is the right way to do it:

var catalogs = _contentlLoader.GetChildren<CatalogContent>(_referenceConverter.GetRoo\
tLink(), new LoaderOptions() { LanguagelLoaderOption.MasterlLanguage() });

Problem 1.2: Traverse the catalog.

Level: Beginner
One in a while, you might need to iterate over the catalog items.

There are two ways to do that, the old, legacy way of ICatalogSystem, and the new way of
IContentLoader. If you come from the Commerce R1/R2 (which sounds like decades ago), then
this is the way you should do it:

CatalogSearchOptions options = new CatalogSearchOptions();
CatalogSearchParameters searchParams = new CatalogSearchParameters();
int totalCount = 0Q;
//Check for total count
catalogSystem.FindItemsDto(searchParams, options, ref totalCount);
while (totalCount > @ && recordsCount < totalCount)
{
options.RecordsToRetrieve = 500; //Batches of 500
options.StartingRecord = recordsCount;
var responseGroup = new CatalogEntryResponseGroup();
var catalogEntriesDto = catalogSystem.FindItemsDto(searchParams, options, ref to\
talCount, responseGroup);
foreach (var row in catalogEntriesDto.CatalogEntry)

{

15
16
17

o N O O b W N =

© 00 N O O b W N =

[==Y
w N =~

Chapter 1: Catalog System recipes 4

//Do your stuffs here.

While using ICatalogSystem is something “in the past”, batch operations are still something missing
from the new content APIs. I would wholeheartedly recommend to use the new APIs whenever
possible, but this one place where you might find ICatalogSystem works better. When we use the
Search APIs like FindItemsDto above, it returns a CatalogEntryDto, which allows you to do editing
and save it back. If you were using the content APIs, you would have to save every content one by
one.

Catalog Search APIs are also fairly powerful and flexible. For example, what if you just want to
search for a specific kind of entries? You can use CatalogSearchOptions.Classes for such purpose

var searchOptions = new CatalogSearchOptions

{

CacheResults = true,

StartingRecord = 0,

ReturnTotalCount = true,

RecordsToRetrieve = 10000,

Classes = new StringCollection { "CustomVariationContent" }
};

where CustomVariationContent is the name of the MetaClass you want to filter on.

But in a way, ICatalogSystem is so 2010! FindItemsDto is useful for several scenarios, but you might
want to use some more “modern” APIs.

If you want to move away from ICatalogSystem entirely, IContentLoader has everything you need
for loading content. Here’s the snippet for traversing the catalog structure using the content APIs:

public virtual IEnumerable<T> GetEntriesRecursive<T>(ContentReference parentlLink, Cu\
ltureInfo defaultCulture) where T : EntryContentBase
{
foreach (var nodeContent in LoadChildrenBatched<NodeContent>(parentlLink, default\
Culture))
{
foreach (var entry in GetEntriesRecursive<T>(nodeContent.ContentLink, defaul\
tCulture))
{

yield return entry;

Chapter 1: Catalog System recipes 5

14 foreach (var entry in LoadChildrenBatched<T>(parentLink, defaultCulture))
15 {

16 yield return entry;

17 }

18 '}

19

20 private IEnumerable<T> LoadChildrenBatched<T>(ContentReference parentLink, Cultureln\
21 fo defaultCulture) where T : IContent

22 |

23 var start = 0O;

24

25 while (true)

26 {

27 var batch = _contentlLoader.GetChildren<T>(parentLink, defaultCulture, start,\
28 50);

29 if (!batch.Any())

30 {

31 yield break;

32 1

33

34 foreach (var content in batch)

35 {

36 // Don't include linked products to avoid including them multiple times \
37 when traversing the catalog

38 if (!parentLink.CompareTolgnoreWorkID(content.ParentlLink))
39 {

40 continue;

41 }

42

43 yield return content;

44 1

45 start += 50;

46 }

a7 '}

Here we are using IContentLoader to load the content recursively. The building block is LoadChildrenBatched
- which allows us to load the children of a specific type, from a parent link. The reason we need a

batch size of 50 here, is because contents are much heavier than the DTO in previous snippet. We

can easily load 500 rows for the DTO in each go, but that number of contents might be able to slow

the system down.

We also need to make sure that we only return the contents which are true “children” of the parent.
If you comes from CMS world, you should know that in Commerce, the catalog items can be linked

© 00 1 O O b W N =

T N =Y
O O b WO N =~ O

Chapter 1: Catalog System recipes 6

to other. So on entry can be true children of a node, and yet it is still linked to other several nodes.
That is the check parentLink.CompareTolgnoreWorkID(content.ParentlLink) is for.

Now with LoadChildrenBatched, we can get the entries from a starting point, recursively. First we
get the children nodes of that starting point, and then call GetEntriesRecursive on those nodes -
recursively. Then we call LoadChildrenBatched on the starting point to get its direct children.

This content API approach allow you to use the strongly typed content types. And because
everything is in the content, you don’t have to load the MetaObject separately. In scenarios when
you just want to load contents, and don’t have to save it back, this can work very well, and should
be your preferred option.

This will be used for later recipes - you will need it every time you need to do something catalog-
wise.

Problem 1.2.2: Find unpublished variants

Level: Immediate

In previous recipe we talked about how to traverse the catalog. Let’s try to use that recipe in
something useful. One real-world scenario: A customer has multiple languages (8 of them). They
need to make sure all variants are published in all languages. That is of course a reasonable request,
but there is no feature builtin for such requirement. But good news is that can be done with ease. If

you want to try this as practice, go ahead — I think it’s a good exercise for your Episerver Commerce-
fu skills.

The code to do that would be this:

foreach (var catalogContent in catalogContents)

{

foreach (var variant in GetEntriesRecursive<VariationContent>(catalogContent.Con\
tentLink, catalogContent.MasterLanguage))

{
var versions = _contentVersionRepository.List(variant.ContentLink.ToReferenc\
eWithoutVersion());
var missinglanguages = versions
.GroupBy(1 => 1.LanguageBranch)
.Where(g => g.All(v => v.Status != VersionStatus.Published))
.Select(v => v.Key);
if (missinglLanguages.Any())
{
_log.Information($"Variant {variant.Code} with content link {variant.Con\
tentLink} is not published in {String.Join(",", missingLanguages)}");

}

17
18

0o I O O b W N =~

Chapter 1: Catalog System recipes 7

At first we need to get a list of catalogs available in the system, and use each of them as the starting
point for GetEntriesRecursive. And for each variant, we use IContentVersionRepository to list all
versions, then group them by language. If one language has no published version, we log information
about that version. Here for simplicity, we just use the ILogger. But in real world scenarios, you
might want to store the information somewhere, and even generate a mail to send to responsible
people on a regular basis.

