
            
        
            
        
    

            
        
                        Engineering Foundations (Sample)

                
                Timeless Principles and Modern Practices for Building Systems That Last

        
                Dmytro Golodiuk

        
        


                
            This book is a comprehensive guide for software engineers seeking to master the art and science of building robust, scalable, and maintainable systems. This book delves into the timeless principles of software engineering while integrating modern practices such as AI-augmented development, DevOps, and observability. Readers will explore essential topics including system design, architecture patterns, testing strategies, refactoring techniques, and career development insights. Whether you’re an aspiring engineer or a seasoned professional, this book provides the foundational knowledge and practical skills needed to excel in today’s fast-evolving tech landscape.

        

        
        
            © 2025 Dmytro Golodiuk. All rights reserved.
        


                https://foundations.golodiuk.com

        
                
            This work, "Engineering Foundations (Sample)," is licensed under CC BY-NC-SA 4.0. You may copy, share, and adapt this material for
                non-commercial purposes, provided you:

            
                	Attribute the author ("Dmytro Golodiuk") and include a link to https://foundations.golodiuk.com.

                	Indicate if changes were made.

                	Distribute contributions under the same CC BY-NC-SA 4.0 license.

            

            Commercial use, sublicensing under a different license, or adding legal/technological restrictions is not
                permitted under this license.

            Trademarks, logos, and third-party materials referenced remain the property of their respective owners
                and may be subject to additional rights.

            For permissions beyond this license, media inquiries, or rights requests, contact: publishing@golodiuk.com.

        

            
        
                Table of Contents
	1 Preface	1.1 Letter from the Mentor: Why This Book Exists
	1.2 From Code to Systems: The Evolution of Engineering Thinking
	1.3 The AI-Augmented Era: Tools Change, Principles Don’t	1.3.1 Why Experienced Engineers Adapt Easily
	1.3.2 The Challenge for Young Professionals
	1.3.3 The Engineer’s Mandate: Responsibility in the Age of AI






                
                  
                    	
                      Title Page
                    

                    	
                      Cover
                    

                    	
                      Table of Contents
                    

                  

                
                
                
                1 Preface

                
                1.1 Letter from the Mentor: Why This Book Exists

                You hold in your hands incredible power. AI can do in minutes what once took weeks. Code, architecture, tests, documentation – everything seems simpler, faster, smarter.

                But I want to tell you something important: Don’t surrender completely to the temptation of instant results.

                When I started, we built systems line by line. We made mistakes, searched for causes, rewrote code, and understood. Every error taught us to think. Every line of code had meaning.

                Today’s world is different. AI can give you an answer immediately. But if you don’t understand why that answer is correct, it’s not knowledge. It’s the illusion of knowledge.

                Don’t lose your engineering thinking. Don’t let the “black box” think for you. Only those who understand principles can see when a system behaves incorrectly.

                But here’s what I want you to know: mastering these principles unlocks extraordinary capability. Engineers who understand systems don’t just build faster – they build systems that adapt, scale, and endure. They see patterns others miss. They prevent failures before they happen. They turn complexity into clarity.

                You can become that engineer. Not by racing through tutorials or copying AI-generated code, but by building genuine understanding – one principle at a time.

                Remember these foundations:

                
                	AI is an amplifier, not a replacement. If you’re strong, it makes you stronger. If you’re weak, it leads you faster into a dead end.

                	Speed doesn’t equal progress. Progress is when you understand what exactly you’re building and why.

                	Always keep the system’s picture in your mind. Architecture isn’t a diagram. It’s a way of thinking about interaction, responsibility, and trade-offs.

                

                So don’t be afraid to think slowly. Don’t be afraid to ask questions even when the answer is already “generated.”

                Don’t be afraid to doubt – that’s where the real engineer is born.

                The future doesn’t belong to those who simply know how to use AI. The future belongs to those who understand how systems think.

                

                This book is your guide through this transformation.

                In the pages ahead, you’ll discover:

                
                	How to think like a system architect, not just a code generator

                	The core engineering pillars – lifecycle management, security, observability, architecture, and reliability – plus the essential human dimensions of data stewardship and collaborative culture

                	How to collaborate with AI while maintaining engineering judgment and critical thinking

                	How to build systems that are comprehensible, observable, and evolvable – not just functional

                

                This is not another “DevOps handbook” or “coding manual.” It’s a manifesto for thoughtful engineering – a guide to help you build systems, habits, and a career that endures beyond any single technology trend.

