

Efficient Rails
Workflow Upgrades for Crafting Rails Apps with
Superhuman Speed

Andrew Allen

This book is for sale at http://leanpub.com/efficient-rails

This version was published on 2016-06-22

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 Andrew Allen

http://leanpub.com/efficient-rails
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Andrew Allen by spreading the word about this book on Twitter!

The suggested hashtag for this book is #EfficientRails.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#EfficientRails

http://twitter.com
https://twitter.com/search?q=%23EfficientRails
https://twitter.com/search?q=%23EfficientRails

Contents

Introduction . i

Chapter 3: Rails Console . 1
Setting up the Console . 2
Save Frequently Used Commands . 4
Inspecting ActiveRecord Collections . 6
Re-Execute Commands . 8
Change Rails Environments . 9
Ignore Sluggish Output . 11
Don’t wear out the Backspace Key . 12
Reloading Models After Changing Them . 13
Sandbox . 14
Forgot to Save That . 15
Call Private & Protected Methods . 16
Pasting Multi-line Code into the Console . 18

Continue Reading . 20

Introduction
This is not your average Rails book.

What it’s not

• An introduction. I’ll assume that you’re familiar with at least the core concepts of both Ruby
and Rails.

• A tutorial. At least not in the traditional sense.
• Academic. We won’t be discussing much abstract programming theory.

What it is

• Practical. Every part of this book is focused on saving you time and making Rails development
more enjoyable.

• Actionable. Learn and implement each solution in just a few minutes.
• Non-linear. You don’t have to read cover-to-cover to get something out of this book.

Who it’s for

This book is intended for someone who has at least some experience with Rails. There are tons of
great resources out there to learn the basics, but once you hit a base level of proficiency, your options
start to thin. This book aims to fill that space.

Efficient Rails is for someone who uses Rails frequently. It doesn’t matter if you’re junior or senior,
the techniques in this book will save you time on common tasks. If you’re using Rails every day,
you’ll get some serious productivity gains.

As your productivity rises, you’ll level up as a Rails developer, enabling you to take on more clients,
impress your team by getting that product out the door faster, or finally shed that ‘Junior’ part of
your title.

How to use it

The book is divided into 3 parts.

The first part covers the tools you’re using every day and how to get the most out of them. This
includes the Terminal, Git and the Rails Console.

The second part covers the core aspects of the Rails framework and contains recipes for accomplish-
ing common tasks.

i

Introduction ii

The final part covers techniques that will speed up your testing and debugging workflows.

Pick a chapter that relates to something youâ€™re working on currently and open up to it. Within
that chapter are between 10-12 sections in no particular order. Each section presents a problem and
one or more solutions. Read the problem. If it describes a pain point you have or have had, then read
the solution.

Book updates

As developers, you know nothing stays the same for long. New gems will be released, better ways
of accomplishing repetitive tasks will be discovered. As the world of Rails changes, so too will this
book, and you’ll be the first to know. These updates will be sent to you automatically as soon as
they’re available.

I’ll also be incorporating feedback into future revisions. To submit feedback on a particular section,
click one of the links at the end of the section. You’ll have a chance to provide more feedback after
clicking. Of course, you can also send an email to andrew@EfficientRails.com¹.

With that said, there will be typos. There will be incomplete thoughts and run-on sentences. There
will be more chapters and sections to come. But I’m confident you’ll get a ton of value out of what’s
here.

If you are not embarrassed by the first version of your product, you’ve launched too
late.

– Reid Hoffman

¹mailto:andrew@efficientrails.com

mailto:andrew@efficientrails.com
mailto:andrew@efficientrails.com

Chapter 3: Rails Console
The Rails console is a powerful tool that comes out of the box with Rails. It’s great for trying out
Ruby code, instantiating models and even querying and exploring the database.

I have a Rails console open all day long and spend a non-trivial chunk of time using it each day.

In this chapter, I’ll cover a handful of workflow upgrades that will make time spent working in the
Rails console that much more enjoyable.