Problem 1.3: Read only Catalog Ul

Level: Immediate

It’s not uncommon to update the catalog data by an external system, mostly from a PIM — Product
information management system. In such cases, it might not make senses to enable editing in Catalog
UL You might need the new UI for the other parts, such as Marketing UL, but you wouldn’t want
the editors to accidentally update the product information — because those would be lost, anyway.

Is there away to do it? Yes, there is.

Catalog Ul is built around the content provider concept. CatalogContentProvider is the provider for
catalog content, and it has distinct features compared to the default content provider. Having no
waste basket, for example, is one of them. By overriding the “provider capacity”, CatalogContent-
Provider tells the content provider system that “Hey, I don’t have, and don’t want to support, waste
basket concept”. And the content provider system respects that by hiding the waste basket (“Move
to waste basket” command from the context menu is hidden explicitly in Catalog UI code). Can we
use that for our cause? Luckily, yes.

using EPiServer.Core;

namespace EPiServer.Reference.Commerce.Site.Features

{

public class ReadonlyCatalogContentProvider : CatalogContentProvider

{

public override ContentProviderCapabilities ProviderCapabilities => ContentP\

roviderCapabilities.MultilLanguage;

}

And then, register ReadonlyCatalogContentProvider asthe implementation of CatalogContentProvider

you want to use. With that simple code, we would have this in the Ul

Chapter 1: Catalog System recipes 8

Display name

Markets All Change
Mame Brinle e
Visible to Everyone
Mame in URL Languages en,sv
SEO URL 1D, Type 346, Fashion product
Code |'I'oo|s |
Content Belongs To Variants Assets Related Entries Settings

Brand

Description

Long Description

Read-only Catalog UI, well, almost

This does not make the inventories and prices truly “read-only”, because they are not managed by
the content provider system. We will get into those parts in later recipes.

In Commerce 11.6, Commerce introduced the ability to handle permission for catalog items (which,
at first, only limited to catalogs and categories. Entries will inherit permission settings from their
direct parents.). That would be the preferred and more flexible way to control who can do what in
the Catalog UI (and even at the API:s level). However, for this specific purpose of “read-only catalog
UT”, this still works well given the effort you have to put in.

Problem 1.4: Choose an URL style

Level: Beginner

There are two url styles in Episerver Commerce, the hierarchical one where the urls reflect

the catalog structure, so it’s in form of “https://yourwebsite.com/Catalog/Parent-Node/Child-
Node/Product”. And the other one where you link directly to a product by a SEO URI “https://yourwebsite.com/prod
name”. It’s up to your business to decide which suite you most, but when you make up your mind,

you need to know where to change between style.

Chapter 1: Catalog System recipes 9

By default installation, the hierarchical url style is used. That is done by this registration in an
initialization module:

CatalogRouteHelper .MapDefaultHierarchialRouter (RouteTable.Routes, false);

MapDefaultHierarchialRouter takes two parameter - a RouteCollection, and a boolean value to
let the framework knows if you want to build outgoing URLs in SEO URI format. Then how to to
switch to other style? When, you can simply use other method:

CatalogRouteHelper .MapDefaultHierarchialRouter (RouteTable.Routes, true);
CatalogRouteHelper.SetupSeoUriPermanentRedirect();

Build it and tada! Now your products will be redirected to the Seo Uris.

Problem 1.4.1: Switch between url styles

Level: Immediate

A very good thing about Episerver Commerce is that even you enabled the partial routing system,
the old SEO Uri:s will continue to work (of course, as long as you keep the Uri:s unchanged. Episerver
Commerce in particular and Episerver in general does not handle changed Uri:s). So they can coexist
in same website - but that might not what you want - you might want to stick with only one routing
system - it’s been told that the more popular your URL is, the higher rank it gets in the search engine
results.

Redirecting all hierarchical urls to SEO Urizs is easy, we just did it in the previous recipe. But
vice versa it’s tricky, there is no such built-in method allows us to do so. We can’t even override
SeoUriRouter because it’s registered automatically and there is no way to guarantee that our router
will be able to run before it. (If a matching router is found, the processing will stop). Let’s explore
other options.

EPiServer.Web.Routing.ContentRoute has two events which might be interesting - RoutingContent
and RoutedContent. As their names might suggest, the former is fired before any routers take place,
while the latter is fired after that. We might not want to listen to RoutingContent because it’s too
early, we’ll have to process all URI:s sent to our site, which will slow it down. It’s better to only
process after the URI has been routed successfully, we prefer it is processed by SeoUriRouter. We
can do some checks and redirect if necessary.

First, we need to register to RoutedContent event:

ContentRoute.RoutedContent += Routed_SeoUri;

© 00 N O O b W N =

I S =N
O O b W N =~ O

Chapter 1: Catalog System recipes 10

And then implement it. It’s another void method which takes an object as sender and anRoutingEventArgs
as the EventArgs. RoutingEventArgs has SegmentContext property named RoutingSegmentContext,

this is what we need. A successfully routed route will set the RouteOb ject of RoutingSegmentContext

to the content it found. So we can check if that content is a catalog content or not, to see if we should
redirect.

But how can we know if the URI was SEO URI, or hierarchial URI? By checking for slash in the
between? Not really effective, because the top level content only has one segment. We can mimic
SeoUriRouter and try to load the Entry/Node by Uri? Yes that might work but it is not really fast. If
we are lucky and the URI was SEO URI, the DTO should have been cached, but if it was hierarchial
URI, we will have to hit the database to find nothing!

Solution, well, HierarchicalCatalogPartialRouter will process to the last segment, and for each
segment, the LastConsumedFragment is assigned to next segment, so it’ll be empty at the end.
SeoUriRouter, in other hand, does not really process any segment, so the LastConsumedFragment
it returns will be the same path as requested.

With that information, we can have this as our method:

private static void Routed_SeoUri(object sender, RoutingEventArgs e)

{
var context = e.RoutingSegmentContext;
//RoutedObject is supposed to not be null here
if (!(context.RoutedObject is CatalogContentBase))
{
return;
}
if(string.IsNullOrEmpty(context.LastConsumedFragment))
{
return;
}
var urlResolver = Servicelocator.Current.GetInstance<UrlResolver>();
context.PermanentRedirect(urlResolver.GetUrl(context.RoutedContentlLink));
}

And now we can redirect the SEO URI to Hierarchical URI in an effective way.

Problem 1.5: Remove the catalog name from product
url

Level: Immediate

O© 00 I O O b W N =~

N
(N

Chapter 1: Catalog System recipes 11

Episerver Commerce supports multiple catalogs, and it’s not uncommon to have more than one in
your system. However, it’s also uncommon to have only one. And then it’s only nature to remove
the catalog name from the product url. That helps shortening the url (which makes it easier for
customers to remember, but I don’t really think anyone remember the urls these days), and it helps
hiding your catalog structure (You don’t want to expose it unnecessarily, right?).

