
EFFECTIVELY 
LEARNING 
TO CODE

ERIC WISE

SKILL FOUNDRY

A Brain-Based Approach



2 Effectively Learning to Code

EFFECTIVELY 
LEARNING 
TO CODE

A Brain-Based Approach

Eric Wise

SKILL FOUNDRY
2024



3 Effectively Learning to Code

© Copyright 2024 
- All rights reserved.

A Brain-Based Approach The content contained within this book may not be reproduced, 
duplicated or transmitted without direct written permission from the 
author or the publisher.

Under no circumstances will any blame or legal responsibility be held 
against the publisher, or author, for any damages, reparation, or monetary 
loss due to the information contained within this book. Either directly or 
indirectly.

Legal Notice:
This book is copyright protected. This book is only for personal use. You 
cannot amend, distribute, sell, use, quote or paraphrase any part, or the 
content within this book, without the consent of the author or publisher.

Disclaimer Notice:
Please note the information contained within this document is for 
educational and entertainment purposes only. All effort has been executed 
to present accurate, up to date, and reliable, complete information. No 
warranties of any kind are declared or implied. Readers acknowledge that 
the author is not engaging in the rendering of legal, financial, medical or 
professional advice. The content within this book has been derived from 
various sources. Please consult a licensed professional before attempting 
any techniques outlined in this book.

By reading this document, the reader agrees that under no circumstances 
is the author responsible for any losses, direct or indirect, which are incurred 
as a result of the use of information contained within this document, 
including, but not limited to, — errors, omissions, or inaccuracies.



4 Effectively Learning to Code

Learning to code is not just about 
mastering a language; it’s about 

rewiring your mind to think in new, 
powerful ways. With the right 

approach, anyone can unlock their 
potential to create, innovate, and 

solve problems through code.



5 Effectively Learning to Code

Content

Chapter 1

Chapter 2

Chapter 3
 
Chapter 4

Chapter 5

Chapter 6

Chapter 7

12

42

72

106

140

164

186

 Understanding the Brain’s Learning Process

Effective Learning Strategies for Coding

Building a Sustainable Learning Habit

Optimizing Your Learning Environment

The Role of Feedback and Mentorship

Creating an Effective Engineering Notebook

Putting It All Together



6 Business Marketing Book 3r Edition

INTRODUCTION



7 Effectively Learning to Code

Imagine you’re seated at your desk, the glow of your computer screen 
casting the only light in the room. It’s late. Outside, the world is quiet, but 
inside, your mind races as you stare at lines of code that might as well 

be hieroglyphics. Your coffee has long gone cold, and frustration mounts 
as yet another error message pops up—it’s your third hour trying to debug 
a single piece of code. This is where many beginners find themselves: at 
the brink of giving up, questioning whether they’re cut out for the world of 
coding at all.

Now consider this: only about one in five people who start learning 
to code believe they reach proficiency. This stark number isn’t just a 
statistic; it’s a reflection of the hurdles that aspiring coders face without 
the right strategies and support systems. This book is your antidote to 
that frustration, designed not only to keep you from becoming part of that 
statistic but to transform the way you approach learning coding, making 
it a more intuitive, engaging, and successful experience.

Every learner begins with excitement and curiosity, and some experience 
quick wins, but it doesn’t take long for the reality of the challenge to set in. 
Starting with “Hello, World” and basic syntax feels manageable at first, a 
puzzle you’re eager to solve. But as the tasks become more complex and 
the errors more cryptic, the initial excitement can quickly turn into a cycle 
of frustration and self-doubt.

Many beginners hit what’s known as a learning plateau, where despite 
consistent efforts, there seems to be little or no improvement. It’s not 
just about wrestling with tough concepts but also dealing with the feeling 
of stagnation, which can deeply demoralize even the most enthusiastic 
learners. This plateau often feels like a thick glass ceiling, hard to break 
through, reflecting back your doubts about ever mastering coding.

Another significant challenge is the isolation that comes with learning 
to code, especially for those who are self-teaching. The solitary nature 
of staring at a computer screen for hours, coupled with the absence of 
immediate feedback or support, can make you feel like you’re lost in a 
labyrinth with no clear directions.

Moreover, balancing the desire to learn coding with other responsibilities—
be it college, a day job, family, or social commitments—adds another 
layer of complexity. The guilt of not coding enough or the stress of not 
spending time with loved ones creates a tug-of-war, pulling at your focus 
and slicing your energy thin across multiple demands.



8 Effectively Learning to Code

This book recognizes these struggles and is crafted with the understanding 
that your path to learning coding is uniquely challenging. It’s filled with 
strategies that address not just the technical skills you need to develop 
but also the emotional and practical aspects of learning effectively 
while maintaining a balanced life. The aim is to equip you with tools 
that transform these hurdles into pivots, making your journey not just 
successful but also enjoyable and fulfilling.

This book is designed to address your unique challenges and provide 
practical, brain-based strategies to enhance your learning and coding 
proficiency.

First, you will explore brain-based learning strategies specifically 
tailored for coding. Understanding how your brain processes and retains 
information will empower you to adopt methods that align with your 
cognitive strengths, making learning more efficient and enjoyable. You’ll 
learn about techniques like active recall, spaced repetition, and the power 
of neuroplasticity, all aimed at boosting your memory and problem-
solving skills.

