

Ember.js - Testing on Rails

Martin Feckie

This book is for sale at http://leanpub.com/emberjs-testingonrails

This version was published on 2014-05-05

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2014 Martin Feckie - RN, MHSM

http://leanpub.com/emberjs-testingonrails
http://leanpub.com
http://leanpub.com/manifesto

Contents

Introduction
A Bit About My Motivation
First There Was Rails
Along Came JOQUETY o it e
Javascript IV -Ember - ANew Hope
Testing to the Rescue

Design Choices, the Golden Path and “‘Why Didn’t You Include / Use / Show X, Y, Z?” . .

Introduction

A Bit About My Motivation

I've been very interested in the rise of Ember.js and front end web frameworks in general. I recently
made an app for a customer using Angular.js for front-end rendering. There is a very clear focus on
testing in Angular and I found it really easy to build a test suite. Integrating with Rails was much
more of a challenge however. I began to look at Ember and gave it a good go. At the time I found
that persisting data was a real challenge as was integrating with Rails, this was a big disappointment
and in the end I kept going with Angular and was able to produce a well tested app I was happy
with. Angular, however, is much more free form than Ember and presents lots of opportunities for
differences of opinion and approach. Not necessarily a bad thing, but if I'm producing an app I'd
like another developer to be able to come along and have a very good idea of where to find things
and Ember presents a much higher opportunity to achieve this.

Ive continued to watch the development of Ember and LOVE where it’s going, the passion and
talent of its developers is amazing and I'm so grateful for what they are doing. Most of my initial
difficulties around persistence have been well and truly resolved. I'm still, however, frustrated with
the lack of documentation about testing beyond integration tests. There are heaps of blog posts our
there and people have put a lot of work into finding ways to test Ember apps. The problem is, with
all the API changes, many are outdated and simply don’t apply any more. That shouldn’t be taken
as a criticism of any of the work the authors have put in, 'm truly grateful they did.

I had desperately hoped to find a book that would tell me how to do test driven development with
Ember, but it still hasn’t eventuated. I've spent months playing around with different configurations
and setups with Rails and Ember and came to the realisation that in creating my own setup I've
learned a lot. As a result I thought I would try and write the book I would like to have read!

I’'m not gonna suggest for a minute that everything I've put forward is perfect, I'm sure it’s not and
there will definitely be others who will come up with better ideas in the future. I'm content that
what I've put forward is a good starting point. I'm very open to feedback and dialogue and want to
create something that helps. If I succeed in helping, please tell others, if not please tell me!

Introduction 2

ﬁ A Note on Copyright
If you bought this book or were given a copy by me, skip this!

If you didn’t buy this book and found it on a file sharing site, please have a think about it.
This book is a labour of love for me and an attempt to share countless hours of experience
with others. If you feel that your need is so great that you must read without paying,
contact me and I will see what I can do to provide you with a legal copy that receives
regular updates.

Karma is a wonderful thing and if you do choose to take my book without paying, then I
wish you well and I hope that you find it useful and it helps you develop in your career. If
so, please consider buying a copy for someone else who would benefit.

First There Was Rails

If you’ve even thought about purchasing this book, I'm sure you’re familiar with Ruby on Rails. As
a framework it’s done much to drive best-practices in web application development, providing users
with a truly open source framework very different from some of the proprietary systems on offer.

The true beauty of working on a Rails app is that any part of the framework that you don’t like, you
can change! Monkey patch away, but be warned, straying from the ‘golden path’ is something that
can really cause you long term pain.

To combat some of the perils of free form development Rails provides us with a convention over
configuration philosophy. If you do things ‘the Rails way’ then things tend to flow very easily and
your pain is minimized!

One of the conventions that I love the most is the focus on testing. There are plenty that argue that
the style of Test Drive Development provided by Rails is invalid. The argument goes that it doesn’t
follow the test first style recommend by many. When you run

$> rails generate model Thing name:string

you get pre populated tests for your newly generated model. Personally, I think that’s a good thing
for new developers and it’s easily disabled by seasoned developers.

And so it was that all was good in the world, we rendered on the server, pushed to the client and
everyone was happy. But then...

Along Came jQuery

Despite masses of critics, there can be no denying that javascript won the language wars (in terms of
availability at least!). It’s used on more devices, in more places that any other language. We can spend
hours bike shedding the topics, or accept reality and find good ways to work with the language.

=N O O b W N =

Introduction 3

As the web has developed and javascript won the war, there became an increasing need to do more
‘stuff” on the client side. We started to see people doing evil things with javascript - anyone remember
the pop-up laden websites of the early 2000°s? Not only did javascript facilitate annoying pop-up’s
but also helped malicious actions.

Having said all that, some people found really creative uses for javascript and one of the most
successful early ideas was jQuery. jQuery provided developers with a straightforward way to
interact with the Document Object Model (DOM). Developers being lazy (in a good way) found
the $ abstraction very useful.