1

Chapter 3: Rails Console 2

Setting up the Console

Problem

Rails comes with a pretty lackluster console by default. Sure, it’s a handy tool, but it’s missing a
number of features that would make it much more powerful.

The default Rails Console

Here are some things the Rails console is sorely missing:

1. Syntax highlighting
2. Pretty-printed output
3. A decent REPL (Pry > IRB)

Inspecting an object or collection spits out a chunk of monochromatic goop:

Inspecting a collection with the default Rails Console

I dare you to figure out what’s going on in that output.

Solution: Jazz Fingers

Jazz Fingers aptly describes itself as “an opinionated set of console-related gems and a bit of glue”.
By installing Jazz Fingers, you get the following gems installed with sensible defaults:

• Pry for a powerful shell alternative to IRB.
• Awesome Print for stylish pretty print.
• Hirb for tabular collection output.

Chapter 3: Rails Console 3

• Pry Doc to browse Ruby source, including C, directly from the console.
• Pry Git to teach the console about git. Diffs, blames, and commits on methods and classes, not
just files.

• Pry Remote to connect remotely to a Pry console.
• Pry Coolline for syntax highlighting as you type.

We’ll cover the details of some of these gems in further sections, but at the very least, Jazz Fingers
gets you a Pry-based console by default, some nice syntax highlighting and pretty-printed objects.

Here’s the result:

The Rails Console with Jazz Fingers

Install

To install, simply add the following to your Gemfile:

1 group :development, :test do

2 gem 'jazz_fingers'

3 end

Now, the next time you boot up your console, you’ll notice a much more stylish and practical
interface.

Chapter 3: Rails Console 4

Save Frequently Used Commands

Problem

You probably notice yourself reusing the same commands over and over when you’re in the Rails
console.

For example, I often find my test user in the local database by typing:

1 me = User.find_by(email: 'andrew@example.com')

Or maybe you have some really long model or class names that are unwieldy to type over and over.

And how many times have you typed something this just to have a hash to play with:

1 my_hash = {a: 'b', c: 'd'}

How can we save ourselves a few keystrokes in the Rails console?

Solution

Both Pry and IRB allow us to define config files local to a project. Within these config files, we can
define our own convenience methods to make our lives a little bit better.

Within the root of our project, we’ll add a .pryrc file (or .irbrc file if not using Pry, the syntax is
the same).

your_app/.pryrc

1 class Object

2 def me

3 User.find_by(email: 'andrew@example.com')

4 end

5

6 def slmn

7 SomeLongModelName

8 end

9

10 def an_array

11 (1..5).to_a

12 end

13

14 def a_hash

Chapter 3: Rails Console 5

15 {a: 'b', c: 'd'}

16 end

17 end

Now, every time we boot up a console, we’ll have access to these methods. That means we can call
methods on our test user by just typing me. We also have an alias to make tying out long class names a
thing of the past. We can simply type slmn.where(...) instead of SomeLongModelName.where(...).

Andwhenwe need a dummy array or hash to try something on, we can just type a_hash or an_array.

What convenience methods will you define?

Chapter 3: Rails Console 6

Inspecting ActiveRecord Collections

Problem

When trying to view large collections of ActiveRecord objects, the Rails console prints a tangled,
truncated mess:

Viewing a collection of ActiveRecord objects

This is far from useful.

Solution

Jazz Fingers (see Setting up the Console) bundles together some nice gems to improve our Rails
console experience. One of those is Hirb, a gem that enables tabular output when viewing
ActiveRecord collections in the console.

However, Hirb is not enabled by default. You can toggle Hirb manually when you need it by running
the following commands in the console:

1 Hirb.enable #=> enables tabular output

2 Hirb.disable #=> disables tabular output

After enabling Hirb, we can browse our ActiveRecord collections with tables:

Chapter 3: Rails Console 7

Hirb displays output in a tabular format

Chapter 3: Rails Console 8

Re-Execute Commands

Problem

Working with the Rails Console (or any console for that matter) is an exercise in trial and error. To
get a desired outcome, we’ll try a few commands, tweak them, then go back and try some more.
This usually means executing the same set of commands a few times over.