Next, you’ll learn how to set up an effective learning environment. This 
includes both your physical space and your digital workspace. You will 
discover how to create an ergonomic setup that minimizes distractions 



9 Effectively Learning to Code

and maximizes productivity, as well as organize your digital tools and 
resources to streamline your coding sessions.

The book will also guide you through the importance of feedback and 
mentorship. You’ll understand different types of feedback—positive, 
negative, and constructive—and how each can be leveraged to improve 
your skills. Strategies for seeking and incorporating feedback from peers, 
mentors, or coding communities will be covered in detail. Additionally, 
you will learn how to find the right mentor and build a productive mentor-
mentee relationship that fosters growth and confidence.

By the end of this book, you will have a comprehensive toolkit to tackle 
coding challenges with confidence and resilience. These insights and 
strategies will help you overcome the initial hurdles and set you on a path 
of continuous improvement and lifelong learning. Prepare to transform 
your coding journey into an engaging, efficient, and ultimately successful 
endeavor.

When I started learning to code, there was no such thing as the Internet. 
All I had available as resources were books thicker than my young (age 
10) head. I distinctly remember the frustration of things not working 



10 Effectively Learning to Code

because I was not precise enough in my syntax and giving up on programs 
because they became too complicated. Fast-forward to today, and I still 
experience struggle and frustration whenever I try to learn something 
new. The difference is that today I understand that failure is part of the 
learning process!

Over the years, I began experimenting with different techniques to 
improve my understanding and retention of coding concepts. Later, when 
I started my first teaching business, a coding bootcamp, I began to study 
learning science, started putting names to things I had figured out on my 
own, and expanded my understanding of what effective learning means. 
I learned that active recall helped me remember syntax and functions, 
while spaced repetition reinforced my long-term memory. I also learned 
how my desire to create a distraction-free environment enabled extended 
periods of focus. Additionally, I was able to build positive relationships 



11 Effectively Learning to Code

with peers and mentors who guided me through my coding journey and 
made a significant impact on the pace at which I was able to master new 
skills.

Through research and trial and error, I developed effective approaches 
to learning and teaching coding. I’ve seen firsthand how these methods 
can transform a daunting task into a manageable and even enjoyable 
process. My passion for coding grew as I mastered these strategies, and 
today, I have the confidence that whatever the challenge, I can figure out 
a solution.

I understand the struggles of learning to code because I’ve lived them. My 
experiences have equipped me with practical knowledge and empathy that 
I am eager to share with you. Together, we will navigate the complexities 
of learning to code and unlock your full potential as a programmer.

This book is your companion in the journey to mastering coding. With its 
unique blend of brain-based learning strategies, practical advice, and real-
world examples, it’s designed to address your challenges and guide you 
toward success. Whether you’re just starting or looking to enhance your 
skills, the insights and methods you’ll find here are tailored to meet your 
needs and help you overcome obstacles.

Now is the time to transform your approach to learning coding. Embrace 
the techniques, implement the strategies, and watch your progress soar. 
Imagine the satisfaction of solving complex problems, creating innovative 
projects, and feeling confident in your coding abilities. This book is more 
than just a guide; it’s a catalyst for your growth and success.

Dive in and start your transformation today. Let this book be your trusted 
guide as you navigate your learning journey. The techniques that follow 
will serve you not only in learning to code but also in learning anything else 
that requires deep knowledge. Take the first step towards becoming the 
skilled programmer you aspire to be. With the right approach, persistence, 
and mindset, you can achieve anything you set your mind to.



12 Business Marketing Book 3r Edition

1

Understanding the Brain’s 
Learning Process



13 Effectively Learning to Code

CHAPTER ONE: Understanding the Brain’s

Imagine trying to learn a new programming language only to find 
yourself stuck in a cycle of frustration and forgetfulness. Why does this 
happen? The answer lies in the way our brains process and retain new 

information. This chapter explores the intricacies of the brain’s learning 
process, offering a unique perspective on how understanding brain 
function can transform your approach to coding.

Understanding how the brain works isn’t just for neuroscientists. For 
anyone looking to master coding, it’s crucial to know how to optimize 
learning based on cognitive science principles. From the structure of the 
brain to how it processes information, this chapter lays the foundation for 
a brain-based approach to learning to code. Dive in to discover practical 
strategies that align with your brain’s natural learning processes, setting 
the stage for more effective and enjoyable coding education.

Learning Process



14 Effectively Learning to Code

The brain, a marvel of complexity, orchestrates everything from breathing 
to solving intricate problems. Its complex networks and structures form 
the foundation of all cognitive processes, including learning to code. 
Understanding these structures is crucial for optimizing the way we learn 
and retain new information. This section explores the brain’s anatomy and 
highlights its relevance to acquiring programming skills, offering insights 
into how we can leverage our brain’s capabilities for more effective 
learning.

THE BASICS OF BRAIN 
Structure and Function

Major Components of the Brain
 The brain is divided into several key regions, each with distinct functions that contribute 
to our cognitive abilities. Let’s explore these major components and their roles in our 
daily lives and learning processes.

The cortex, often referred to as the brain’s 
“thinking cap,” is responsible for higher-
order functions such as reasoning, problem-
solving, and decision-making. When you learn 
to code, the cortex is actively engaged in 
understanding syntax, debugging, and creating 
algorithms. Visualizing the cortex as a high-
powered processor can help you understand its 
importance in the coding journey. 