The hierarchical routing system in Episerver Commerce is built based on catalog structure. By
default, you will register it by this snippet:

CatalogRouteHelper .MapDefaultHierarchialRouter (RouteTable.Routes, false);

CatalogRouteHelper is a wrapper so it’s easier to use, but if you want to remove the name of the cata-

log from url, we have to leave CatalogRouteHelper out of play, but useHierarchicalCatalogPartialRouter

directly.

var referenceConverter = context.Locate.Advanced.GetInstance<ReferenceConverter>();
var contentlLoader = context.Locate.Advanced.GetInstance<IContentlLoader>();
var commerceRootContent = contentlLoader.GetChildren<CatalogContent> (referenc\
eConverter .GetRootLink()).FirstOrDefault();
Func<ContentReference> startingPoint = () => ContentReference.IsNullOrEmpty(\
SiteDefinition.Current.StartPage) ?
SiteDefinition.Current.RootPage :
SiteDefinition.Current.StartPage;
RouteTable.Routes.RegisterPartialRouter(new HierarchicalCatalogPartialRouter\
(startingPoint, commerceRootContent, false));

Much longer code, right? But in a way, this is “less magic” - you can look into how thing
works and understand them yourself. The first two lines are quite simple, we just get instances
of ReferenceConverter and IContentlLoader. Note that this code is usually run in the context of
Initialize method of an IInitializeModule, so here we have content parameter which is of type
InitializationEngine, and the way to get a registered instance is a bit different from a common
pattern ServicelLocator.Current.GetInstance

Now the important part is the commerceRootContent. This is the point you wantHierarchicalCatalogPartialRouter

to stop looking. Because we want to skip the catalog name, we pass the first catalog here
(CatalogRouteHelper .MapDefaultHierarchialRouter pass the Catalog Root, which is the parent
of all catalogs). You can of course pass another catalog, a simple LINQ statement would be easy
enough.

The second important part is the page you want to “anchor” your catalog to. In this case, we use
the start page (which is also the most common option). Note that we fall back to root page as a safe
check (for example, in the context of scheduled job, start page might be empty, and therefore any
routing request to catalog content can fail). You can, of course, have a CMS page, named “Products”
as your starting point, just update startingPoint to return the ContentReference of that page.

© 00 N O O b W N =

Chapter 1: Catalog System recipes 12

C | O commerceref/en/mens/

Quicksilver

We removed catalog name from url, and use start page as the starting point

This, however, doesn’t work if you have more than one catalog, which is understandable (how does
the system know which catalog to look into?) Technically, you can write your own implementation
of HierarchicalCatalogPartialRouter and process the first level nodes yourself. But that would be
out of scope for this recipe.

Problem 1.6: Multiple catalogs with same url

Level: Immediate

This is from a question I received today. A business is having an Episerver Commerce instance
with multiple sites and multiple catalogs set up. They want to make sure each site will use one
catalog, and all of them will share the same url for catalog structure. So it’ll be “https://site-
a.com/products/category/”, and “https://site-b.com/products/category/”. Site A and site B are using
different catalogs.

Is this doable? Yes! It’s just a matter of magic with the routing. This time, we would need to do an
implementation of HierarchicalCatalogPartialRouter ourselves. First, let’s create a template for
it:

public class MultipleSiteCatalogPartialRouter : HierarchicalCatalogPartialRouter

{

private readonly IContentLoader _contentlLoader;

public MultipleSiteCatalogPartialRouter(Func<ContentReference> routeStartingPoin\
t, CatalogContentBase commerceRoot, bool enableOutgoingSeoUri, IContentlLoader conten\
tLoader)
: base(routeStartingPoint, commerceRoot, enableOutgoingSeoUri)

10
11
12

O© 00 1 O O b W N =

= = =S
0 N O O b W N -~ O

Chapter 1: Catalog System recipes 13

_contentlLoader = contentlLoader;

We need to make sure each site uses the catalog it’s assigned for by overriding F indNextContentInSegmentPair.

When the router works on the url, it will start with from the left most segment, and figure out which
content maps to that segment. We need to override that to set the catalog we want to use.

protected override CatalogContentBase FindNextContentInSegmentPair(CatalogContentBas\
e catalogContent, SegmentPair segmentPair,
SegmentContext segmentContext, Culturelnfo culturelnfo)

if (catalogContent.ContentType == CatalogContentType.Root)
{
CatalogContent definedCatalogContent;
var definedCataloglLink = _contentlLoader.Get<StartPage> (RouteStartingPoint).C\
ataloglLink;
if (_contentlLoader.TryGet<CatalogContent>(definedCataloglLink, culturelnfo, o\
ut definedCatalogContent))
{

return definedCatalogContent;

}

return base.FindNextContentInSegmentPair(catalogContent, segmentPair, segmentCon\

text, culturelnfo);

}

’ This will come with a side effect is that your catalog part in your wurl

‘ no longer matters. It can be “https://commercerecipes/en/abc/womens/” or
“https://commercerecipes/en/fashion/womens/” and the router can still figure it out,
like magic. You might or might not want this side effect, so you can check if the segment
matches an expected, defined value (we will discuss next), and return null if it does not
match.

There are several way to decide which catalog to use, but because here we want it to attach to a site,
we will get it from the start (aka Home) page. Just add a property to the start page.

BwWw N -

Chapter 1: Catalog System recipes 14

[AllowedTypes(typeof(CatalogContent))]
[UIHint(UIHint.CatalogContent)]

[Required]

public virtual ContentReference CatalogLink { get; set; }

This would render to a nice selector which is required and only allows catalogs:

Select Catalog b

ICQ Search)l
B Cstalog Root

B " Mens

B {" Mens Shoes
B {" Mens Jackets
B {" Mens Shirts
B {¥ Mens Sweatshirts
Bg 5 Mens Fashionable Bundle
B {® womens
Bl For This Page
B Whats New

Only catalogs are allowed

Because it’s possible that an editor will forget to set a linked catalog in the start page, we need don’t
want the site to blow up, so we will just fallback to the default router.

O© 00 1 O O b W N =

N
)

Chapter 1: Catalog System recipes 15

’ This also explains why StartingPoint needs to be a Func<ContentReference> instead of just

v‘ a ContentReference - Episerver needs to support multiple sites scenarios. If StartingPoint
just takes a ContentReference, it’ll be a static start page for that instance. By taking
Func<ContentReference> we can get the start page from the context, which is what we
are going to do.

But that’s not yet enough. We make sure each site will use a different catalog for routing. That’s
good, but we still all the catalogs to appear the same in the URL. With above implementation, we
handled the incoming URL, but not yet outgoing URL.

Problem 1.6.2: Building the outgoing URLs

Level: Immediate.