Javascript DOM selection vs jQuery

document .getElementByClassName('container")
document .getElementById('somelD")

document .getElementByTagName('p")

// vs

$(' .container")

$('#someld')

$C'p")

In and of itself, the $ abstraction doesn’t do anything to speed up the interface, but does aid devel-
opers in providing a one stop shop for interacting with the DOM. Not needing to change methods

speeds development so we don’t have to do document . getElementById or document . getElementByTagName,

we can simply adjust the call inside the $ abstraction.

jQuery allowed developers to provide a bit more structure to their javascript, but once an application
grew to a reasonable size, it became a fight to keep the code clean and developers would often
experience call-back hell *.

Javascript IV -Ember - A New Hope

I knew that Ember.js was going to be special the moment I looked at the early website. I can’t believe
how excited I was by the bindings! Oh the bindings! I type it here and it’s updated there, live and I
can persist it!!! Woo hoo.

It’s not surprising that Ember is such a great framework, after all it’s got Yeduda Katz (of jQuery,
Rails and much more), Tom Dale. The other core contributors are amazing as are the hundreds of
other who’ve made contributions. I've got a tremendous amount of respect for the Ember team, their
commitment to getting it right and their willingness to acknowledge when things went wrong (early
stage ember-data anyone?) is impressive.

!Call-back hell is a term used to refer to the problem to heavily nested code, often detected through it’s particular ‘triangular’ shape. http:
//callbackhell.com/

http://callbackhell.com/
http://callbackhell.com/

Introduction 4

I can also see the direction the project is going in and can see huge strides in performance and
convenience with the release of 1.0 . The six week release cycle will see the speed of the framework
improve and minor bugs and problems resolved (though already the benchmarks are impressive in
comparison to other frameworks ?)

The learning curve for any framework following the convention over configuration pathway is
almost always huge. This is certainly the case with Ember. The initial excitement of being able to
do so much, with so little code soon gives way to the frustration of an error caused by a misnamed
class or incorrect pluralisation.

Testing to the Rescue

Testing is a great way for us to explore the framework and I hope to provide a robust guide to allow
you to get up and going with an environment that provides rapid feedback and some good strategies
for testing your Ember.js apps.

o A word of warning on the code
examples

The Leanpub platform automatically creates a °\’ at the end of long lines to indicate
wrapping. These obviously shouldn’t be copied and I haven’t found a way to turn them
off. Please be cautious when following the examples.

®Although artificial benchmarks are frowned upon, here’s some interesting comparisons with backbone.js http://jsfiddle.net/jashkenas/CGSds5/.
Much more impressive is the future with HTMLBars comparing with React.js, Backbone and raw javascript when animating elements. http://jsfiddle.
net/Ut2X6/. HTMLBars is a very exciting potential improvement to Handlebars https://github.com/tildeio/htmlbars

http://jsfiddle.net/jashkenas/CGSd5/
http://jsfiddle.net/Ut2X6/
http://jsfiddle.net/Ut2X6/
https://github.com/tildeio/htmlbars

Design Choices, the Golden Path and
‘Why Didn’t You Include / Use / Show
XY, Z?"

I’ve put out a few releases of the book and so far have received positive feedback, however I've also
had some questions that I feel are worth responding to.

Why Didn’t You Use Third Party Libraries to Cover BDD, Such as
Pavilov?

The philosophy I'm coming from with the book is that getting as ‘close to the metal’ as possible will
give you the knowledge and confidence to use third party libraries because you will learn what they
are abstracting away. Knowing the hooks they use and the methods they leverage will allow you to
troubleshoot and make the trade offs you feel are worth it.

Why Don’t You Use Factories Instead of Fixtures in Ember?

Basically, none of the things we’re going to use fixtures with require any dynamic attributes. Fixtures
are lightweight and provided for free by Ember. I chose not to add in the extra work to provide
dynamic objects.

You Know That You Can Run Multiple Suites of Tests With
Teaspoon?

Yes, in the first draft of the book I utilised this feature of Teaspoon, but found that there was a
conflict with Guard that led to tests getting ‘stuck’ in one place, leading to false positive / negative
notifications via Growl. As a result, I chose not to use the feature because I valued reliability higher
than separation of unit and integration tests. The issue with ‘sticking’ may well get ironed out with
future (or even current) releases of Guard / Teaspoon, so by all means use the feature yourself.

The Golden Path

I’ve chosen to use the same tools as much as possible as the Ember core team. If you prefer to use
Jasmine, Mocha, Chai, Pavlov etc. then go for it. Using QUnit would not be my first choice, but it is
well integrated with Ember, well supported on Stackoverflow and other sources of knowledge and
provides a great baseline. This is really about getting started with ‘training wheels’, if you’re ready
to go without them, take them off an go!

	Table of Contents
	Introduction
	A Bit About My Motivation
	First There Was Rails
	Along Came jQuery
	Javascript IV -Ember - A New Hope
	Testing to the Rescue

	Design Choices, the Golden Path and `Why Didn't You Include / Use / Show X, Y, Z?''