The cerebellum, traditionally associated with 
movement and coordination, also plays a vital 
role in automating repetitive tasks. As you 
practice coding, the cerebellum helps streamline 
routine processes. This makes it easier to recall 

14

and execute coding sequences without conscious effort. This automation is akin to muscle memory 
in athletes, where repeated practice leads to smoother and more efficient performance.



15 Effectively Learning to Code

The limbic system, which includes structures like the hippocampus and 
amygdala, governs emotions and memory. The hippocampus, crucial for 
forming new memories, is activated when learning new programming 
concepts, aiding in the transition from short-term to long-term memory. 
You can think of the hippocampus as a painter, associating new 
information with vivid colors of memories and emotions, making it 
easier to retain and recall. Meanwhile, the amygdala, which processes 
emotions, can influence your motivation and stress levels during learning. 
Understanding the emotional aspect of learning can help manage 
frustration and maintain motivation.

Visual aids can enhance understanding of these components. Imagine 
the cortex as a complex network of highways facilitating high-speed travel 
of thoughts and ideas. The cerebellum acts like an automated factory, 
efficiently handling repetitive tasks, while the limbic system serves as the 
emotional control center, impacting your learning experience.

This is why we use color, photos, 
and various layouts in our course 
materials. 
Your brain is more likely to recall things that are associated with color, emotion, or 
imagery. By incorporating these elements, we aim to engage your limbic system 
and facilitate the formation of stronger memories related to the programming 
concepts you’ll learn.



16 Effectively Learning to Code

Communication between neurons occurs at junctions called synapses. 
When a neuron fires, it sends an electrical signal down its axon to 
the synapse, where neurotransmitters are released. These chemical 
messengers cross the synaptic gap and bind to receptors on the adjacent 
neuron, triggering a new electrical signal. This process is akin to passing 
a baton in a relay race, ensuring the rapid transmission of information.

Visualizing neurons as nodes in a complex network and synapses as the 
connection points enables data flow. This network can be compared to 

Neurons and Synapses: Building Blocks of the Brain
Neurons are the brain’s fundamental units, responsible for processing and transmitting 
information. Imagine a vast network of tiny, highly specialized cells communicating 
at lightning speed. Each neuron connects to thousands of others, forming intricate 
pathways that enable every thought, movement, and sensation. 

By grasping the functions of these brain regions, you can tailor your 
learning strategies to work in harmony with your brain’s natural processes. 
This knowledge not only demystifies the learning experience but also 
empowers you to optimize your approach to mastering programming 
skills.

Think about a recent problem-solving task where your 
cortex might have been particularly active. How did you 
approach the issue, and what strategies did you use to 
resolve it? Consider whether you used methods such 
as breaking down the problem, visualizing solutions, 
or collaborating with others. How did these strategies 
influence your problem-solving effectiveness and your 
overall learning experience?



17 Effectively Learning to Code

a city’s traffic system, where neurons are intersections and synapses 
are traffic lights directing the flow of information. Just as traffic lights 
manage the flow of vehicles, synapses regulate the transmission of 
signals between neurons, ensuring precise and coordinated brain activity.

Neurotransmitters, the chemicals facilitating this communication, play 
crucial roles in various brain functions. For instance, dopamine is involved 
in reward and motivation, while serotonin affects mood and emotion. 
Understanding these chemicals can provide insights into how different 
states of mind can influence learning efficiency.

Reflect on the analogy of neurons and synapses to a 
city’s traffic system. Can you think of examples from 
your coding experiences where this network seemed to 
function exceptionally well or, conversely, where there 
were ‘traffic jams’? How did you address and overcome 
these ‘traffic jams’? What techniques did you employ to 
streamline your learning process and improve the flow 
of information?

Learning and memory formation are deeply tied to synaptic activity. 
Repeated activation of specific synapses strengthens these connections. 
This process, known as synaptic plasticity, is crucial for long-term 
memory and skill acquisition. Think of synaptic plasticity as building a 
well-trodden path in a forest; the more you walk the path, the clearer and 
more accessible it becomes.



18 Effectively Learning to Code

This is why Skill 

Foundry provides 

exercises 

designed with 

synaptic 

plasticity in mind.

Effective learning strategies, such as spaced repetition and active recall, 
leverage synaptic plasticity to enhance retention and understanding. By 
repeatedly exposing yourself to coding concepts and actively engaging 
with the material, you reinforce these neural pathways, making it easier 
to recall and apply knowledge when needed.

Neurons and synapses form the bedrock of our cognitive functions. 
By understanding their roles and optimizing how we engage with new 
information, we can enhance our ability to learn and retain complex skills 
like coding. This foundational knowledge empowers you to approach 
coding with strategies aligned with your brain’s natural processes, making 
your learning journey more effective and enjoyable.

Why does learning something new, like programming, often feel 
overwhelming? The answer lies in understanding how our brains consume 
and process information. Grasping this process can transform your 
learning experience, making it more efficient and less frustrating. This 
section delves into the brain’s mechanisms for taking in new information, 
focusing on how sensory inputs are initially processed and how they lead 
to learning.

How the Brain consumes
and processes Information



19 Effectively Learning to Code

Sensory Inputs and Initial Processing
Every piece of information we encounter starts as sensory input. Our senses—sight, 
hearing, touch, taste, and smell—gather data from the environment and send it to the 
brain for processing. Visual and auditory inputs are primarily involved when learning 
to code. For instance, reading code, looking at a computer screen, and listening to 
instructions are all sensory inputs that the brain must process.

