

EOSによる分散型アプリケーション開発

魚振江
本書はこちらで販売中です http://leanpub.com/eos

この版は 2019-01-14に発行されました。

本書は Leanpubの電子書籍です。Leanpubはリーンパブリッシングプロセスで著
者や出版社を支援します。リーンパブリッシングは新しい出版スタイルです。軽量
なツールを使って執筆中の電子書籍を出版し、読者のフィードバックをもらいなが
ら魅力的な本に仕上がるまでピボットを繰り返すことができます。

© 2018 - 2019魚振江

http://leanpub.com/eos
http://leanpub.com/
http://leanpub.com/manifesto

Twitterでシェアしませんか？
本書に関するコメントをTwitterでシェアして魚振江を応援してください！

本書のハッシュタグは #eosbookjpです。

本書に関するコメントを検索する場合は、次のリンクをクリックして下さい。
Twitterのハッシュタグを使って検索できます。

#eosbookjp

http://twitter.com
https://twitter.com/search?q=%23eosbookjp
https://twitter.com/search?q=%23eosbookjp

Contents

著者について . i

まえがき . ii

本書はどんな人に向いているか？ . iii

手と頭を動かして体感してみましょう . iv

本書のソースと使ってるライブラリのバージョン v

謝辞 . vi

1. EOSとは . 1

1.1 ブロックチェーンの歴史 . 2

1.2 なぜ EOS？ . 7

1.3 この章のまとめ . 10

2. EOSの仕組み . 11

2.1 コンセンサスアルゴリズム . 12

2.2 EOSのブロックの構成 . 18

2.3 Dockerで開発環境を構築する . 21

2.4 ツールチェーン構成を知る . 25

2.5 ウォレット・キーペア・アカウント・権限の関係を理解する 27

2.6 この章のまとめ . 32

あとがき . 33

履歴 . 34

著者について
二人の子供を持つ４人の家族で横浜で暮らしています。派遣社員から Ruby on

Rails開発者になって、昨年から仮想通貨取引所システムやイーサリアム上の PoCプ
ロジェクトに参加し、現在は、フルスタック・エンジニアとしてブロックチェーン事
業を推進しています。
Twitter : @blueplanet42

Qiita : @blueplanet

BlockTec CTO

ChainBow CTO

i

https://twitter.com/blueplanet42
https://qiita.com/blueplanet
http://www.blocktecinc.com/
https://chainbow.io/

まえがき
本書を手にとってくださり、どうもありがとうございます。本書は第三世代ブロ
ックチェーンと呼ばれている EOSの仕組みと EOS上で分散型アプリケーションを開
発する仕方を説明した本です。
この数年間、ビットコインからはじめ、仮想通貨とブロックチェーンという言葉
は熱いキーワードになっています。特に昨年 2017年は、仮想通貨の数がすごく増え
て、価格変動もものすごく激しく状況でした。2018年は、市場が冷静になってきて、
仮想通貨ではなく仮想通貨の基盤であるブロックチェーン技術自体がだんだん注目
されているようになってきています。
実は、仮想通貨はブロックチェーン上に構築されている一つのアプリケーション
に過ぎません。スマートコントラクトのおかげでブロックチェーン上で様々なアプ
リケーションを構築できます。今の時点は、App Storeが出たばかりの時と同じ時期
であり、ブロックチェーン上でどんな素晴らしいアプリケーションを作れるかは、ま
だアイデア勝負です。
数多くブロックチェーンの中で、本書は ブロックチェーン 3.0 と呼ばれている

EOS上でどうやって分散型アプリケーションを構築するかを紹介します。

ii

まえがき iii

本書はどんな人に向いているか？
本書は、初心者ではなく、ブロックチェーンの基礎知識をある程度理解している
方を対象にしています。

• ブロックチェーンとは何か、スマートコントラクトとは何か、について、本書
の中で特に解説してません。

• 本書の中で、EOSを紹介することにあたって、既に広く知られているイーサリ
アムと比較する箇所がしばし出ているので、イーサリアムの知識があると理解
しやすいと思います。

• また、現状 EOSのスマートコントラクトは C++でしか実装できませんが、スマ
ートコントラクトの制限があるため、C++の深い知識の必要がなく、ほかの任
意のプログラミング言語の経験があれば、理解できると思いますので、ご安心
ください。

• フロント側のほうは Nuxt.jsを使っている為、HTML / CSS / JavaScript / Vuejs

の基本知識があると理解しやすいと思います。

まえがき iv

手と頭を動かして体感してみましょう
新しいプログラミング言語を勉強する際、写経しながら勉強するのがよくオスス
メされていると思います。ブロックチェーンの場合それがよりオススメです。
その理由は、現時点の各ブロックチェーンはまだまだ発展中のため、設計と実装
の変化が結構激しいです。そのせいで、先週こう実装すればうまく行けたのに、今週
同じような実装はうまく行かないということは、よくあることです。そのため、ちゃ
んと自分で動かして、最新バージョンはどうなっているかを確認しながら進めるほ
うが良いかと思います。

まえがき v

本書のソースと使ってるライブラリのバージョン
本書で実装したソースは下記リポジトリで公開しています。

• フロント側 blueplanet/eos_addressbook

• スマートコントラクト blueplanet/eos_contracts

本書使っているライブラリは以下になっています。

ライブラリ バージョン
Docker Community 18.09.0

EOSIO 1.4.2

eosio.cdt 1.3.2

Nuxt.js 2.0.0

eosjs 16.0.9

scatter-js 2.5.2

Scatter Desktop App 9.6.0

https://github.com/blueplanet/eos_addressbook
https://github.com/blueplanet/eos_contracts
https://www.docker.com/docker-community
https://www.eos.io/
https://github.com/EOSIO/eosio.cdt
https://nuxtjs.org/
https://github.com/EOSIO/eosjs
https://github.com/GetScatter/scatter-js
https://github.com/GetScatter/ScatterDesktop/releases/tag/9.6.0

謝辞
まず、林陽氏に感謝します。彼のおかげで、仮想通貨とブロックチェーンに出会う
ことが出来ました。仮想通貨取引所システムの開発からイーサリアムの勉強、そし
て一緒にハッカソンのチャレンジ、思い出せば、最初のはじめは既に一年半前のお
話でした。
次は、家族に感謝します。私がどんなものを書いているかはほとんど分からない
かもしれませんが、新しいチャレンジで家族との時間を奪ってしまったことを我慢
してくれた妻に感謝します。一緒に遊ぶ時間が奪われても理解してくれた息子と娘
にも感謝します。
そして、本書をレビューして頂いた以下の方にも感謝します。(敬称略)