In previous recipe we talked about multiple catalogs with same “UriSegment” - which we had a
working implementation for incoming URL, i.e. when a customer visit a product url, we know which
catalog we should choose from. But we still need to cover the generation of outgoing URL. L.e. when
we link a product (For example, from a campaign page), we need to generate an URL which take the
“catalog-less” pattern into account.

We need to understand how the outgoing URL is built. The hierarchical router builds the URL by
the RouteSegment of contents. However, we want to the urls appear to have same catalog, so the
RouteSegment part for the catalogs must be the same, regardless of the true catalogs. Because all
catalogs are on same level, their RouteSegment must be unique - and this is enforced from Framework
level (which is understandable, otherwise, how can it know which content to choose). We can’t also
rely on name, which is required to be unique.

What can we do?

Well - we already have magic router which automatically figures out which catalog to use regardless
of the RouteSegment for catalog, so we can just return some magic value. The tricky part is to
know which method to override. Luckily for us, Commerce provides us TryGetRouteSegment, which
returns the RouteSegment of a content in a specific language.

protected override bool TryGetRouteSegment(ContentReference contentLink, string lang\
uage, out string segment)
{

CatalogContent catalogContent;

if (_contentlLoader.TryGet<CatalogContent>(contentLink, Culturelnfo.GetCultureInf\
o(language), out catalogContent))

{

segment = "products";

return true;

11
12

© 00 N O O b W N =

N
)

Chapter 1: Catalog System recipes 16

return base.TryGetRouteSegment(contentLink, language, out segment);

The code is fairly simple, we try to load the catalog content, and if succeed, and return a fixed value
- “products”, otherwise, we fallback to the default implementation.

’ We return something hard-coded here, but you can of course make that a configurable value.

‘ Just keep in mind that changing URLs will hurt your SEO and also make your customers
confusing, so do it as little as possible. An alternative is to have a plugin to handle the
“changed” URLs for you, so at least it will redirect your customers to the correct, working
link.

The final part is to register our new router. This is almost as same as with our previous recipe to
remove the catalog name from url - we just need to use our new class here.

Func<ContentReference> startingPoint = () =>
ContentReference.IsNullOrEmpty(SiteDefinition.Current.StartPage)

? SiteDefinition.Current.RootPage

: SiteDefinition.Current.StartPage;
var referenceConverter = Servicelocator.Current.GetInstance<ReferenceConverter>();
var contentlLoader = Servicelocator.Current.GetInstance<IContentLoader>();
var commerceRootContent = contentlLoader.Get<CatalogContentBase> (referenceConverter .G\
etRootLink());
RouteTable.Routes.RegisterPartialRouter(new MultipleSiteCatalogPartialRouter(startin\
gPoint, commerceRootContent, false, context.Locate.ContentlLoader()));

And that would mean your outgoing URLs will respect the fixed catalog segment you wanted them
to.

Problem 1.6.3: Beyond multiple sites

Level: Immediate.

In the previous recipe we talked about how you can implement routing for multiple sites scenario.
But the it’s not just that. I got another request recently, and the scenario is slightly different than
what we discuss previously. Instead of having two sites, https://yoursite.com and https://yoursite.se,
they only have one site, but with two landing pages: https://yoursite.com/private for individual
customers, and https://yoursite.com/business for business customers. They also have two categories,
“private”, and “business”, which are direct children of the catalog, and should be used for each
landing pages. So they would want to have https://yoursite.com/private/cars pointing to “car”
category under “private”, and https://yoursite.com/business/trucks pointing to “truck” category
under “business”.

O© 00 1 O O b W N =

N S =
a b 0 N~

Chapter 1: Catalog System recipes 17

Can that be done?

Yes, but not with the same technique we have done previously. Episerver Commerce routing still
does not support multiple roots, at least not officially. It can be done, but you would have to do a lot
of works yourself, not to mention that if you run into problems, you’re out of luck.

. One of the rules when it comes to Episerver support service is if you need custom
‘ development - you will need to use expert services, which is not free.

Things can be much easier if you think a little outside of the box. In this case, why not make
“private” and “business” the category in the catalog structure. By doing so we can eliminate the
entire “routing” problem. It’s even builtin and works out of the box. With the new Catalog U, you
can do as much as editing as you want with the content.

Well, almost.

There might be reasons that editors would still want “private” and “business” as CMS pages. 'm
going to be honest here: the CMS pages still have the (slight) advantages over Commerce contents
when it comes to editing. Better support for blocks, for example. Also the catalog can be imported
from an external source (a PIM system, most likely), making editing the Commerce content less
appealing.

But that can be fixed easily. There is no one saying you can’t display a CMS page for a catalog
content.

We first need define a landing category type

[CatalogContentType(
GUID = "a23da2al-7843-4828-9322-c63e28059f6b",
MetaClassName = "LandingNode",
DisplayName = "Landing Node",
Description = "Market for landing node.")]
[AvailableContentTypes(Include = new|]

{
typeof(NodeContent)

19
public class LandingNode : NodeContent
{
[AllowedTypes(typeof(PageData))]
[Required]
public virtual ContentReference LandingPagelLink { get; set; }

}

Note that here 'm using a property to point to the true landing page, but you are not limited to do
so. The ContentReference property is used for simplicity, but you can find the page by name, or by
defined values in Start page. What we need is just a controller which takes care of this content type:

O© 00 I O O b W N =

10
11
12
13
14
15
16
17
18

Chapter 1: Catalog System recipes 18

public class LandingNodeController : ContentController<LandingNode>

{

private IContentLoader _contentlLoader;

public LandingNodeController(IContentLoader contentlLoader)

{

_contentLoader = contentloader;

// GET: LandingNode
public ActionResult Index(LandingNode currentContent)

{
var landingPage = _contentlLoader.Get<LandingPage>(currentContent.LandingPage\
Link);
//Get the model and return the view
return View("~/Views/LandingPage/Index.cshtml", landingPage);
}

The final piece would be removing the catalog name from the Url, which is discussed in a previous
recipe.

Chapter 1: Catalog System recipes 19

(® commerceref/en/private/

Quicksilver

This is a landing page

Great success, well, just not too fancy

Problem 1.6.4: Url without catalog name in multiple
catalogs scenario

Level: Advanced

In previous recipe we talked on how to remove the catalog name from the url. But that only works
in one catalog scenario. How’s about you have multiple catalogs?

We can reuse the recipe above to make it works for us. It works great with http://yoursite.com/en/fashion/mens/men:
shoes/p-36127195/ or http://yoursite.com/en/products/mens/mens-shoes/p-36127195/. But it does
not work with http://yoursite.com/en/mens/mens-shoes/p-36127195/. At least not yet.

In previous recipe we return the catalog from the FindNextContentInSegmentPair, based on the
linked catalog content from start page. That’s why the catalog name is there in the url. How can we
ignore that? Well, we don’t return the catalog, we return the first-level category.