Attention plays a crucial role in this initial stage. The brain receives a constant 
stream of sensory data, but only a fraction is attended to and processed further. 
This selective attention filters out irrelevant information, allowing us to focus on 
what matters most. In coding, paying attention to syntax and error messages 
while ignoring background noise is an example of this selective process.

Once attended to, sensory information is held briefly in sensory memory. This 
form of memory retains information for a few seconds, just long enough to 
decide whether it needs further processing. Think of sensory memory as a 
temporary holding area—like the clipboard on a computer—where data is kept 
momentarily before being either discarded or transferred to working memory.

Working memory, often referred to as short-term memory, is where active 
processing occurs. It holds and manipulates information, making it crucial for 
tasks like problem-solving and learning new concepts. When coding, working 
memory is engaged in tasks such as keeping track of variables, following logic 
flows, and debugging errors.

Attention and sensory memory work together to set the stage for deeper 
processing. For example, when you first encounter a new programming concept, 
your sensory memory captures the initial input, and attention determines 
whether this input is significant enough to move into working memory for 
further exploration. Your attention system notices and flags patterns in code, 
such as recurring syntax structures or common functions, highlighting them 
for deeper analysis.

Understanding this initial stage of information processing can help you develop 
strategies to optimize your learning. Techniques like minimizing distractions, 
using visual aids, and breaking down complex information into manageable 
chunks can enhance your ability to focus and retain new coding skills. By 
aligning your study habits with how your brain naturally processes information, 
you can make learning to code a more intuitive and efficient experience.



20 Effectively Learning to Code

Imagine you’re debugging a piece of code. Your sensory memory captures 
the visual input of the error message on your screen. Your attention 
highlights the relevant lines of code and the error message, transferring 
this data into your working memory. Here, you actively compare the 
error message with the code, recalling relevant syntax rules and possible 
solutions.

Working memory acts like a mental workspace. It can hold a limited 
amount of information—typically around seven items—for a brief duration. 
This constraint makes it crucial to optimize how we use this cognitive 
resource, especially when dealing with the intricate details of coding.

Information in working memory is processed through two main 
strategies: rehearsal and chunking. Rehearsal involves mentally repeating 
information to keep it active. For instance, if you’re trying to remember a 
new function’s syntax, you might mentally repeat the function’s structure 
and parameters. This repetition helps maintain the information in working 

Working Memory and Information Encoding
Once sensory information passes the initial filtering stage, it enters working memory, 
where active processing and encoding occur. Working memory is essential for holding 
and manipulating information over short periods, enabling complex cognitive tasks 
such as problem-solving and learning new skills.



21 Effectively Learning to Code

memory until you can encode it into long-term 
memory.

Chunking, on the other hand, involves grouping 
related pieces of information into single units or 
“chunks.” In coding, this might mean grouping 
lines of code that perform a related function or 
combining multiple steps of a problem-solving 
process into a cohesive strategy. By chunking, 
you reduce the cognitive load on working 
memory, making it easier to manage and 
process complex information.

A common issue that beginners 
have when learning to code is 
trying to do too much at one 
time! 
Being disciplined about breaking problems into small chunks and 
testing them is a trait of effective coders.

Encoding is the process of transforming 
information from working memory into a 
format suitable for long-term storage. Effective 
encoding strategies are crucial for learning 
and retaining new coding skills. One effective 
method is to create meaningful associations 
between new information and existing 
knowledge. For example, linking a new coding 
concept to a real-world analogy or previously 
learned programming principles can facilitate 
better understanding and recall.

Another powerful encoding technique is 
elaboration, which involves adding details 
or explanations to new information. When 
learning a new programming function, you 
might not only memorize its syntax but also 



22 Effectively Learning to Code

explore examples of its use and understand its purpose within different 
contexts. This deep processing enhances the likelihood of transferring 
the information to long-term memory.

By understanding how working memory functions and employing 
effective encoding strategies, you can enhance your ability to learn and 
retain complex coding concepts. This knowledge empowers you to 
approach coding tasks with confidence, knowing that you are leveraging 
your brain’s natural processes to optimize your learning experience.



23 Effectively Learning to Code

During consolidation, the brain reorganizes and integrates new information 
with existing knowledge. This process primarily occurs during periods 
of rest and sleep. Sleep, in particular, plays a crucial role in memory 
consolidation. Studies have shown that both REM and non-REM sleep 
stages contribute to the strengthening and stabilization of memories. 
Ensuring adequate sleep is a practical strategy to enhance long-term 
memory consolidation.

Long-Term Memory and Consolidation
Information in working memory needs to be consolidated into long-term memory for 
lasting retention. Long-term memory serves as the repository for all the knowledge 
and skills you’ve acquired over time, including coding concepts and techniques. 
Consolidation is the process that stabilizes a memory trace after the initial acquisition, 
making it durable and resistant to interference.

Spaced repetition is a highly effective technique for strengthening long-
term memory. This method involves reviewing information at increasing 
intervals over time. When learning to code, spaced repetition can be 
applied by periodically revisiting coding concepts and exercises. For 
instance, after initially learning a new programming function, you might 
review it the next day, then a few days later, and again after a week. This 
spaced review schedule takes advantage of the brain’s natural forgetting 
curve, reinforcing the memory each time it’s revisited and preventing 
decay.

The initial excitement about coding causes 
some learners to overload their schedules 
and not get enough sleep, which makes 
retention more difficult!