• アットコイン株式会社 CTO琴畑尚哉
• @shwld

2018年 12月魚 振江

vi

https://www.atcoin.co.jp/
https://twitter.com/shwld

1. EOSとは
EOSは、Enterprise Operating Systemの略語です。言葉どおり、エンタープラ
イズ向けのオペレーティングシステムを提供しようとし、既存のブロックチェーン
で起きている課題を意識しながら新しく設計・開発したパブリックブロックチェー
ンです。
ソフトウェア (EOSIO)はスタートアップ企業 Block.Oneが主導で開発されていま
すが、リリースと運営はコミュニティによって実施しています。
最終的に稼働しているパブリックチェーンが EOSです。

• EOSIO公式サイト
• block.one公式サイト

EOSパブリックチェーンのノードを運営する組織は、BP (Block Producer)と
呼ばれています。全世界の BPのノードが繋がって EOSのネットワークを構
成しています。BPの情報は、以下のリンクから確認できます。

EOS Go BP

本書では EOSはブロックチェーン 3.0であると述べています。その理由をブロッ
クチェーンの歴史から振り返しながら説明します。

1

https://block.one/
https://www.eos.io/
https://block.one/
https://bp.eosgo.io/

EOSとは 2

1.1ブロックチェーンの歴史

ブロックチェーン 1.0

ブロックチェーンの歴史は、ビットコインから始めたものです。
ビットコインは、2009年頭リリースされ、今まで（2018年 12月現在）9年間経
ちました。パブリックネットワークの中で、ブロックチェーンを使うことで、参加者
同士がお互いの信頼がなくても合意を形成でき第三者に依存せずに価値を移転でき
ることを証明できたと思われます。
そのため、ビットコインは、ブロックチェーン 1.0と言われています。

ブロックチェーン 2.0

その次にブロックチェーン 2.0になるものは、イーサリアムです。
ビットコインは、パブリックネットワークの中で、参加者同士が信用なしで合意
形成できるかどうかの社会実験として成功できたと思います。しかし、ビットコイ
ンにはスマートコントラクト仕組みである Bitcoin Scriptがありますが、設計上は
敢えてチューリング不完全にしています。プログラミング言語のチューリング完全
は厳密な定義がありますが、ここでは理解しやすい例をあげますと、Bitcoin Script

にはプログラミングの中で不可欠な繰り返し仕組みすら提供されていません。この
ように設計されているのは勿論理由がありますが、スマートコントラクトの開発に
は大きな壁を作ってしまったと言えるでしょう。

EOSとは 3

Bitcoin Scriptがチューリング不完全にされて
いる理由
ビットコインは、パブリックネットワーク上で稼働しています。そして、ス
マートコントラクトは、任意の開発者が実装でき、任意のタイミングで実行
できるものです。

そのため、想像してみればお分かりと思いますが、仮に Bitcoin Scriptがチ
ューリング完全である場合、もし悪意がある開発者から、無限ループの処理
を持っているスマートコントラクトをブロックチェーンにデプロイしてしま
うと、ビットコインネットワークは DDoS攻撃が受けられているように、全
体が落ちてしまう恐れがあります。

このようなことを防ぐ為に、ビットコインの Bitcoin Scriptは、敢えてチュ
ーリング不完全にしています。

この問題を解決しスマートコントラクトをより開発しやすくしたのが、イーサリ
アムです。イーサリアムのミッションはスマートコントラクトのプラットフォーム
であるため、スマートコントラクトの開発言語をチューリング完全にしています。そ
のおかげで、スマートコントラクトを開発するハードルが大分低くなってきていま
す。

2017年仮想通貨が爆発的に増えてきたのも、このおかげだと思います。

イーサリアムは、ビットコインで証明できたブロックチェーンを発展させ、スマ
ートコントラクトの普及を大きく進めさせたので、ブロックチェーン 2.0と言われ
ています。

ブロックチェーン 3.0

ブロックチェーン 2.oと呼ばれているイーサリアムは、ビットコインの課題を解
決して、スマートコントラクトのプラットフォームを提供しています。2013年リリ
ースされた以来、数多いアプリケーションがイーサリアム上で構築されています。こ
れらのアプリケーションを構築している中で、いくつかの課題が出てきました。

EOSとは 4

1. エンドユーザーがイーサリアム上で稼働するアプリケーションを使う時は、手
数料が発生すること

2. スケーラビリティ問題
3. スマートコントラクトはアップデートできないこと

一つずつ詳細を見てみましょう。

1.手数料問題
ビットコインのスマートコントラクトがチューリング不完全であると説明しまし
た。イーサリアムは、それを改善する為、チューリング完全の開発言語を提供してい
ます。
チューリング完全について例をあげた時、無限ループの問題を説明しました。イ
ーサリアムでは、この問題を解決する為に、GASという概念を導入されています。
イーサリアムは、スマートコントラクトの処理ステップ毎に手数料を払うように
なっています。この手数料は、GASと言います。トランザクションを発行しコント
ラクトのある処理を呼び出す時、その処理に必要な手数料を前払いでトランザクシ
ョンに含める必要があります。処理が終わると、前払いの分から実際発生する手数
料を控除し残りの分を返してくれます。ただし、処理にかかる手数料が前払いの分
を超えた場合は、その時点で処理が失敗になって更に発生する手数料が返されない
ような仕様になっています。
この仕組を導入することで、チューリング完全のスマートコントラクト開発言語
を提供出来ました。悪意の無限ループ処理があっても、その処理をさせたエンドユ
ーザーが払った手数料がなくなるまで実行するだけのため、イーサリアムネットワ
ーク全体に対する攻撃が成り立たなくなります。
素晴らしい仕組みではあると思いますが、残念なことに、イーサリアム上のサービ
スを使いたいエンドユーザーから見ると、大きいハードルになってしまいます。今
の時代は、個人顧客向けのサービスの場合は、フリーの基本利用＋課金のオプショ
ン機能のモデルが圧倒的に多いです。それに慣れているエンドユーザーからみると、
イーサリアム上のアプリケーションを使うと最初から課金しないと行けないことは、
おそらく受け入れられないでしょう。このせいで、イーサリアム上で展開するサー
ビスは、最初のエンドユーザーを作るのに結構難航しています。