The updated router will look like this

O© 00 I O O b W N =

T N S N S o S = S N N S
O ©O© 0 N O O b= W N -~ O

Chapter 1: Catalog System recipes 20

protected override CatalogContentBase FindNextContentInSegmentPair(CatalogContentBas\
e catalogContent, SegmentPair segmentPair,
SegmentContext segmentContext, Culturelnfo culturelnfo)
{
if (catalogContent.ContentType == CatalogContentType.Root)
{
CatalogContent definedCatalogContent;
var definedCataloglLink = _contentlLoader.Get<StartPage> (RouteStartingPoint).C\
ataloglLink;
if (_contentlLoader.TryGet<CatalogContent>(definedCataloglLink, culturelnfo, o\
ut definedCatalogContent))
{
var nodes = _contentlLoader.GetChildren<NodeContent>(definedCataloglLink);
return nodes.FirstOrDefault(n => n.RouteSegment.Equals(segmentPair.Next,\
StringComparison.OrdinalIgnoreCase));

}

return null;
}
return base.FindNextContentInSegmentPair(catalogContent, segmentPair, segmentCon\
text, culturelnfo);

}

It’s not that complicated, right? If we are working on the CatalogRoot, and if we can get the catalog
content as linked in start page (just like previous recipe), we return the first-level category that has
RouteSegment matches with the next segment in the url. By doing that, we can skip the catalog, and
go directly to the category

Mission accomplished!

Problem 1.6.5: Url without categories

Level: Advanced

Another routing recipe! Because each site might have certain requirements on how their URLs
should look like. And I want to show how flexible the routing system in Commerce can be.
This is another question from World forums": “I would like all variations to have the following
url structure, regardless of where they are in the catalog: https://sitename/products/variationcode.
https://sitename/products/ is the product landing page”.

Can it be done? Yes. But let’s make it a bit different by allowing routing to products, instead of
variants.

As usual we need to inherit from HierarchicalCatalogPartialRouter, this time, one more depen-
dency is needed.

'https://world.episerver.com/forum/developer-forum/Episerver- Commerce/Thread- Container/2017/7/custom- catalog-routing/

https://world.episerver.com/forum/developer-forum/Episerver-Commerce/Thread-Container/2017/7/custom-catalog-routing/
https://world.episerver.com/forum/developer-forum/Episerver-Commerce/Thread-Container/2017/7/custom-catalog-routing/

O© 00 I O O b W N =

T = =Y
O O B W N~

o I O O b W N =

© 00 N O O b W N =

N
N O

Chapter 1: Catalog System recipes 21

public class DirectToProductCatalogPartialRouter : HierarchicalCatalogPartialRouter
{
private readonly IContentLoader _contentlLoader;

private readonly ReferenceConverter _referenceConverter;

public DirectToProductCatalogPartialRouter (Func<ContentReference> routeStartingP\
oint, CatalogContentBase commerceRoot,
bool enableOutgoingSeolri,
IContentLoader contentlLoader,
ReferenceConverter referenceConverter)
base(routeStartingPoint, commerceRoot, enableOutgoingSeoUri)

_contentlLoader = contentlLoader;

_referenceConverter = referenceConverter;

First we need to register the routeStartingPoint:

var referenceConverter = context.Locate.Advanced.GetInstance<ReferenceConverter>();
var contentlLoader = context.lLocate.Advanced.GetInstance<IContentlLoader>();

var commerceRootContent = contentlLoader.Get<RootContent>(referenceConverter.GetRootL\
ink());

Func<ContentReference> startingPoint = () => ContentReference.Parse("23"); //Your la\
nding page

RouteTable.Routes.RegisterPartialRouter(new DirectToProductCatalogPartialRouter(star\
tingPoint, commerceRootContent, false, contentlLoader, referenceConverter));

Now to handle the incoming and outgoing url, we need to override TryGetRouteSegment:

protected override bool TryGetRouteSegment(ContentReference contentlLink, string lang\
uage, out string segment)
{
var culturelnfo = string.IsNullOrEmpty(language)
? Culturelnfo.CurrentCulture
: Culturelnfo.GetCultureInfo(language);

ProductContent productContent;

if (_contentlLoader.TryGet<ProductContent>(contentLink, cultureInfo, out productC\
ontent))

{

segment = productContent.Code;

13
14
15
16
17
18

© 00 N O O b W N =

[==Y
W N =~ o

Chapter 1: Catalog System recipes 22

return true;

nn

segment = ;

return true;

Simple, isn’t it? If the contentLink points to a ProductContent, we return the product code, which
will be in the url, but if not, we just return an empty string. The default implementation of
HierarchicalCatalogPartialRouter will know how to handle such cases, and will not add it to
the url.

’ The handle of CulturelInfo is important. We need this to work in both case when “language”
v‘ is set properly, and when it is null.

This will handle the outgoing Url, so when you call UrlResolver.GetUrl(ContentReference), the
url generated will look like this “http://commerceref/en/products/P-36921911/”.

But when you open that link, it will return 404 because the router does not know how to handle
the incoming urls yet, so from that link, it does not know which product to return. That’s when
FindNextContentInSegmentPair comes into play

protected override CatalogContentBase FindNextContentInSegmentPair(CatalogContentBas\
e catalogContent, SegmentPair segmentPair,
SegmentContext segmentContext, Culturelnfo culturelnfo)

if (catalogContent.ContentType == CatalogContentType.Root)
{
var contentLink = _referenceConverter.GetContentLink(segmentPair.Next, Catal\
ogContentType.CatalogEntry);
return _contentlLoader.Get<ProductContent>(contentlLink);
}
return base.FindNextContentInSegmentPair(catalogContent, segmentPair, segmentCon\
text, culturelnfo);

}

Because we start at the root, we know the next segment would be the product code. Simply use
ReferenceConverter to get the ContentReference from the code, and then return the product from
IContentLoader .Get<ProductContent>.

. Here we are returning directly the product. But we can be more tolerant: If TryGet returns
v‘ the product, return it, otherwise return null.

Chapter 1: Catalog System recipes 23

C' | ® commerceref/en/products/P-36921911/

Quicksilver

Home Mens Womens

Brinley Co. Womens
Mesh Pumps

Brinley Co.

Select Color

Black v

Step out and make a statement in these mesh platform p
uppers and closed heels and toes. Sky-high heels and ta
approximate and were taken using a size 5.5. Please not

Brinley Co. Women's Closed Toe Platform Mesh Pum

« Style: Platforms

[R T ST L

And it works!

A few notes regarding this implementation:

« This abolishes the catalog structure, so “http://sitename/products/category/sub-category/prod-
uct” will no longer work.

« We are still using the Catalog Root as the commerceRootContent, there for “/en/” still appears
in the url. You know how to remove it.