                The future doesn’t belong to those who simply know how to use AI. The future belongs to those who understand how systems think – and tools change, but principles don’t.

                Welcome to your journey from coder to engineer.

                

                Dmytro Golodiuk

                December 2025

                
                
                1.2 From Code to Systems: The Evolution of Engineering Thinking

                We live at a moment when the very essence of the programmer’s profession is changing. Just a few years ago, the main thing was to write code. Now – it’s to manage the process of its creation.

                Large Language Models (LLMs) and agentic AI systems – tools that can generate code, suggest architectures, and even autonomously execute development tasks – are transforming how software gets built. They’re no longer just helpers – they’re participants in the process. For experienced engineers, this is natural evolution (they have the foundation: understanding of architecture, patterns, and trade-offs). For beginners, it’s a revolution.

                New professionals learn not through writing code, but through conversation with intelligence. The risk is that you can quickly get a result – without understanding why it’s correct.

                
                [image: Figure 1: Evolution of engineering thinking – from manual code writing to AI-orchestrated development workflows]
                Figure 1: Evolution of engineering thinking – from manual code writing to AI-orchestrated development workflows
                
                The paradigm has shifted – from “writing” to “orchestrating.”

                Earlier, an engineer’s core skill was the ability to write code: knowing syntax, algorithms, patterns, and frameworks.

                Now, with powerful LLMs and agentic AI, the focus shifts to managing the code creation process. This means:

                
                	Decomposition: Breaking down large, complex problems into clear, manageable subtasks that can be delegated to an AI agent (or a junior developer using AI).

                	Verification: Quickly and effectively checking AI-provided results. The question is no longer just “does the code work?” but “is it optimal, secure, and aligned with the overall architecture?”

                	Integration: Combining pieces of AI-generated code into a unified working system.

                

                
                
                1.3 The AI-Augmented Era: Tools Change, Principles Don’t

                
                1.3.1 Why Experienced Engineers Adapt Easily

                Senior and Lead engineers adapt to AI-augmented development with surprising ease. Why?

                They’ve already done this. A senior engineer’s work never consisted of simply “writing code.” It always involved architecture, code review, mentorship, and decomposition. AI tools have simply become incredibly powerful “assistants” for them.

                They have a mental model. Experienced developers have a clear picture in their minds of what the system should look like. They use AI to generate routine tasks (boilerplate code, tests, simple functions) while keeping their hands on the “steering wheel” of architecture.

                Code intuition. They can look at AI-generated code and instantly sense something’s wrong – even when the code is formally correct. This intuition comes only with years of experience.

                
                💡 Note: 

                This is why the book emphasizes principles over tools. Principles give you the intuition to know when something is right or wrong, regardless of who – or what – generated it.

                

                
                
                1.3.2 The Challenge for Young Professionals

                For newcomers, junior developers and beginners face a genuinely complex and “non-obvious” situation. They face unique risks:

                1. The Black Box Risk

                This is the biggest danger. A junior developer can feed a problem to an LLM, get a finished piece of code, and it might even work. But the developer doesn’t understand why it works. They haven’t gone through the painful but necessary process of debugging, finding errors, and understanding basic principles.

                
                ⚠️ Warning: 

                Without this fundamental understanding, at the first non-standard error (or when AI “hallucinates”), such a specialist will be helpless.

                

                2. The Illusion of Rapid Progress

                AI allows beginners to create in days what used to take months (for example, a simple web application). This creates a false sense of competence. In reality, they’re learning AI operation (prompt engineering), not programming.

                3. Lack of Foundation for Verification

                To effectively verify AI’s work, you need to know the basics even better than before. If you don’t know what asynchrony or SQL injection are, you can’t evaluate whether AI generated efficient and secure code for database operations.

                
                
                1.3.3 The Engineer’s Mandate: Responsibility in the Age of AI

                With this evolution comes profound responsibility. Engineers who orchestrate AI aren’t absolved of consequences – they’re more accountable than ever. You own the security vulnerabilities in generated code. You answer for system failures. You bear the ethical weight of automation decisions.