EOSとは 5

この問題は、イーサリアムの根本的な設計になっているため、基本的には変わら
ないと思われます。

サービス側が GASを負担することで、エンドユーザー側が無料でトランザク
ションを実行できるようなサービスも出ています。

BUIDL EOS-like DApps on Ethereum

2.スケーラビリティ問題
イーサリアムの処理スピードは、平均的には大体秒間 20トランザクションを処理
できる程度 (2018年 12月現在)です。
この問題は、アーキテクチャと合意形成アルゴリズムなどイーサリアムの根本的
な部分と関連しています。

• イーサリアムの合意形成アルゴリズムは、2018年 12月現在まだビットコイン
と同じく PoWになっています。理論上、１つのブロック時間の中は、１つのノ
ードしか勝ちません。そのためネットワーク全体の処理能力は１つのノードと
変わりません。

• アーキテクチャのほうは、合意形成アルゴリズムと関係して、並列実行などは
出来ません。

イーサリアムの開発チームは新しいアーキテクチャの採用（シャーディング、
Plasma）や合意形成アルゴリズムの変更（PoS）など、いろいろな改善を計画して
います。

3.スマートコントラクトがアップデートできない問題
イーサリアムは分散型アプリケーションのプラットフォームを目指しています。
イーサリアムにデプロイされるスマートコントラクトは、設計上一回デプロイされ
ると後から変更できないようになっています。スマートコントラクトは現実世界の
契約と同じなので勝手に変更してはならないという考えです。
この考えに関する議論はさておき、実際起きた問題としては、スマートコントラ
クトにバグがあっても修正版にアップデートできないため、ハッカーに悪用され大
きい金額の被害が出た事例が既にあります。

https://ethless.v4x.co/index.ja.html

EOSとは 6

この問題については、イーサリアムの開発チームが設計を変更する予定がないよ
うなので、分散型アプリケーションの開発者達がスマートコントラクト側の実装で
頑張っているようになっています。
EOSは、これらの問題を解決し、もっとエンタープライズ向けの、商用システム
レベルに耐えられるような分散型アプリケーションのプラットフォームを目指して
いるため、ブロックチェーン 2.0であるイーサリアムを超えて、ブロックチェーン
3.0になっています。

EOSとは 7

1.2なぜ EOS？
EOSは、資金調達が始まった 5日間で 1億 8,500ドル調達でき、１年間かけて最
終的に 40憶ドル調達できました。なぜそこまで注目されているのでしょうか。
ブロックチェーン 2.0 であるイーサリアムはいくつの課題があると述べました。

EOSはこれらを解決する為に新しく設計され、主に下記の特徴があります。

基本利用手数料が無料
EOSは、アプリケーションを利用する手数料があるかどうかは、プラットフォー
ム側で強制的に決められるのではなく、アプリケーション開発者が柔軟に決められ
るように設計されています。そのため、EOSの送金処理や EOS上で稼働するアプリ
ケーションを利用する場合は、基本的に手数料なく、無料で行えます。
そのかわりに、アプリケーション開発者、すなわちサービス提供者側が手数料を
払う必要があります。ウェブサービスと同じく、サービス側が事業内容によって柔
軟に決められる一方、エンドユーザー側が基本無料で利用できるので、より現実的
ではないでしょうか。

処理スピードが速い
2018年 12月現在、イーサリアムの秒間処理できるトランザクション数は、15 -

20程度になっています。EOSの場合は、2018年 6月リリースされた以来、実測値と
して記録された最大値は、3,994個でした。ブロック #14487862に、1,997個のト
ランザクションが記録されています。EOSのブロック生成時間が 0.5秒なので、秒
間は 1,997 * 2 = 3,994個のトランザクションになります。更に、理論上は秒間何百
万トランザクションに耐えられるような設計になっています。
何故これほど速くできているのかは、第二章のコンセンサスアルゴリズムの節で
詳しく説明します。

https://www.bloks.io/block/14487862

EOSとは 8

スマートコントラクトがアップデートできる
EOSのスマートコントラクトは、アカウントに紐付いていて、必要な権限を持っ
ていれば、新しいバージョンをデプロイし、スマートコントラクトの処理をアップ
デートできるようになっています。

ガバナンス仕組みでトラブルを解決する
ガバナンスとは、ある組織を管理するプロセスのことです。
いままでのブロックチェーンでは、明確なガバナンスプロセスがなかったため、ト
ラブルが発生する都度その場で論争し対応方針を決めてしまう流れでした。EOSは、
明確なガバナンスが設けられています。

• まず、EOSトークンを保有している者（トークンホルダーと呼ばれている）は、
権限を持っています。

• 次に、トークンホルダーは権限をブロック生成者に委任します。
• 最終的に、ブロック生成者は、付与されている権限を利用して、アカウントの
凍結やバグあるアプリケーションの更新、さらに、基本プロトコルのハードフ
ォーク変更提案を行うなども行えます。

アカウントとロールベースで権限管理できる
EOSには、アカウントと権限が設けられています。

• アカウントは最大 12桁までの文字で構成されているユニークな名前で識別され
ます。アカウント毎にプライベートなデータベースを持つことができ、そのア
カウントからしかアクセスできません。他のアカウントに対してアクションを
送信でき、他のアカウントからアクションを受けたあとの処理も定義できます。
アクションと処理内容を定義することは、EOSでのスマートコントラクトその
ものを定義することになります。

• 権限は、ロールベースで管理する仕組みになっています。どのロールがどのア
クションを実行できるかを定義でき、その権限を１つまたは複数のキーペアと
紐づけできます。複数のキーペアと紐付いている場合は、マルチサインになり、
更に重み係数も定義できます。

EOSとは 9

このようなアカウントと権限の仕組みをプラットフォーム側で標準化し提供する
ことで、アプリケーションのビジネスロジックに権限管理仕組みを用意する必要が
なくなります。
上記だけではなく、他にもいろいろ優れている仕組みがあるため、EOSはブロッ
クチェーン 3.0と呼ばれ、世界中に注目されています。