To save time, most developers are familiar with using the up arrow to walk back through the
command history. This is a great feature of most modern command line interfaces, but what if
you’ve run a large number of commands between the target command and now? You’ll have to
page up through all of those intermediate commands in order to get to the one you want.

Solution: Reverse Search

Most modern command line interface have a lesser-known but highly-useful method of accessing
the command history called reverse search, and the Rails console is no different.

Pressing Ctrl + r in the Rails console triggers reverse search mode. From this mode, we can start
typing any part of the command we’re looking for, and the most recent matching command will be
shown. From here, we have a few options:

• Press Ctrl + r again to see the next most recent matching command
• Press Return to execute the matching command
• Press Ctrl + g to exit reverse search
• Press Esc to exit reverse search, but keep the matching command for editing

Reverse search in the Rails Console

Chapter 3: Rails Console 9

Change Rails Environments

Problem

By default, the Rails Console starts in the development environment. If a RAILS_ENV environment
variable is set, like in production, it will use that environment.

But what if we want to specify a different environment?

Solution #1: Start up Rails Console in a Different Environment

If we want the Rails console to start up in a different environment, we can specify one explicitly.
The easiest way is to add the environment as an argument to the rails console command.

1 $ bundle exec rails console test

Additionally, you can override the RAILS_ENV environment variables.

1 $ RAILS_ENV=test bundle exec rails console

Solution #2: Hot Swap Database Connections

What if you’re got a console session running in the development environment but you want to
switch to the test database? This usually happens to me when I want to debug a FactoryGirl factory
but I don’t want to litter my development database with stray objects.

Sure, we could stop the current session and restart in the target environment, or even open another
session in a new tab. But there’s another way. We can define a helper method in our ∼/.pryrc (or
∼/.irbrc) that can hot swap database connections.

∼/.pryrc

1 class Object

2 def switch_db(env)

3 config = Rails.configuration.database_configuration

4 raise ArgumentError, 'Invalid Environment' unless config[env].present?

5

6 ActiveRecord::Base.establish_connection(config[env])

7 Logger.new(STDOUT).info("Successfully changed to #{env} environment")

8 end

9 end

Chapter 3: Rails Console 10

Now, we can simply enter switch_db 'test' to change over to the test database.

Note that this method will only change the database connection, not the Rails environment.

Chapter 3: Rails Console 11

Ignore Sluggish Output

Problem

When you perform an ActiveRecord query in the Rails console, it prints out the result of the query,
which can take several seconds if the query contains more than a few records. But let’s say you’re
setting up a query and saving it to a variable for additional querying.

ActiveRecord is lazy by default, meaning you can build up a query by chaining additional methods
and the query doesn’t actually get run until the results are needed. But since the Rails console
executes every line and renders its output, ActiveRecord queries lose their lazy properties.

If you’re saving the query to a variable to run additional queries on, you don’t actually need to see
every record printed out. In fact, we’d prefer that the query be lazy and not execute until it’s been
narrowed down.

Solution

We can take advantage of a bit of Ruby trickery to keep ActiveRecord queries lazy and prevent them
from spending time rendering output we don’t care about.

By simply appending ; nil to the end of the query, we split the line in two, letting the first one
execute lazily and returning nil from the second. The Rails console only sees the nil return value
and does not execute the query to display it. Now, that lazy query is saved to a variable and we can
continue operating on it without the distraction of seeing the output.

Comparing the result with and without ‘; nil’

Chapter 3: Rails Console 12

Don’t wear out the Backspace Key

Problem

The Rails console is a command line application, which means when you’re in it, you aren’t able to
edit your input in the ways you’re accustomed to. For example, let’s say you have a command at
the prompt, but you want to delete the whole thing.