                The essential skills have fundamentally shifted. The emphasis moves from memorizing syntax to:

                Critical thinking and skepticism. The ability to question AI results rather than trust them at face value.

                Systems thinking. Understanding not just how to write a function, but where it should live, what data it should accept and return, and how it interacts with the rest of the system.

                Mastery of task formulation. The ability to formulate technical tasks – for AI or another engineer – so clearly and completely that the result is predictable.

                
                [image: Figure 2: Engineer’s mandate in AI era – shift from syntax memorization to critical thinking, systems reasoning, and precise task formulation]
                Figure 2: Engineer’s mandate in AI era – shift from syntax memorization to critical thinking, systems reasoning, and precise task formulation
                
                The engineer’s role evolves. From a craftsman who manually creates each part to a master who orchestrates automated tooling and robotic production lines (AI agents), controls quality, and assembles the final product.

                For beginners, this means being twice as disciplined: use AI as an assistant for learning, but force yourself to dig deep and understand the fundamentals, even when there’s temptation to simply copy ready-made solutions.

                
                💡 Note: 

                This is a sample. Buy the full book.

                

                
                
                
                EPUB/media/file2.png
DMYTRO GOLODIUK

P2 2 2 2 2 T T T T L e e L R S S S

GENEEEREEEEEEEEENS NNENE BN

GSNSEEEEEEEESE EESN &N §N N,

GEEEE EEEEEEEEEEEN LN
am U EEENENEENN SN [
GEEEEE EEENNNNSSNSS o
5 GEEENEEE SN & &
SEERERRENEEREREEN un n
SENEE ERRREEREREED il
SESENEEEE BERRRER ® B
ANNAARRRRNEEN NEEENEE F |
GRARRAEEE BENEENEENEEEN
G0 RRNNERRNEEEEEEEN s 0
GRAREAEE BENEE NEEEN R EEN
GANEE REEE NEEEEEEEN | I |

222221 1 1 S
P L L 2 2 2 4 L A A 2 2 2 ) 59 - - - - -
o T T T L LIS SS S SN
LW WA W WA WA W G A A A AV A A A
A . - - LA AL 3 2 1 J a s AV & &
W W W W W W A A A A vy e
llllllllllllllllll -
IIIIIIIIIIIIIIIIIII
EEE EEEEEEm mE| .
EEEEEEEEEEEEEET _J
ASS SEEEEEEER EmEEEn N u
ASSS SEEEEEEEEEEEEER mw
SSSSSSEESEEEE & EEEEEEEmw [
ASSS Sf SEEEEEEEEEEEEm = | .
SASSSSSSEEEEEEEEEE EEEEEEW
SASSSSSSSSEEEEEEEEE EEE EmEEmw O
L WA WA WA WA WA WA WA U S G A AN AV A AV A A A A -~
.. . . W - - L A A A 2 2 2 2 2 A L L 0 4
A S S S 32 32 L2 L L L L L 1 J 2 2 2 2L 4 - -_v ==

W W WA WA W W WS S S S A A A A A A A

/
/
'
'
!
'
I
1
1
1
1
1
\
\
\
1
!
!
!
w

SENNEEEE RERER anuEE N

SEN NEEEREEERREEEEER
SENEENEER REREEERRERAN
SNSNEERENENER BERERGE O

QRRARRRRRNEEE NNEEEEE F§ &

QNARRREEE BEEENENEENENN

G50 GRERNEEEEEEEEEEN [ ] B |
GENENNEE EEEEE QSEEEF R EEN
UHEEE BEEER NNEEEEEEN an

=

i

ENGINEERING
FOUNDATIONS

A v A W W W WA WA WA W W W

GERREEEEEES BEN W [ B N BN

THE PILLARS OF MODERN
SOFTWARE CRAFTSMANSHIP






EPUB/media/file0.jpg
Traditional

. Al-Era Learning Path
Learning Path

Write Code
Manually

Prompt Al

DebuQ & Understand
Understand Output?







EPUB/media/file1.jpg
Engineer Al Assistant System

Define clear requirements

0

Request implementation

Generate code

Critical review

Verify against principles

e

alt [Code passes verification]

Integrate into system

Observable feedback

[Code fails verification]

Refine requirements

T

Regenerate code

Engineer Al Assistant System