Problem 1.7: Get products belong to a specific market

Level: Advanced

It’s great if you have a comprehensive reporting system connected to your Episerver Commerce site.
But if you don’t, then there are time when you have to create the reports yourself. Let’s consider
one type of report that would be to find out which products belong to a specific market.

Chapter 1: Catalog System recipes 24

This would be fairly easy if you use the recursive approach we talked about earlier. Just get every
entry and check for MarketFilter. If this list contains the market id you are looking for, then add it
to our list.

Sounds simple, right? But if you want to have a few hundred thousands of products, this barely
works effectively. Loading that much of products will be a waste of time and resource. As always,
when the APIs can’t provide an adequate performance, it’s time to step up our game and do what
is not (officially) supported.

To make it work, we need to need to understand about the underlying type of markets - dictionary
types. Like it or not, you will have to work with dictionary types, sooner or later. They can be
particularly useful when you need to check something - fast.

« For single value dictionary type, that number is the MetaDictionaryId of the selected value in
MetaDictionary table.

« For multi value dictionary type, things are a bit more complicated. That number is the Metakey
value in MetaKey table. This MetaKey, is, however, connected to MetaMultiValueDictionary,
which itself points back to MetaDictionary. An “usual” design for 1-n relation in database,
right?

« For string dictionary type, it’s more or less the same as multi value dictionary. However, the
MetaKey will point to pairs of key and value in MetaStringDictionaryValue table.

Those information might not be really interesting to you - but they can be useful in some specific
scenario. Let’s consider some of those cases:

« You want to know which entries use a specific dictionary value. In previous example, we have
a property named Color, we want to find all entries with Color is ‘Blue’. For front-end site, it
would be easy to find such entries by search feature (will be discussed later), but what if you
want to create a report for that? Episerver Commerce does not provide such functionality out
of the box, so we’ll have to craft it ourselves. Time for some SQL then!

DECLARE @MetaFieldId INT
DECLARE @MetaDictionaryId INT

SET @MetaFieldId = (SELECT MetaFieldId FROM MetaField WHERE Name = 'Color' AND N\
amespace = 'Mediachase.Commerce.Catalog')

SET @MetaDictionarylId = (SELECT MetaDictionaryId FROM MetaDictionary WHERE Value\
= 'Blue' AND MetaFieldId = @MetaFieldId)

SELECT ObjectId FROM CatalogContentProperty WHERE MetaFieldId = @MetaFieldId AND\
Number = @MetaDictionarylId AND ObjectTypeld = 0

© 00 N O O & W N =

N = =y
O© 00 I O O b W N =~ O

Chapter 1: Catalog System recipes 25

This script is quite simple - we need to get the Id of Color MetaField first, then the MetaDictionaryId
of the ‘Blue’ color. When we have two values, we can simple query from table CatalogContentProperty
to find which entries have that value. You can go even further to join with CatalogEntry table to
get more information such as name or code - I'll leave that to you.

« Now let’s go back to the original task we have. To determine which entries belong to which
markets, Episerver Commerce uses a special metafield, named _ExcludedCatalogEntryMarkets
which is a multi-value dictionary. As its name might suggest, it contains list of the Mar-
ketld which the entry does not belong to, for example, if _ExcludedCatalogEntryMarkets
contains ‘US’ then the entry is not available in ‘US’ market. So if we are to find entries
which belong to ‘US’ market, we have to find entries which do not have ‘US’ value for
_ExcludedCatalogEntryMarkets.

DECLARE @MetaFieldId INT
DECLARE @MetaDictionaryId INT

SET @MetaFieldId = (SELECT MetaFieldId FROM MetaField

WHERE Name = '_ExcludedCatalogEntryMarkets' AND Namespace = 'Mediachase.Commerce\
.Catalog')

SET @MetaDictionarylId = (SELECT MetaDictionaryId FROM MetaDictionary WHERE Value\
= 'US' AND MetaFieldId = @MetaFieldId)

SELECT ObjectId FROM CatalogContentProperty

WHERE

MetaFieldId = @MetaFieldId AND

Number NOT IN

(

SELECT mk.MetaKey from MetaMultiValueDictionary mmv
INNER JOIN MetaKey mk on mmv.MetaKey = mk.MetaKey
WHERE mk.MetaFieldId @MetaFieldId

AND MetaDictionaryId = @MetaDictionaryld

)

Same as previous script, we need to find the Id of _ExcludedCatalogEntryMarkets MetaField, then
the MetaDictionaryId of ‘US’ market. The next statement is tricky - we need to find MetaKey which
value matching value for ‘US’, then except them. Again, you can join with other tables for more data.

Problem 1.8: Move catalog items around

Level: Immediate

O U W N

W N

Chapter 1: Catalog System recipes 26

Catalog Ul provides a very intuitive way to manage catalog items, including moving them around
(which is not just “by accident” - Episerver invested a fairly big chunk amount of time for UX
research, and then Ul refinements to make managing catalog items really works). But sometimes
it’s not enough. “Sometimes people deserve more.”. Sometimes people deserve to have their items
moved programmatically.

There are two way to move a catalog item around: by using IContentRepository.Move, and by using
IRelationRepository.UpdateRelations.

To use IContentRepository.Move, it is simple as this:

_contentRepo.Move(contentLink, destination, requiredSourceAccess, requiredDestinatio\
nAccess) ;

requiredSourceAccess and requiredDestinationAccess are the required access level of the user
performing this action on the source content and the target content, respectively. It’s up to you to
decide, moving a content is not technically deleting the old content and creating the clone of it in
the new location, but rather, changing the relation between the content and old and new parent.
There is no AccessLevel defined for such changes, so it’s really a matter of perspective here.

Or with IRelationRepository:

var relations = _relationRepository.GetParents<NodeRelation>(contentLink);

var relationToRemove = relations.FirstOrDefault(r=>r.Parent == oldParentLink);
relations.Remove(relationToRemove) ;

var relationToAdd = CreateNewRelation(contentLink, newParentlLink);
relations.Add(relationToAdd);

_relationRepository.UpdateRelations(relations);

Now the tricky part is CreateNewRelation. There are two kinds of relations you can create:
NodeRelation - between a node and a node, and NodeEntryRelation - between an entry and a node.
Just remember the bigger entity is Parent, and the smaller entity is Child. For example, to create a
NodeEntryRelation:

var relation = new NodeEntryRelation();
relation.Child = contentlLink;
relation.Parent = newParentlLink;
relation.SortOrder = 10;

. Strictly speaking, NodeEntryRelation extends NodeRelation, so NodeRelation can be used

‘ to represent a relation between an entry and a node (and that still counts as a node relation,
literally). However, to make thing easier to understand and follow, you should always use
NodeEntryRelation to represent a node-entry relationship.