24 Effectively Learning to Code

Practical application is another powerful strategy for consolidating coding 
knowledge. Actively using new information helps solidify it in long-term 
memory. For example, after learning a new algorithm, implementing it in 
different coding projects or solving related problems can reinforce your 
understanding and retention. Applying concepts in varied contexts not 
only deepens comprehension but also creates multiple retrieval pathways, 
making the information more accessible when needed.

Elaborative rehearsal, which involves explaining and expanding on new 
information, also aids in memory consolidation. Teaching a concept to 
someone else, writing about it in a blog post, or discussing it in a study 
group forces you to process the information more deeply. This active 
engagement promotes stronger neural connections and better long-term 
retention.

This is another concept we deliberately 
incorporate into our courses at Skill 
Foundry, and it explains why hands-
on practice is critical to learning and 
retention.



25 Effectively Learning to Code

Interleaved practice involves mixing different 
information modalities within a learning 
experience and can improve engagement, 
learning, and retention. Instead of focusing 
on a single format, such as videos, aim to 
incorporate a variety of materials like written 
lessons, quizzes, and hands-on practice. This 
approach keeps the brain engaged and helps 
learners maintain focus. Additionally, capstone 
projects that combine multiple coding concepts 
and enhance your ability to recall and apply 
information flexibly in real-world scenarios.

Visualization and mnemonics can also 
support long-term memory. Creating mental 
images or associating coding concepts with 
vivid, memorable cues can make abstract 
information more concrete and easier to recall. 
For instance, visualizing the structure of an 
algorithm as a flowchart or using mnemonic 
devices to remember syntax rules can facilitate 
deeper encoding and recall.

This is why learners greatly 
benefit from participating in a 
supportive community. 

In math class, for example, 
I was taught the mnemonic 
“Please Excuse My Dear Aunt 
Sally” to remember the order 
of operations. () ^ * / + -



26 Effectively Learning to Code

Employing these strategies can more effectively consolidate coding 
knowledge into long-term memory. Understanding and leveraging the 
mechanisms of memory consolidation will enable you to build a robust 
and lasting foundation in programming, ensuring that the skills and 
concepts you learn are retained and readily accessible for future use.

Imagine a pianist who starts with simple scales and, over years of 
practice, masters complex concertos. This transformation is possible 
because of neuroplasticity—the brain’s remarkable ability to reorganize 
itself by forming new neural connections. Neuroplasticity allows the brain 
to adapt to new experiences, learn new skills, and recover from injuries. 
It’s the foundation of our ability to learn and improve, making it a crucial 
concept for anyone aiming to master coding. This section examines 
neuroplasticity, exploring how understanding and harnessing it can 
dramatically enhance your learning efficiency and coding proficiency.

The role of
Neuroplasticity in Learning

What is Neuroplasticity?
Neuroplasticity refers to the brain’s ability to change and adapt in response to new 
experiences, learning, and injury. This flexibility allows the brain to reorganize itself 
by forming new neural connections. Neuroplasticity is the foundation of all learning 
processes, enabling us to acquire new skills, recover from setbacks, and continuously 
improve our abilities.

Recent research has shown that neuroplasticity is not limited to childhood 
but continues throughout life. This means that even as adults, our brains 
are capable of significant change and adaptation. For example, a study 
published in the journal Nature demonstrated that adults learning a new 
language showed increased gray matter density in areas of the brain 
associated with language processing. This finding underscores the brain’s 
capacity to rewire itself in response to new learning demands, including 
coding.



27 Effectively Learning to Code

When learning to code, neuroplasticity plays a crucial role in skill 
acquisition. Each time you practice writing code, solve a problem, or 
debug an error, your brain strengthens the neural pathways associated 
with those activities. Repeated practice leads to more efficient neural 
networks, making coding tasks easier and more intuitive over time.

One practical example of neuroplasticity in coding is the transition 
from novice to expert. Beginners often struggle with basic syntax and 
logic, relying heavily on reference materials and facing frequent errors. 
However, with consistent practice, the brain adapts, and these once-
challenging tasks become more automatic. Expert coders can write 
complex programs with less effort, thanks to well-established neural 
pathways formed through years of experience. Experts still consult the 
documentation and look things up, but because of their experience with 
patterns, they are much more efficient at crafting solutions due to a 
shorter research phase while coding.

To harness the power of neuroplasticity, incorporate strategies that 
promote brain adaptation and growth. Engage in deliberate practice, 

A common question on social media is, “Am I 
too old to learn to code?”

Science says no!

Reflect on a time when you learned a new skill or 
concept and noticed significant improvement over time. 
How did repeated practice and exposure contribute to 
your understanding and proficiency? Consider how the 
concept of neuroplasticity played a role in your learning 
process. What strategies did you use to reinforce your 
learning, and how can you apply these insights to future 
learning endeavors?



28 Effectively Learning to Code

focusing on challenging coding problems that push 
your limits. This type of practice stimulates the 
brain to form new connections and refine existing 
ones. Additionally, vary your learning activities to 
expose your brain to different coding concepts and 
techniques, enhancing overall proficiency.

Another effective strategy is to use feedback to 
guide your learning. Immediate feedback on coding 
errors helps correct mistakes and reinforces 
correct patterns, accelerating the learning process. 
Collaborating with peers, participating in coding 
communities, and seeking mentorship can also 
provide valuable feedback and new perspectives, 
further stimulating neuroplasticity.