EOSとは 10

1.3この章のまとめ
本章では、ブロックチェーンの歴史を振り返しながら、EOSの特徴を紹介しまし
た。EOSは、上記以外でもスケーラビリティやセキュリティなど、いろいろな優れ
ている仕組みがあるため、イーサリアムキラーと呼ばれているぐらい、ブロックチ
ェーン業界で注目されています。
次章は、詳しく EOSの仕組みを紹介します。

2. EOSの仕組み
本章は EOSの仕組みを紹介していきます。
まず EOSの合意形成アルゴリズムから、基本的なブロックやトランザクションの
データ構造を説明します。その後、開発環境を構築して、実際触りながら開発する際
使うツールチェーンを紹介します。
合意形成は、英語の単語 consensusからきたコンセンサスという単語がよく使わ
れるので、以降コンセンサスを使います。

11

EOSの仕組み 12

2.1コンセンサスアルゴリズム
EOSのコンセンサスアルゴリズムは、厳密的には DPoS +非同期 BFTになってい
ます。

DPoSとは
DPoSは、Delegated Proof of Stakeの略語です。通貨を保有している人たちが
投票を行うことによって、ブロックの承認者になるノードを選出します。それらの
承認ノードたちがお互いに協力しながらブロックを生成して行くアルゴリズムです。
ビットコインやイーサリアムに使われている PoWの場合、新しいブロックを生成
する権利を競争するため、ネットワークに参加しているノード全員がナンスを計算
しますが、最終的にはその中の１つのノードだけ新しいブロックの生成する権利を
貰えるようになっています。そのノード以外のすべてのノードの計算が無駄になっ
てしまうので、よく批判されています。
DPoSの場合は、投票によって選出されたノードから、投票数が上位になっている
特定の数（EOSの場合 21個）のノードをブロック生成者としています。これらのブ
ロック生成者ノードたちは、サイクル毎に下記の流れでブロックを生成します。

• 新しいサイクルが始まると、まず投票数が上位になっているノードから、上位
20個のノードと、それ以外のランダムで 1個のノードを選択します

• この 21個のノードをランダムで順番を決めます
• あるノードが自分の番になると、その時のブロック生成者になり、トランザク
ションを収集しブロックを生成します

• 終わったら次の番のノードが同じ処理を続きます
• １つのサイクルの 21個のノードが全部終わったら、新しいサイクルが始まりま
す

図で表現すると、下記のようになります。

DPoSのブロック生成

EOSの仕組み 13

サイクル１では、ノードが 15 -> 3 -> 9 -> … -> 20の順番でブロック生成します。次
のサイクル２では、もう一回ランダムで順番を決めるので、3 -> 21 -> 18 -> … -> 4の
順番で生成します。
ブロック生成者たちはお互いに競争するのではなく、協力しながら進めるので、競
争するための計算が要りません。そのおかげで、ブロック生成者が全力でブロック
を生成することができるので、ブロック生成するスピードが PoWと比べて桁違いぐ
らい速くなっています。
EOSは DPoSのパフォーマンスを満足していないため、更に下記の対応を取り込
んでいます。

1.ブロック生成時間を 0.5秒にする
EOSは、ブロック生成時間を 0.5秒にすることで、もっと短い時間単位でトラン
ザクションを確認できるようになります。
もちろん、こうすることで他の課題が出てきていますが、合わせて他の対策も取
っています。

2.ブロック生成者の順番を特定の順番にする
EOSは、選出されたブロック生成ノードたちの順番をランダムから、物理的な距
離が近いノードを隣にするような順番に変更しました。
ブロック生成時間を 0.5秒にすると、ネットワークの通信遅延が無視できないレベ
ルになります。ランダム順番の場合、たとえ中国のノードの次がアメリカノードに
なると、中国ノードが生成したブロックがまだアメリカノードまでに伝えてなかっ
た可能性は大分高くなってしまいます。そのため、物理的に近いノードを隣にする
ことで、できるだけ隣になっているノード間のデータ不整合が起きる可能性を低く
抑えられます。

3.ブロック生成者は連続で 12個のブロックを生成する
ブロック生成ノードが自分の番になる時、１つのブロックではなく、連続で 12個
のブロックを生成する。

EOSの仕組み 14

隣にいるノードの物理的な距離が近いとはいえ、0.5秒単位でノードが交代すると
やはり不安なので、連続で 12個のブロックを生成することで、交代する時間を 6秒
にしています。
連続で 12個のブロックを生成する場合は、一個前のブロックが自分が生成したブ
ロックなので、データ不整合が起きる可能性を更に低く抑えられます。できるだけ
ネットワーク通信遅延の影響を抑えることで、0.5秒のブロック生成時間を保証して
います。

ホワイトペーパーには連続生成する数は 6個と書かれていますが、2018年
12月現在、実際稼働している実装は、12個になっています。

4.非同期 BFT

BFTとは、Byzantine Fault Toleranceの略語です。P2Pネットワーク上でビザ
ンティン将軍問題を解決でき正常に稼働でいるシステムが BFTを導入していると言
われています。
ビザンティン将軍問題とは、ネットワークでの正しい合意形成を問う問題「ビザ
ンチン将軍問題」の記事より引用しますが、

相互に通信し合う P2Pネットワーク上で、通信そのものや個々のノードが
故障、または故意に偽の情報を伝達する可能性がある場合に、全体として
正しい合意が形成できるかを問う問題

になります。P2Pネットワーク上で稼働するシステムの場合は、この問題を解決し
ないとシステム自体が成り立たなくなります。まだ詳細を把握出来てない方は、上
記記事をご確認ください。
BFTの対応内容はいろいろありますが、ここではトランザクションの確定時間で
例をあげます。

https://gaiax-blockchain.com/byzantine-generals-problem
https://gaiax-blockchain.com/byzantine-generals-problem

EOSの仕組み 15

トランザクションの確定時間とは
トランザクションがブロックに含まれ、更にそのブロックがブロックチェー
ンのネットワークにブロードキャストされれば、トランザクションが承認さ
れたと言います。

ただし、ビットコインやイーサリアムの場合、ネットワーク上で通信遅延な
どによって、異なるところから同時に新しいブロックがブロードキャストさ
れる可能性があります。この現象はフォークと呼ばれています。

現状、ビットコインやイーサリアムは、フォークが発生する際、一旦出てき
た両方とも保留とし、次のブロック生成を進めます。同時新しいブロックが
ブロードキャストされた可能性はそもそも十分小さいので、その2つのチェー
ンがそれぞれの次のブロックまた同時にブロードキャストされる可能性が極
めて小さくなります。そのため、フォークが発生したとしても、大体 2, 3個
のブロック時間で、ブロックのブロードキャスト時間差が出てくるので、そ
の時点で、どちらのチェーンが⻑いかを判別できるため、⻑いほうが正しい
として残されます。