If you’re used to Vim, you would press dd to delete the line. If you’re used to Mac shortcuts, you
would press Cmd+Backspace to delete from your cursor to the beginning of the line. Or if you’re a
mouse user (shame! just kidding), you might highlight the line and press backspace.

Well, none of this works in the command line (at least not without some serious customization).

Instead, you’d end up pressing backspace over and over, or holding it down until the line has been
scrubbed out on character at a time. The same goes for moving around the line of text, like if you
wanted to prepend some text (maybe a variable assignment) to the beginning of the line. I doesn’t
work for Vim users, Cmd+Left doesn’t work for Mac users, and clicking still doesn’t work. So we’re
left with holding left until the arrow key falls off.

Solution

Luckily, the Rails console comes with a few keyboard shortcuts designed to alleviate the most painful
of these navigational concerns:

Rails Console Text Navigation Keyboard Shortcuts

Command Result

Ctrl+a Jump to the beginning of the line
Ctrl+e Jump to the end of the line
Ctrl+u Delete from the cursor to the beginning of the line
Esc+f Move forward one word
Esc+b Move backward one word
Esc+d Delete the next word
Esc+Backspace Delete the previous word
Ctrl+w Delete the previous word (to the previous space)

Chapter 3: Rails Console 13

Reloading Models After Changing Them

Problem

Given that I have a Rails console open all day long, I tend to run into the issue where my underlying
models change after the Rails environment has already been booted up in the console. This can
happen naturally as I make changes to a model, or from checking out a different branch.

Because the Rails console has already instantiated all classes in the Rails application, it will fail to
acknowledge the changes to the models. This usually means I’m heading for a restart (did you try
turning it off and on again?).

Solution

The Rails console comes with a conveniencemethod, reload!, whichwill reload any objects defined,
including ActiveRecord models, picking up any changes that have been made to the classes since
they were first instantiated. This saves us from needing to exit and restart the console, a non-trivial
operation for a large Rails application.

Note that if you have any objects saved to a variable, you’ll need to either call reload on them, or
reinstantiate them.

If you find yourself needing to use reload! frequently, it could be a sign that you’re doing
too much testing in the console. In this case, it’s better to use tools like RSpec which are
designed to handle creating and reloading objects before each test. As a bonus, you are also
documenting your test cases, preventing future regression. See the chapter on Testing to
learn how to streamline your testing workflow.

Chapter 3: Rails Console 14

Sandbox

Problem

The Rails console is a great way to try out commands as you’re writing code, but you maybe you
want to do so without disturbing the state of your development environment. Or maybe you want
to boot up the Rails console in production to try and reproduce a bug without affecting real data.

Solution

The Rails console comes with a handy sandbox mode that makes it possible to try out new ideas
without worrying about trashing your development database or disturbing the state of production
data. It does this by wrapping the entire session in a gigantic database transaction that gets rolled
back when the session is over. This way, no changes that you make during the sandbox session
persist after the session is closed.

To start Rails console in sandbox mode, simply run:

1 $ bundle exec rails console --sandbox

Chapter 3: Rails Console 15

Forgot to Save That

Problem

You write out a long query in the console to fetch a specific object, but you forget to assign the result
to a variable. Now, you have to go back and edit the original command, sticking a my_variable =

at the beginning of the line. And just to add insult to injury, if the database query was particularly
expensive, it will need to execute again.

Command history and some handy keyboard shortcuts make this somewhat painless, but it still
takes a few seconds.

Solution

This happens so often that there’s a special variable built into the Rails console for just this purpose.
_ refers to the result of the last command run. As an added bonus, the result is stored in memory,
meaning that the database query doesn’t need to be re-run.

You can reassign the contents of _ to a new variable and carry on like nothing even happened.

1 > my_variable = _

Chapter 3: Rails Console 16

Call Private & Protected Methods

Problem

It’s considered a best practice of Object-Oriented design to expose only the public interface of a class
and encapsulate implementation-specific logic in private or protected methods.