In our courses, we spend a lot of time 
deliberately creating exercises that 
push learners out of their comfort 
zones while staying within the 
bounds of the learning objectives.

This is very difficult to do when self-
learning.

Understanding neuroplasticity empowers you to 
optimize your coding practice. By consistently 
challenging yourself, seeking feedback, and 
diversifying your learning activities, you can 
leverage your brain’s natural ability to adapt 
and grow, achieving greater proficiency and 
confidence in your coding skills.



Harnessing the power of neuroplasticity can significantly enhance the learning process, 
particularly when acquiring complex skills like coding. To fully benefit from the brain’s adaptive 
capabilities, learners should employ varied practice, embrace challenges, and actively engage 
in error correction. These techniques improve coding skills and foster a more flexible and 
resilient brain.

Enhancing Neuroplasticity Through Learning Practices
Information in working memory needs to be consolidated into long-term memory for 
lasting retention. Long-term memory serves as the repository for all the knowledge 
and skills you’ve acquired over time, including coding concepts and techniques. 
Consolidation is the process that stabilizes a memory trace after the initial acquisition, 
making it durable and resistant to interference.

Incorporating variety into learning sessions is crucial for promoting neuroplasticity. Instead of 
focusing on a single aspect of coding, learners should practice different types of learning tasks. This 
approach, known as interleaving, helps the brain to form connections between different concepts 
and enhances problem-solving abilities. For example, a learner might read and take notes on a 
lesson, then code along with a video, then switch to a practice problem, and finish their session 
with active recall via flashcards. This varied approach prevents the mental stagnation associated 
with repetitive practice and encourages the brain to remain adaptable.

Stepping outside of one’s comfort zone and tackling challenging coding problems is another 
effective way to stimulate neuroplasticity. Challenges force the brain to work harder, which 
strengthens neural connections and promotes new growth. Learners should seek out tasks that 
push the boundaries of their current abilities. Engaging with more complex projects can provide the 
necessary stimulus for neuroplastic change.

Varied Modalities

To effectively implement deep learning:

Embracing Challenges

Learning from mistakes is a powerful driver of brain development. When learners correct their 
coding errors, they engage in a critical reflection process that enhances their understanding and 
retention of the material. This practice should be an active process where learners identify the 
error, understand why it occurred, and revise their approach to avoid similar mistakes in the future. 
Tools like debuggers or peer reviews can be invaluable in this process, as they provide immediate 
feedback that is essential for making swift corrections.

Error Correction



30 Effectively Learning to Code

Neuroplasticity is not just a theoretical concept; it’s a visible, measurable 
phenomenon in the brain, especially evident in individuals who engage in 
complex learning activities like coding. In my own experience delivering 
training programs, I have observed the before and after results of cognitive 
and logic tests from my learners.

My Experience

The Rabbi

Many people who think that they 
are “too dumb” to learn to code 
just haven’t exercised the meta-
skills that programmers need. 
Embracing a growth mindset and using knowledge of neuroplasticity profoundly 
impacts motivation, especially for deep-learning subjects like coding.

One learner that always comes to mind when I think about neuroplasticity 
was an applicant to my coding bootcamp program back in 2014. The 
learner, a Rabbi who wanted to change careers to software development, 
was an educated person but someone who did not exercise the cognitive 
skills of a software developer and, as such, scored poorly on our 
admissions/aptitude test.

It was not uncommon for applicants to fail this test. In fact, about 80% 
of people did. We would encourage those applicants to spend 6 months 
practicing logic and other programming meta-skills and then reapply. 
Unsurprisingly, few people ever did this.

The Rabbi took the feedback to heart, spent time and effort practicing 
programming meta-skills, returned six months later, scored 30% higher 
on the admissions tests, performed well in the cohort, and landed a 
developer job at a local payment processing company!



31 Effectively Learning to Code

Why does mastering complex coding skills often feel like an uphill battle? 
Deep learning tasks, such as advanced programming, stretch the brain’s 
capacity to process and retain vast amounts of information. This challenge 
arises from the need to integrate multiple cognitive processes, maintain 
focus over extended periods, and continuously build upon existing 
knowledge. Understanding the brain’s limitations can shed light on why 
deep learning is demanding and help devise strategies to overcome these 
obstacles.

Why Deep Learning is 
Challenging for the Brain



32 Effectively Learning to Code

Cognitive Load Theory
Cognitive Load Theory (CLT) explains how the brain handles information processing 
and why managing cognitive load is critical for effective learning. The theory identifies 
three types of cognitive load: intrinsic, extraneous, and germane. Each type affects how 
we process information and learn new skills.

32

The inherent difficulty associated with a specific task. In coding, 
this might involve understanding complex algorithms or grasping 
abstract programming concepts. The more complex the material, 
the higher the intrinsic load, making it harder to learn.

Intrinsic Load

Comes from how information is presented and can hinder learning if not managed well. 
For instance, poorly structured tutorials, confusing syntax, or cluttered code examples 
can increase extraneous load, making it difficult to focus on the essential elements of the 
task. Reducing extraneous load involves simplifying the learning environment, using clear 
and concise instructions, and avoiding unnecessary distractions.

Extraneous Load

Germane Load
Refers to the cognitive effort required to process information and 
construct new knowledge. This type of load is beneficial as it relates 
to the mental work involved in understanding and learning. In 
coding, germane load is engaged when actively solving problems, 
debugging, and applying new concepts in different contexts.