上記の図の場合、102番目のブロックで水色と緑色のブロックが同時に出て
きましたが、103番目のブロックで既に水色のほうが先にでききたので、最
終的に、上のほうが残され、下の緑色の 102’と 103’が削除されます。

ビットコインのデータによりますと、フォークができてしまった場合、ほぼ
次のブロックか、3個目のブロックで解決できるようになっています。

ここで注目してほしいのは、緑色のブロックです。103番目のブロックで水
色より後で生成され、結果的に緑色の 102’ブロックと 103’ブロックが捨て
られ、この2つのブロックに含まれているトランザクションがキャンセルされ
てしまう可能性がでているところです。

EOSの仕組み 16

そのため、トランザクションがブロックにに含まれていても、まだ取り消さ
れる可能性があるため、その時点ではまだ確定とは言えないです。よって、
ビットコインの場合は、6個のブロックを待つことで、ほぼ取り消される可
能性がゼロに近いところで、トランザクションが確定されたと言えるので、
このことをトランザクションの確定と言い、トランザクションが確定される
までの時間をトランザクションの確定時間と言います。

DPoSの場合、同じ時間帯は１つのブロック生成者しかないため、悪意のブロック
生成者がいない限りそもそもフォークが発生しません。そのため、トランザクショ
ンがブロードキャストされていれば、99.99%確定されていると言われています。そ
のうえ、ネットワーク上にある 21個ノードのうち、2/3 (14個)のノードに確認して
貰えば、100%確定になります。
DPoSのブロック確認（確定ではなく）の定義は、別のブロック生成者がそのブロ
ックの後に新しいブロックを生成したことになります。その為、ブロック生成しブ
ロードキャストしてから、次のブロック生成者がそのブロックの後にブロックを生
成すること待つ必要があります。更に後のブロック生成者の確認を待たないといけ
ません。
このように、ブロックの確定時間は、
• 今のブロック生成者がブロック生成する時間
• 他の 14個のノードがそのブロックの後ろにブロックを生成する時間
結局 3秒 x (1 + 14) = 45秒を待つことで、トランザクションが確定されるように
なります。
これを改善するために、EOSは、ブロック確認の仕組みを非同期にしました。
• まず、ブロックの確認処理を変更し、ノードがブロックデータを検証し問題な
ければサインすることに変更しました

• 次に、EOSのブロック生成者は、ブロックを生成した後、ブロックにサインし
ネットワークにブロードキャストします

• 他のブロック生成者は、新しいブロックを受信すると、すぐに検証し問題なけ
ればサイン（確認）して、その結果を送信元のブロック生成者に返します

• 送信元のブロック生成者は 14個のサインを入手できれば（自分を含めると 15

個になる)、そのブロックが確定され、トランザクションが確定されるようにな
ります

EOSの仕組み 17

こうすることで、トランザクションの確定時間は、ブロック生成時間 0.5秒 +別の
ブロック生成者による確認時間になります。後者も大体 0.5秒以内で完了できるの
で、EOSのトランザクション確定時間は、1秒程度までに短縮できます。
このように、EOSは既存の DPoSを更に改善することで、商用レベルの分散型ア
プリケーションプラットフォームを目指しています。

この非同期確認機能について、ホワイトペーパーに記載されていますが、
2018年 12月現在、まだ実装されていません

EOSの仕組み 18

2.2 EOSのブロックの構成
レイテンシーは、あるアカウントが別のアカウントにアクションを送信し、レス
ポンスを受け取るまで要する時間を指しています。EOSは、この値を最小限に抑え、
2つアカウントの間、ブロック生成時間を待たずに、１つブロック以内でアクション
をお互いに交換できるようにするために、基本的なブロックチェーン構成（ブロッ
クとトランザクション）に手を加えています。
具体的には、下記のようにブロックを更にリージョン・サイクル・シャード・ア
クションという概念を導入しています。

ブロック構成

縦の方向は順番実行、横の方向は並列実行の意味になります。

1つずつ詳細を見て行きましょう。

EOSの仕組み 19

リージョン
リージョンは、スマートコントラクトのハイレベルのグループであり、お互いに
独立しているブロックチェーンのように動きます。

サイクル
ブロック生成者は、アクションがなくなるまたは最大実行時間になるまで、ブロ
ックにサイクルを追加し続けます。１つのアクションで生成したトランザクション
は、その後のサイクルまたはブロックに配信されます。
こうすることで、あるアカウントが別のアカウントに送信し、後者が受け取った
アクションを処理する際生成したアクションは、次のサイクルで処理されることが
できるため、１つのブロック生成時間を待たずに、0.5秒以内で完結できるようにな
ります。
また、異なるサイクルにあるトランザクションが、上記のように順番を保証する
必要があるため、サイクルは順番実行になっています。

シャード
サイクルにあるトランザクションは、静的分析によってどのアカウントを変更す
るかを検証できるため、異なるアカウントに対するトランザクションをシャード単
位に分けておき、シャード同士は並列で実行できます。
このような、アクション処理が関連しているアカウントで分けている単位は、シ
ャードです。

トランザクション
EOSのトランザクションは、データベースのトランザクション定義と似ています。
トランザクションは、アトミック性を持ち、１つまたは複数のアクションを含めて
いて、これらのアクションは１つの単位として、全部成功か全部失敗かしかありま
せん。

EOSの仕組み 20

アクション
アクションは、EOSの処理の最小単位であり、送信先とアクション名とアクショ
ンに必要なパラメータを持っています。

ブロック構成のまとめ
このように、EOSは基本的なブロックとトランザクション構造の上に、更にリー
ジョン・サイクル・シャードを導入することで、異なるアカウント間の相互通信を更
に速くできるようにしています。

2018年 6月リリースされた 1.xバージョンには、シングルスレッドバージョ
ンであり、並列実行処理はまだありません

EOSの仕組み 21

2.3 Dockerで開発環境を構築する
百聞は一見にしかず、実際に EOSが動ける環境を構築し、触って見てみましょう。
本書は Dockerを使って環境を構築するので、まだインストールされてない場合
は、先に Dockerをインストールしてから進めましょう。