Chapter 1: Catalog System recipes 27

Now we have a new node-entry relation, just add it to the collection and save. Now this is a bit
over complicated approach. You can just get the old relation and update Parent to point to the new
parent link. But keep in mind that is not completely bullet proof. In case you move an entry which
was a direct child of a catalog (i.e. it was not a child of any categories), then you will not find the
existing NodeEntryRelation, and will have to create a new one.

There are something you should keep in mind: IRelationRepository works in a lower level, so it
does not care about permission/access rights at all. It does not also fire content events (which you
usually listen via IContentEvents). In fact for catalog content, IContentRepository.Move used to use
IRelationRepository internally (That changed in Commerce 11). If such things are requirements
for you, then you should stick with IContentRepository.Move.

. If you are using Commerce 10 or earlier, then I have bad news for you. You would have to

v‘ deal with Source and Target properties in Relation. I'm going to be honest with you: I can’t
remember which is which and always have to go back to read documentations to remind
myself. That’s also why you should upgrade to Commerce 11 or later, because the APIs have
been vastly improved. Source and Target have been obsoleted, and are replaced by Parent
and Child. Now it’s much easier to understand which is which, because in a relation, the
“bigger” entity is Parent and the smaller one is Chi1d. That’s all you have to remember.

Problem 1.8.2 Set the primary node

Level: Immediate

In previous recipe(s) we talked about the relation between nodes and entries. You will soon realize
that an entry can belong to multiple nodes. And that is to solve a problem - how would you place
a GoPro in your catalog? Under “camera” category or under “sport gear” category? Duplicating the
entry to be in both categories is not the best solution, for obvious reasons. To solve it: well, just place
it under “camera”, then link it to “sport gear” - or the way around. Problem solved?

If you upgraded from previous version, the parent node with lowest SortOrder relation will be
selected as the primary. That is not exactly how it should be used (we will get into that later). The
primary node can also be set by moving the entries in Catalog UL. When you move an entry from a
node to another node, the primary is updated to the new parent.

What if you want to set the primary node, programmatically?

This requires Commerce 11.2 at least. Previously you can add or remove a node-entry rela-
tion (via NodeRelation), but you can’t set it explicitly to primary. This requires the new type
NodeEntryRelation which was introduced in Commerce 11.2.

Bw N

Chapter 1: Catalog System recipes 28

var relations = _relationRepository.GetParents<NodeEntryRelation>(entryLink);
var relation = relations.First(r => r.Parent == parentlLink);
relation.IsPrimary = true;

_relationRepository.UpdateRelations(relations);

Basically you find the matching NodeEntryRelation and set the property IsPrimary to true, and
then save it back.

’I You don’t have to update the entire collection, you can save only the specific one _-

relationRepository.UpdateRelations(new [] { relation });

There are a few things to keep in mind:

« An exception will be thrown if you try to save two or more relations of an entry with IsPrimary
is true. An entry can only truly belong to one node (or none at all - in that case it is linked to
all the nodes, its true parent is the catalog it is in)

+ A new set primary node will override the existing one, if any.

Problem 1.8.3: Adjust sort order

Level: Immediate

Even in the same category, the entries are not equal. For example if you have a “Phone” category,
you would probably want the new shiny iPhone X, or Galaxy S9 to be on top of the category, for
obvious reasons.

This is, however missing in Commerce 10.8 or earlier. The sort order was part of node-entry relation,
but it was used incorrectly before, it was used to determined which node is the primary node: if an
entry has multiple node-entry relations, then the node which has lowest sort order relation is the
primary one.

Commerce 11 addressed this issue by introducing a new property in the NodeRelation - IsPrimary
as we learned in previous recipe. By freeing SortOrder from that purpose, it can be used properly.
That means you can now drag and drop an entry to adjust its sort order:

O© 00 9 O U & W N =~

N
()

Chapter 1: Catalog System recipes 29
Fashion » Mens
" Mens Shoes
Name Code Price Stock
% B8 Puma Yellow Sneakers Soccer Athletic P-
Sneakers Shoes 4251825¢

Programmatically Sort Order can be set by using the APIs we discussed in previous recipes.

‘ Faded Glory Me Puma Black Suede Athletic Sneakers
= Shoe 361271985

LL] i P_
E e WY [Puma Black Suede Athletic Sneakers 30813617
P_
’ & Puma Black Sneakers Shoes 39850363

You need Sort Mode to drag and drop catalog items to change their Sort Order

Problem 1.9: Build a breadcrumb

Level: Beginner

Breadcrumb is about the discoverability. When a customer visit a product page, they might want to
check the parent category for similar products, and so on.

First let’s talk about the definition of the models:

public class BreadCrumbViewModel

{

public IList<CatalogContentModel> Models;

public class CatalogContentModel

{

public string DisplayName { get; set; }
public string Url { get; set; }

© 00 N O O b W N =

NN N S R R 1 Ny s s
N »~ © © 00 N O O b W N =~ O

N O U s W N

Chapter 1: Catalog System recipes 30

And the implementation would look like this

[HttpGet]
public ActionResult GenerateBreadCrumb(FashionProduct currentContent)
{
CatalogContentBase content = currentContent;
var models = new List<CatalogContentModel>();
while (!(content is CatalogContent))
{
var parentContent = _contentlLoader.Get<CatalogContentBase> (content.ParentLin\
k);
var model = new CatalogContentModel()
{
DisplayName = parentContent is NodeContent ? ((NodeContent)parentContent\
) .DisplayName : parentContent.Name,
Url = UrlResolver.Current.GetUrl(parentContent)
};
models.Add(model);
content = parentContent;

models.Reverse();
return PartialView("BreadCrumb", new BreadCrumbViewModel() { Models = models });

The idea is quite simple: we create a child Action in the product controller. The action takes the
current content which is passed automatically (as long as it’s named currentContent). From the
current content, we get the parents until we reach the catalog. With each content, we create a model
for it, consist of DisplayName and Url.

The Reverse() before returning the partial view is important, because the list was in reversed order
(child first), while we would want the breadcrumb to be parent first.

And then a simple partial view would be enough to render the breadcrumb:

@model EPiServer.Reference.Commerce.Site.Features.Product.Controllers.BreadCrumbView\
Model

@foreach (var item in Model.Models)

{

@item.DisplayName >

Chapter 1: Catalog System recipes

@ commerceref/sv/fashion/mens/mens-shirts/p-39101253/

Fashion > Man > Mens Shirts >

31
Graphic Tee
TV & Movie $4.
Vvilj Farg Vilj

Birdforce Men's Graphic Tee:

e 100% bomull

s Crew neck

« Kort arm

» Grafiska tryck pa framsidan
« Maskintvatt kallt

SKU: SKU-39101253

W &gg i kundvagn ¥ Till 6nskelista

At least it works!

Well this is with minimal UX design. When you know the principles, you can of course make it as

pretty as you want.