33 Effectively Learning to Code

I encounter many courses that do 
not have enough germane load. 
Going through content without 
reinforcement via exercises is not 
an effective way to learn!

•	 Break Down Complex Tasks: Divide complex coding tasks into smaller, 
manageable parts. Focus on mastering one component before moving on to 
the next. This approach reduces intrinsic load and makes the learning process 
less overwhelming.

•	 Optimize Learning Materials: Use well-organized, clear, and concise learning 
resources. Avoid extraneous load by selecting tutorials and guides that present 
information logically and straightforwardly.

•	 Active Engagement: Engage actively with the material through practice and 
application. Solving coding problems, working on projects, and participating 
in coding challenges can enhance germane load, promoting deeper 
understanding and retention.

•	 Incremental Learning: Gradually increase the complexity of tasks. Start with 
simple exercises and progressively tackle more challenging problems as your 
skills develop. This method aligns with the brain’s capacity to adapt and build 
on prior knowledge.

•	 Use Visual Aids: Incorporate diagrams, flowcharts, and other visual tools to 
represent complex coding structures. Visual aids can simplify information 
processing and reduce cognitive load.

Here are some practical strategies to manage cognitive load when learning 
to code:

Balancing these cognitive loads is key to effective learning. 



34 Effectively Learning to Code

Deep learning in coding involves immersing yourself in specific languages, 
frameworks, or algorithms until you achieve a level of mastery. This 
approach contrasts with a broad but shallow overview, where you might 
understand basic syntax across multiple languages but struggle to solve 
complex problems or develop robust applications.

Concentrating on fewer topics allows you to explore nuances and 
develop problem-solving strategies that are not apparent at a superficial 
level. For example, a common mistake beginners make in front-end web 
development is only doing a superficial overview of HTML, CSS, and 
JavaScript and then jumping into frameworks like React. This has an 
impact of making the learner a React developer, not a web developer, with 
the capability to learn multiple frameworks. Diving deep into JavaScript 
and working through advanced topics like closures, asynchronous 
programming, and the prototype chain makes it easier to be “framework 
agnostic” and more easily adapt to changes in the market.

The benefits of deep learning are supported by numerous cognitive 
theories, including the expertise reversal effect, which suggests that as 
learners gain knowledge, they benefit more from tasks involving problem-
solving and critical thinking rather than additional basic instruction. By 
focusing on depth, you’re not just learning to code; you’re learning to think 
like a programmer.

The Importance of Depth Over Breadth
Have you ever found yourself overwhelmed by the vast number of programming 
concepts you feel you need to master? This common scenario highlights why depth of 
knowledge in specific topics is far more beneficial than a superficial understanding of 
many topics. When beginning, focusing deeply on core areas enhances your proficiency 
and builds a strong foundation for learning more complex ideas in the future.

Understanding and applying Cognitive Load Theory can create a more 
effective and efficient learning environment. Managing cognitive load 
not only makes learning to code more accessible but also enhances your 
ability to retain and apply new knowledge, paving the way for mastering 
advanced programming skills.



35 Effectively Learning to Code

Identify key fundamentals and skills that 
are most relevant to your goals. Dedicate 
your efforts to mastering these areas before 
expanding your focus.

Engage in deliberate practice that challenges 
you within your selected areas. Include 
projects that push your boundaries and 
require you to apply what you’ve learned in 
new and complex ways.

Regular feedback is crucial in deep learning. 
Code reviews, mentoring sessions, and 
peer discussions can provide insights into 
your understanding and help refine your 
approach.

Reflection helps solidify learning and improve 
problem-solving skills. After completing a 
project or learning a new concept, take the 
time to reflect on what you’ve learned and 
how you can apply it going forward. Blogging 
or journaling is a great way to do this.

By valuing depth over breadth, you not only become an expert in specific areas but also develop 
a learning approach that can be applied to any new programming languages or technologies you 
choose to pursue in the future. This focused strategy enhances your capabilities and prepares you 
for more advanced challenges, making you a more competent and sought-after programmer in the 
tech industry.

Select Core Areas

To effectively implement deep learning:

Seek Feedback Reflect Continuously

Practice Deliberately

Many beginners change languages 
or frameworks when faced with 
stagnation or frustration, which is 
the opposite of what they should be 
doing!



36 Effectively Learning to Code

Strategies for Deep Learning in Coding
Neuroplasticity refers to the brain’s ability to change and adapt in response to new 
experiences, learning, and injury. This flexibility allows the brain to reorganize itself 
by forming new neural connections. Neuroplasticity is the foundation of all learning 
processes, enabling us to acquire new skills, recover from setbacks, and continuously 
improve our abilities.

Mastering complex coding skills requires more than just understanding 
basic concepts; it demands engaging with the material on a deeper 
level. Several strategies can be employed to tackle the intricacies of 
programming that align with how our brains best learn and retain 
information. Here, we explore practical techniques such as interleaving, 
elaborative interrogation, and reflective learning, demonstrating how they 
can be directly applied to enhance your coding proficiency.

Interleaving is a way to help the brain stay focused on the learning 
outcomes and resist going on “autopilot” or switching from active to 
passive learning. By consuming information and practicing skills with 
variety, learners make better connections between different concepts, 
improving problem-solving skills and adaptability. 