EOSの nodeを構築する
まず作業用のディレクトリを作成します。本書の以降は、このディレクトリを作
業ディレクトリとします。
作業ディレクトリ作成

1 mkdir -p ~/dev/eos_contracts

2 cd ~/dev/eos_contracts

dockerの imageを取得します。
Dockerイメージ取得

1 docker pull eosio/eos:v1.4.2

EOSのコンテナーを作成します。
EOSIOコンテナ作成

1 docker run --name eosio \

2 --publish 7777:7777 \

3 --publish 127.0.0.1:5555:5555 \

4 --volume $(pwd)/:/eos_contracts \

5 --detach \

6 eosio/eos:v1.4.2 \

7 /bin/bash -c \

8 "keosd --http-server-address=0.0.0.0:5555 & exec nodeos -e -p eosio --plugin eo\

9 sio::producer_plugin --plugin eosio::chain_api_plugin --plugin eosio::history_plu\

10 gin --plugin eosio::history_api_plugin --plugin eosio::http_plugin -d /mnt/dev/da\

11 ta --config-dir /mnt/dev/config --http-server-address=0.0.0.0:7777 --access-contr\

12 ol-allow-origin=* --contracts-console --http-validate-host=false --filter-on='*'"

コンテナーが動いているのかを確認します。

https://www.docker.com/community-edition

EOSの仕組み 22

コンテナ確認
1 docker logs --tail 10 eosio

下記のようなログが表示されていれば、ノードが正しく動作されていることにな
ります。
コンテナログ

1 2018-10-27T06:05:26.005 thread-0 producer_plugin.cpp:1302 produce_block \

2] Produced block 000001eef5d1ed68... #494 @ 2018-10-27T06:05:26.000 signed b\

3 y eosio [trxs: 0, lib: 493, confirmed: 0]

4 2018-10-27T06:05:26.501 thread-0 producer_plugin.cpp:1302 produce_block \

5] Produced block 000001ef9fdf5b1a... #495 @ 2018-10-27T06:05:26.500 signed b\

6 y eosio [trxs: 0, lib: 494, confirmed: 0]

7 2018-10-27T06:05:27.002 thread-0 producer_plugin.cpp:1302 produce_block \

8] Produced block 000001f0a8f5d428... #496 @ 2018-10-27T06:05:27.000 signed b\

9 y eosio [trxs: 0, lib: 495, confirmed: 0]

10 2018-10-27T06:05:27.502 thread-0 producer_plugin.cpp:1302 produce_block \

11] Produced block 000001f10c8edbad... #497 @ 2018-10-27T06:05:27.500 signed b\

12 y eosio [trxs: 0, lib: 496, confirmed: 0]

13 2018-10-27T06:05:28.004 thread-0 producer_plugin.cpp:1302 produce_block \

14] Produced block 000001f2cef0814c... #498 @ 2018-10-27T06:05:28.000 signed b\

15 y eosio [trxs: 0, lib: 497, confirmed: 0]

16 2018-10-27T06:05:28.501 thread-0 producer_plugin.cpp:1302 produce_block \

17] Produced block 000001f3bf17a190... #499 @ 2018-10-27T06:05:28.500 signed b\

18 y eosio [trxs: 0, lib: 498, confirmed: 0]

19 2018-10-27T06:05:29.004 thread-0 producer_plugin.cpp:1302 produce_block \

20] Produced block 000001f436b25e49... #500 @ 2018-10-27T06:05:29.000 signed b\

21 y eosio [trxs: 0, lib: 499, confirmed: 0]

22 2018-10-27T06:05:29.500 thread-0 producer_plugin.cpp:1302 produce_block \

23] Produced block 000001f51771b68e... #501 @ 2018-10-27T06:05:29.500 signed b\

24 y eosio [trxs: 0, lib: 500, confirmed: 0]

25 2018-10-27T06:05:30.001 thread-0 producer_plugin.cpp:1302 produce_block \

26] Produced block 000001f67066b5f1... #502 @ 2018-10-27T06:05:30.000 signed b\

27 y eosio [trxs: 0, lib: 501, confirmed: 0]

28 2018-10-27T06:05:30.501 thread-0 producer_plugin.cpp:1302 produce_block \

29] Produced block 000001f752c39181... #503 @ 2018-10-27T06:05:30.500 signed b\

30 y eosio [trxs: 0, lib: 502, confirmed: 0]

表示されているブロック番号などの情報は実行環境とタイミングによって異
なります

walletの動作を確認する

EOSの仕組み 23

ウォレット確認
1 $ docker exec -it eosio bash

2 root@5b77933bb052:/#

3 root@5b77933bb052:/# cleos --wallet-url http://127.0.0.1:5555 wallet list keys

4 Wallets:

5 []

6 Error 3120006: No available wallet

7 Ensure that you have created a wallet and have it open

8 root@5b77933bb052:/#

初回実行する場合は、上記通りに Error 3120006: No available walletエラ
ーが表示されますが、内容通りに、まだ wallet作成していないだけなので、
Wallets: []の内容が表示されていれば、ノードが正しく動作しています、安
心して次に進んで下さい。

動作確認できたら、exitコマンドでコンテナーから出ましょう。

RPC APIエントリポイントを確認する
コンテナを起動した時、ポートを設定したので、ローカルマシンから以下のよう
に httpの RPCエントリポイントでも確認出来ます。
APIエントリポイント確認

1 $ curl http://localhost:7777/v1/chain/get_info

2 {"server_version":"60c8bace","chain_id":"cf057bbfb72640471fd910bcb67639c22df9f924\

3 70936cddc1ade0e2f2e7dc4f","head_block_num":886460,"last_irreversible_block_num":8\

4 86459,"last_irreversible_block_id":"000d86bbda3b33558502a41c1a46502a23147dcaac747\

5 61cdf4194e6373ce89b","head_block_id":"000d86bcaccd8fbb477465d8b6b8ac1b4018b7d8c58\

6 9b010febe190099e7f493","head_block_time":"2018-11-24T04:30:24.000","head_block_pr\

7 oducer":"eosio","virtual_block_cpu_limit":200000000,"virtual_block_net_limit":104\

8 8576000,"block_cpu_limit":199900,"block_net_limit":1048576,"server_version_string\