Problem 1.9.2: Build a breadcrumb: multiple

categories scenario

Level: Immediate

In previous recipe we talked about how to build a breadcrumb. It’s not complicated, but it works
quite well, but that’s with an issue: it does not always work correctly. If a product is linked to another
category, when customers open it through that route, you would want to breadcrumb to reflect that.
However, it is always rendered with the primary node. That is probably not something you want,

so let’s fix it.

0w N O O b~ W N

Chapter 1: Catalog System recipes 32

® commerceref/sv/fashion/womens/womens-dresses/p-38426422/

Fashion > Kvinnor > Womens Tees >
-
<
¥

Short Sleeve Crew Tee

Fruit of the Loom e
Vilj Farg val
Charcoal Heather v z

Du kommer att alska denna Fruit of the Loom kortarmade rundh
sa den ar bekvam, och det har en rund hals. Detta ar ett maste!

Fruit of the Loom Women's Short Sleeve Crew Topp:

« Bomull

« Bekvam

« Rundhalsad

« Maskintvattas kallt

QKII- QKT I.RRAZRAZD

Something is not right

To solve that problem we need to know about the context - we can’t rely on the data to know which
category is being used, because each time it’ll be different. How can we do that? By using the router
- the router already has access to the correct contents, so we can just store those information in some
kind of cache and get them later for our breadcrumb.

Let’s start adding an implementation for our router:

public class BreadCrumbCatalogPartialRouter : HierarchicalCatalogPartialRouter
{
public BreadCrumbCatalogPartialRouter(Func<ContentReference> routeStartingPoint,
CatalogContentBase commerceRoot, bool enableOutgoingSeoUri)
base(routeStartingPoint, commerceRoot, enableOutgoingSeoUri)

The tricky part is to know which method to override - and I will save you some time by letting you
know, it’s FindNextContentInSegmentPair, and here’s what we are going to do:

O© 00 I O O b W N =

NN N N S R R N N by s s
W N PO O 0O N0 O kW N

O N O O b W N =

Chapter 1: Catalog System recipes 33

protected override CatalogContentBase FindNextContentInSegmentPair(CatalogContentBas\
e catalogContent, SegmentPair segmentPair, SegmentContext segmentContext, Culturelnf\
o culturelnfo)
{

var foundContent = base.FindNextContentInSegmentPair(catalogContent, segmentPair\
, segmentContext, culturelnfo);

var httpRequest = HttpContext.Current.GetRequestContext().HttpContext;

var savedModel = httpRequest.Items|["RoutedContents"] as BreadCrumbViewModel ?? n\
ew BreadCrumbViewModel();

var model = new CatalogContentModel()

{
DisplayName = foundContent is NodeContent ? ((NodeContent)foundContent).Disp\

layName : foundContent.Name,
Url = UrlResolver.Current.GetUrl(foundContent)

};

savedModel .Models.Add(model);
httpRequest.Items["RoutedContents"] = savedModel;

return foundContent;
FindNextContentInSegmentPair is responsible for loading the next content in the url, so we already
have that. So we just need to use the HttpRequestBase. Items to store our model. If it is there, great,

use it, otherwise create a new one. Note, that would mean a small change in BreadCrumbViewModel:

public class BreadCrumbViewModel

{
public BreadCrumbViewModel()
{
Models = new List<CatalogContentModel>();
}
public IList<CatalogContentModel> Models;
}

To make sure Model is always properly initialized. When we add the new model into the list, we
save it back to the Items so it can be reused next time. When the content is fully routed, we also
have enough information for our breadcrumb.

With our new partial router, we need to register it. We already know how, but this time we are not
demonstrating how to remove the catalog name from the url, so it would look like this:

O© 00 I O O b W N =

I =S =N
W N s,

=~ O O b W N =

Chapter 1: Catalog System recipes 34

public void Initialize(InitializationEngine context)

{

var referenceConverter = context.lLocate.Advanced.GetInstance<ReferenceConverter>\
oF
var contentlLoader = context.Locate.Advanced.GetInstance<IContentlLoader>();
var commerceRootContent = contentlLoader.Get<RootContent> (referenceConverter.GetR\
ootLink());
Func<ContentReference> startingPoint = () => ContentReference.IsNullOrEmpty(Site\
Definition.Current.StartPage) ?
SiteDefinition.Current.RootPage :
SiteDefinition.Current.StartPage;
RouteTable.Routes.RegisterPartialRouter (new BreadCrumbCatalogPartialRouter(start\

ingPoint, commerceRootContent, false));

The final piece is to update our little Action, so it does not have to load the contents itself, but just
from the HttpContext:

[HttpGet]
public ActionResult GenerateBreadCrumb(FashionProduct currentContent)

{

var viewModel = HttpContext.Items["RoutedContents"] as BreadCrumbViewModel ?? ne\
w BreadCrumbViewModel();
return PartialView("BreadCrumb", viewModel);

It’s worth noting that we don’t have to Reserve anything here. The reason was
‘ FindNextContentInSegmentPair already works from left to right - from the top level content
to the leaf-most level, so our ViewModel is already in correct order.

And now it’s working correctly for a linked category, yay!

Chapter 1: Catalog System recipes

® commerceref/sv/fashion/womens/womens-dresses/p-38426422/

35

Fashion > Kvinnor > Womens Dresses >

Short Sleeve Crew Tee
Fruit of the Loom $3

Vilj Farg Vilj

Charcoal Heather v 2.

Du kommer att alska denna Fruit of the Loom kortadrmade rundhe
sa den ar bekvam, och det har en rund hals. Detta ar ett maste!

Fruit of the Loom Women's Short Sleeve Crew Topp:

« Bomull

« Bekvam

« Rundhalsad

« Maskintvattas kallt

The breadcrumb aligns with the url

	Table of Contents
	Chapter 1: Catalog System recipes
	Problem 1.0: How to identify a catalog content
	Problem 1.1: Get all catalogs
	Problem 1.2: Traverse the catalog.
	Problem 1.2.2: Find unpublished variants
	Problem 1.3: Read only Catalog UI
	Problem 1.4: Choose an URL style
	Problem 1.4.1: Switch between url styles
	Problem 1.5: Remove the catalog name from product url
	Problem 1.6: Multiple catalogs with same url
	Problem 1.6.2: Building the outgoing URLs
	Problem 1.6.3: Beyond multiple sites
	Problem 1.6.4: Url without catalog name in multiple catalogs scenario
	Problem 1.6.5: Url without categories
	Problem 1.7: Get products belong to a specific market
	Problem 1.8: Move catalog items around
	Problem 1.8.2 Set the primary node
	Problem 1.8.3: Adjust sort order
	Problem 1.9: Build a breadcrumb
	Problem 1.9.2: Build a breadcrumb: multiple categories scenario