Private methods reduce the surface area of a class, limiting the number of ways other classes can
interact with it. This helps mitigate complexity in an application by discouraging coupling between
objects.

A private method in Ruby

1 class Post < ActiveRecord::Base

2 # ...

3

4 private

5

6 def a_private_method

7 "Hey! Get outta here! This is private business!"

8 end

9 end

But what about when you’re debugging in the console and to really understand what’s going on,
you need to see the response of a private or protected method? If you try calling the method in
question directly, you’ll get an (appropriate) error.

Calling private methods results in an error

Do you comment out the private declaration and restart your test? That’s a pain. And maybe you
are running the console in production because that’s the only place you can reproduce the issue and
you can’t modify the code.

How do you break the rules in this case and execute that private method?

Solution

As is so happens, there’s a ‘backdoor’ way to call private or protected methods on Ruby objects. The
send method effectively bypasses interface declarations, letting us call any method on a class, not
just its public methods.

Chapter 3: Rails Console 17

Send bypasses private and protected designations

While it might raise some eyebrows to learn that methods are never truly private in Ruby, this trick
can be a huge time-saver when inspecting code in the console.

Chapter 3: Rails Console 18

Pasting Multi-line Code into the Console

Problem

Ruby lets us chain methods together, and while you should be careful not to break the Law of
Demeter doing so, ActiveRecord is built on method chaining. When building complex queries, it’s
common to have half a dozen or more methods chained together, causing your code to quickly
exceed the 80 character screen width limit. In cases like this, Ruby style guides recommend putting
each method call on its own line. This provides readability and also allows the order of method calls
to be changed by simply swapping lines.

1 Movie

2 .comedies

3 .english_language

4 .rated(['PG-13', 'R'])

5 .released_after(1990)

6 .score_greater_than(80)

This is all well and good, but what happens when you go to test this query in the Rails console?

Multiline codes gets broken up when pasted in the console

Chapter 3: Rails Console 19

The console assumes each line is an independent line of Ruby and executes after every line break.
This means you would have to edit the text into one line before pasting.

Solution

Assuming you’ve configured your console to use Pry by default, you can use Pry’s edit command
to evaluate multiple lines at once.

To do this:

1. Copy the code you want to paste into the console.
2. Type edit without any arguments in the console. This will open a temporary file in your

configured editor (let’s assume this will be Vim).
3. Paste the code into the temporary file, save and exit (for Vim we’ll use the handy ZZ shortcut

to save and exit at once).
4. Now, Pry will evaluate your entire pasted statement.

Continue Reading
Well this is it, you’ve reached the end of the sample content.

I hope at this point you’ve discovered some new time-saving shortcuts for using the Rails Console
that are going to make you more productive and bring a smile to your face every time you use them.

But this doesn’t have to be the end! This is just one of 10 chapters in Efficient Rails.

Here are some things you’ll learn in the rest of the book:

• Novel solutions to common problems in Rails – from the database to the view and everything
in between

• Time-saving techniques that will make working with tools like Git and the Terminal a breeze
• Best practices for maintaining a solid test suite and a healthy codebase
• Advanced debugging tips (forget about puts!)
• And much more

Here’s what people have been saying:

“Great book – a ton of value here and clear, concise writing”

“Loving the book. So cool, and really appreciate the structure”

“I can’t stop reading it and trying it in my terminal”

Click here to get the full edition

– Andrew @allenan_

20

https://www.efficientrails.com/?utm_source=pdf&utm_medium=ebook&utm_campaign=sample%20chapter
https://twitter.com/allenan_

	Table of Contents
	Introduction
	Chapter 3: Rails Console
	Setting up the Console
	Save Frequently Used Commands
	Inspecting ActiveRecord Collections
	Re-Execute Commands
	Change Rails Environments
	Ignore Sluggish Output
	Don't wear out the Backspace Key
	Reloading Models After Changing Them
	Sandbox
	Forgot to Save That
	Call Private & Protected Methods
	Pasting Multi-line Code into the Console

	Continue Reading