9 ":"v1.4.2"}

コマンドのエイリアスを定義しておく
今後都度コンテナーに入らずにローカルから直接に実行できるように、コマンド
ラインのエイリアスを定義しておきます。

EOSの仕組み 24

コマンドエイリアス定義
1 // ~/.bashrc や ~/.zshrc に追記する
2 $ alias cleos='docker exec -it eosio /opt/eosio/bin/cleos --url http://127.0.0.1:\

3 7777 --wallet-url http://127.0.0.1:5555'

4

5 // 上記内容を適用する
6 $ source ~/.bashrc

7

8 // エイリアスを使って動作確認する
9 $ cleos wallet list keys

10 Wallets:

11 []

12 Error 3120006: No available wallet

13 Ensure that you have created a wallet and have it open

14

15 // 先程と同じ内容が表示されていればエイリアスが正しく設定されていることになります

これで EOSが動いている環境を構築できました。

EOSの仕組み 25

2.4ツールチェーン構成を知る
ここで、少し構築した環境と EOSのアーキテクチャを説明します。
今回構築した環境は、下記の図通りになっています。

EOSアーキテクチャ

参照元：公式ドキュメント

一番右側にある blockchainは、今回の場合、ローカルのマシンに１つだけ
のノードで構成しているようになっています。

nodeos (node + eos = nodeos)

EOSノードのデーモンアプリケーションです。これを起動することで、EOSネッ
トワークにある他のノードと通信し、データを同期してくれます。プラグイン仕組み
があり、設定によって各種機能たとえチェーン APIや履歴 APIなどを追加でき、エ
ントリポイント経由しアクセスできるようになります。

https://developers.eos.io/eosio-home/docs/how-it-all-fits-together

EOSの仕組み 26

cleos (cli + eos = cleos)

ブロックチェーンとウォレットにアクセスするコマンドラインインタフェースで
す。裏側でノードと通信し各種 APIを呼び出すことができます。

keosd (key + eos = keosd)

安全にキーペアを保管できるウォレットコンポーネントです。名前無しのデフォ
ルトウォレット以外に、名前を指定して作成することもできます。
ウォレットアプリケーションを言うと、トークンを保管しているイメージになる
と思いますが、keosdはウォレットアプリケーションではなく、単にプライベート
キーとパブリックキーのペアを安全に保管するだけで、トークンの保管機能はあり
ません。
これらのツールを使って EOSとやり取りできます。

EOSの仕組み 27

2.5ウォレット・キーペア・アカウント・権限の関係を理
解する

前の節でウォレットはキーペアを安全に保管できると説明しました。また、前章
で EOSのアカウントと権限について少し説明しました。ここでは、実際作りながら、
この 4者の関係を整理して説明します。
ウォレットを作成する

1 $ cleos wallet create --to-console

2 Creating wallet: default

3 Save password to use in the future to unlock this wallet.

4 Without password imported keys will not be retrievable.

5 "PW5KGq44bFVtS5epwgMZPvF52WpZ3ffTzwCHPSBh3FQ3FKxwi8Nyx"

6

7 // list サブコマンドでウォレットリストを確認できる
8 $ cleos wallet list

9 Wallets:

10 [

11 "default *"

12]

上記コマンドは、ウォレットの名前を指定していないので、defaultという名前の
ウォレットが作成されます。パスワードはランダムで生成された値であり、ここ 1回
しか表示されないので、必ずメモしておいてください。後でウォレットをアンロッ
クする時に必要になります。再度実行すると、defaultという名前のウォレットが既
に存在しているので、エラーになります
重複作成

1 $ cleos wallet create --to-console

2 Error 3120001: Wallet already exists

3 Try to use different wallet name.

名前を指定してウォレットを作成したい場合は、-n secondのようにパラメータを
指定する必要があります。

EOSの仕組み 28

名前を指定してウォレットを作成
1 $ cleos wallet create -n second --to-console

2 Creating wallet: second

3 Save password to use in the future to unlock this wallet.

4 Without password imported keys will not be retrievable.

5 "PW5JCUR9cXgdTYe3fUhyZ5PeXTy9pAKCwZbxHjqJGxgmeTQizzEDu"

6

7 // 指定した名前で作成されたことを確認できる
8 $ cleos wallet list

9 Wallets:

10 [

11 "default *",

12 "second *"

13]

“*”が付いているウォレットは、今現在アンロックされているウォレットにな
っています。

しばらくは default ウォレットだけ使うため、一旦ウォレットを全部ロックし
defaultだけアンロックします。
defaultウォレット使う

1 $ cleos wallet lock_all

2 Locked All Wallets

3

4 // 上記でメモしておいたパスワードを入力しアンロックする
5 $ cleos wallet unlock

6 password: Unlocked: default

7

8 $ cleos wallet list

9 Wallets:

10 [

11 "default *",

12 "second"

13]

キーペアを理解する
まず新しいキーペアを作成します。

EOSの仕組み 29

キーペアを作成する
1 cleos wallet create_key

2 Created new private key with a public key of: "EOS7bKBnxtQMXWkffYesa7Fh6dY5QHFY8P\

3 iskXW3HnvG8XYbihtKQ"

新しいランダムなプライベートキーが生成され、そこからパブリックキーが算出
されましたが、EOSのアカウントはキーペアと関係なく独立しているため、アカウン
トはまだ出来ておらず、単にキーペアが作成されウォレットに保管されるだけです。
ウォレットに保管されているキーペアは下記コマンドで確認出来ます。

キーペアを確認する
1 $ cleos wallet keys

2 [

3 "EOS7bKBnxtQMXWkffYesa7Fh6dY5QHFY8PiskXW3HnvG8XYbihtKQ"

4]

アカウントを作ってみる
EOSのアカウントは、アカウント名とデフォルトの Owner / Active 2つのロール
を持っています。ロールは、キーペアと紐付いて、そのキーペアで制御する形になり
ます。そのため、アカウントを作成する際は、Owner / Activeに紐付くキーペアの
パブリックキーを指定する必要があります。
また、EOSのアカウントを作るには、別のアカウントから操作する必要がありま
す。EOSのチェーンが初期化された時、デフォルトのシステムユーザ eosioが作成
されます。このアカウントは、EOSのガバナンスとコンセンサスのコントラクトを
ロードします。最初のアカウントを作るには eosioアカウントを使います。
LinuxやWindowsを使ったことがあれば理解できると思いますが、最初から自分
が使うユーザを作る必要があって、その時裏側には Linuxが rootユーザ、Windows