Elaborative interrogation is a method that enhances understanding by 
asking deep, explanatory questions about the material. When learning 
a new programming concept, don’t just accept the information at face 
value; instead, ask yourself why the code works the way it does or how it 

Think about a time when you focused deeply on a single 
concept rather than skimming many. How did this 
approach benefit your understanding and application of 
the concept? Reflect on the specific strategies you used 
to dive deep into the topic, such as extended practice, 
seeking feedback, or applying the concept in various 
contexts. How did these strategies enhance your mastery 
of the concept and your confidence in using it?



37 Effectively Learning to Code

Reflective learning encourages you to think back over what you have 
learned to consolidate knowledge and gain insights. After completing a 
coding challenge, spend some time reflecting on what strategies worked, 
what didn’t, and how you might approach similar problems differently in the 
future. Reflective learning can be structured through maintaining a coding 
diary or journal where you record your daily experiences, breakthroughs, 
and obstacles. This practice solidifies what you’ve learned and prepares 
you for future coding tasks by identifying effective strategies and areas 
needing improvement.

Implementing these strategies into your learning routine can transform 
your approach to coding education. By interleaving different modalities, 
asking elaborative questions, and reflecting on your learning experiences, 
you create a robust framework for deep understanding. This dynamic 
approach makes you a more versatile programmer and enhances your 
ability to tackle complex problems with confidence and creativity.

In my teaching experience, the best students 
play with the provided sample code, 
modifying, breaking, fixing, and reshaping it.
Learners who struggle rarely interact with the sample code.

relates to what you already know. For example, when studying a sorting 
algorithm, ask why one type is more efficient than another under certain 
conditions or how the algorithm’s logic can be modified to optimize 
performance. This strategy deepens your understanding and aids in 
memory retention by linking new knowledge to existing frameworks.



END OF CHAPTER
REVIEW

Understanding Brain Structure and Function

Cortex

Responsible for higher-order functions such as reasoning and problem-
solving.

Imagine the cortex as a network of highways.

Cerebellum
Automates repetitive tasks.

See the cerebellum as an automated factory.

Limbic System
Governs emotions and memory.

Think of the limbic system as the emotional control center.

Strengthen Synaptic Connections
Use spaced repetition and active recall to enhance retention.
Engage with coding exercises designed to reinforce neural pathways.



39 Effectively Learning to Code

Optimize Sensory Input Manage Working Memory Effective Encoding

Minimize distractions.

 Use visual aids to enhance 
focus and memory.

Practice chunking to reduce 
cognitive load.

 Use rehearsal to keep 
information active in working 

memory.

Create meaningful 
associations between new 

and existing knowledge.

Elaborate on new 
information by exploring 
examples and contexts.

Information Processing

Optimize Sensory Input Manage Working Memory Effective Encoding

Minimize distractions.

 Use visual aids to enhance 
focus and memory.

Practice chunking to reduce 
cognitive load.

 Use rehearsal to keep 
information active in working 

memory.

Create meaningful 
associations between new 

and existing knowledge.

 Elaborate on new 
information by exploring 
examples and contexts.

Long-Term Memory Consolidation

Enhance Memory Retention Practical Application
Ensure adequate sleep to support memory 

consolidation.

Use spaced repetition to review information 
over increasing intervals.

Implement new algorithms in different 
projects.

Use elaborative rehearsal by teaching 
concepts to others or writing about them.

Managing Cognitive Load



Optimize Sensory Input Manage Working Memory Effective Encoding

Minimize distractions.

 Use visual aids to enhance 
focus and memory.

Practice chunking to reduce 
cognitive load.

 Use rehearsal to keep 
information active in working 

memory.

Create meaningful 
associations between new 

and existing knowledge.

Elaborate on new 
information by exploring 
examples and contexts.

Information Processing

Optimize Sensory Input Manage Working Memory Effective Encoding

Minimize distractions.

 Use visual aids to enhance 
focus and memory.

Practice chunking to reduce 
cognitive load.

 Use rehearsal to keep 
information active in working 

memory.

Create meaningful 
associations between new 

and existing knowledge.

 Elaborate on new 
information by exploring 
examples and contexts.

Long-Term Memory Consolidation

Enhance Memory Retention Practical Application
Ensure adequate sleep to support memory 

consolidation.

Use spaced repetition to review information 
over increasing intervals.

Implement new algorithms in different 
projects.

Use elaborative rehearsal by teaching 
concepts to others or writing about them.

Managing Cognitive Load

Balance Cognitive Loads Incremental Learning
Break down complex tasks into smaller parts.

 Use clear and concise learning resources to 
reduce extraneous load.

 Engage actively with the material to enhance 
germane load.

Gradually increase task complexity as your 
skills develop.

Use visual aids like diagrams and flowcharts 
to simplify information processing.

Strategies for Deep Learning

Focus on Depth Over Breadth Avoid Common Pitfalls
Immerse yourself in specific languages or 

algorithms until mastery.

Use deliberate practice, seek feedback, and 
reflect continuously on your learning.

Do not switch languages or frameworks when 
facing frustration. Stick with the 

fundamentals.

Now that you have a solid understanding 
of how your brain processes and 
retains information, it’s time to put that 
knowledge into action with a hands-on 
project. This exercise is designed to help 
you delve deeper into a coding concept or 
technology you are familiar with only at a 
superficial level. Follow these instructions 
to maximize your learning and apply the 
principles covered in this chapter.



41 Effectively Learning to Code