が administratorユーザがあるのと同じです。
開発環境の場合、eosioに紐付いているキーペアのプライベートキーは、下記の固
定値になっています。

5KQwrPbwdL6PhXujxW37FSSQZ1JiwsST4cqQzDeyXtP79zkvFD3

これをウォレットにインポートします。

EOSの仕組み 30

インポートする
1 $ cleos wallet import

2 private key: imported private key for: EOS6MRyAjQq8ud7hVNYcfnVPJqcVpscN5So8BhtHuG\

3 YqET5GDW5CV

では、アカウントを作りましょう。
アカウント作成

1 $ cleos create account eosio bob EOS7bKBnxtQMXWkffYesa7Fh6dY5QHFY8PiskXW3HnvG8XYb\

2 ihtKQ

3 executed transaction: a9984ddaaf88858b8892656b2e70c425c0f164d054663d1fdad2900524f\

4 97d7e 200 bytes 316 us

5 # eosio <= eosio::newaccount {"creator":"eosio","name":"bob","\

6 owner":{"threshold":1,"keys":[{"key":"EOS7bKBnxtQMXWkffYesa7Fh6dY5Q...

7 warning: transaction executed locally, but may not be confirmed by the network ye\

8 t]

9 $ cleos create account eosio alice EOS7bKBnxtQMXWkffYesa7Fh6dY5QHFY8PiskXW3HnvG8X\

10 YbihtKQ

11 executed transaction: a7ede25b698cc5566ec29cf742b227f6a5ae5a8fd1a4014f7ef5e590562\

12 5ca4d 200 bytes 224 us

13 # eosio <= eosio::newaccount {"creator":"eosio","name":"alice"\

14 ,"owner":{"threshold":1,"keys":[{"key":"EOS7bKBnxtQMXWkffYesa7Fh6dY...

15 warning: transaction executed locally, but may not be confirmed by the network ye\

16 t]

ここでは２つのアカウントを作成しました。アカウントには１つのキーペアだけ
指定しましたが、この場合、Ownerと Activeロールとも指定されたキーペアで制
御出来ます。別々に指定したい場合は、もう1つキーペアを作成して、下記のように
２つキーペアを指定する必要があります。

EOSの仕組み 31

個別指定
1 $ cleos wallet create_key

2 Created new private key with a public key of: "EOS8PmYu42wo7wZGb4eD97SyFNE7wL2b64\

3 1npX1yDQHhhfMCQKKuy"

4

5 // ２つのキーペア指定した場合、1つ目は Owner、2つ目は Active ロールに紐づけます
6 $ cleos create account eosio jim EOS7bKBnxtQMXWkffYesa7Fh6dY5QHFY8PiskXW3HnvG8XYb\

7 ihtKQ EOS8PmYu42wo7wZGb4eD97SyFNE7wL2b641npX1yDQHhhfMCQKKuy

8 executed transaction: 87386a2e60da9f0255894ac72f0b038748ae0370466d85a2f57edfe3ef0\

9 b9add 200 bytes 413 us

10 # eosio <= eosio::newaccount {"creator":"eosio","name":"jim","\

11 owner":{"threshold":1,"keys":[{"key":"EOS7bKBnxtQMXWkffYesa7Fh6dY5Q...

12 warning: transaction executed locally, but may not be confirmed by the network ye\

13 t]

アカウントを作成する前にプライベートキーをウォレットにインポートしたよう
に、あるアカウントで何かの操作を実行する時は、その操作に必要なロールに紐付
いているキーペアがウォレットに存在している必要があります。
操作する時、ウォレットから必要なロールに紐付いているキーペアを検索し、見
つかったプライベートキーで操作にサインすることで、その操作を承認することを
表明します。EOSは、その操作とサインをチェックし、必要な権限が持っていれば
処理を実行します。
アカウントを作成する時特にロールなどを指定してなかったが、デフォルトは、操
作対象アカウントの Activeロールの権限が求められます。そのため、上記のアカウ
ント作成のコマンドは、下記と同じ意味になります。
アカウント作成

1 $ cleos create account eosio jim EOS7bKBnxtQMXWkffYesa7Fh6dY5QHFY8PiskXW3HnvG8XYb\

2 ihtKQ -p eosio@active

これでウォレット・キーペア・アカウント・権限の 4者を触ってみて、お互いの関
係を理解できると思います。

EOSの仕組み 32

2.6この章のまとめ
本書では、EOSのコンセンサスアルゴリズムである DPoS +非同期 BFT、ブロッ
クのデータ構造などの基本知識を紹介することで、EOSの秒間トランザクション数
が何故これほど速く出来ているかを説明しました。これらの内容を把握しておくと、
その上に稼働するアプリケーションを構築する際は、実際裏側がどう動いているか
を理解しやすいと思います。

あとがき
EOSは 2018年 6月リリースされ、まだ６ヶ月も経っていないので、本書を書いて
いる期間の中でも、EOS本体や周りの開発ライブラリがいくつのバージョンがリリ
ースされているくらい、まだまだ速いスピードでどんどん進化しています。
EOSでよく批判されるのは、21ノードしかないので分散型ではないと言うところ
ですが、リアルタイムの地図で BPのノードを確認すると、中国に集中していること
もなく、世界中で分散されているので、中央集権ではないと、筆者は考えています。
もちろん、根本的には DPoSと PoWの論争になるので、ここでは割愛します。

EOS Go BPより

日本の EOS分散型アプリケーション開発者はまだまだ少ないので、本章の内容を
通じて読者の皆さんが本書を通じて自分の分散型アプリケーションを開発・公開で
きるようになると幸いです。

33

https://bp.eosgo.io/

履歴
日付 内容
2018/12/01 初版リリース
2018/12/27 誤字修正

34

	目次
	著者について
	まえがき
	本書はどんな人に向いているか？
	手と頭を動かして体感してみましょう
	本書のソースと使ってるライブラリのバージョン

	謝辞
	EOS とは
	ブロックチェーンの歴史
	なぜ EOS ？
	この章のまとめ

	EOS の仕組み
	コンセンサスアルゴリズム
	EOS のブロックの構成
	Docker で開発環境を構築する
	ツールチェーン構成を知る
	ウォレット・キーペア・アカウント・権限の関係を理解する
	この章のまとめ

	あとがき
	履歴

