

Requirements:
This is a coding book for programmers. At least one year of experience as a
developer with drupal or a related framework is required. You must be able to install
drupal on a local server.

Description
This course will teach you advanced concepts of drupal 9, Object-oriented PHP and
symphony components. After the course, you’ll be able to build robust and scalable
software solutions of many kinds.

In this hands-on course a drupal expert with 10 years experience with the software
will give you a deep-dive in the power that drupal core has to offer.

Advanced topics like custom entities, entity forms, access control, events, caching,
workflows and many more are discussed while building an actual software.

With +2400 lines of custom code, the author offers you powerful and ready-to-use
snippets for your next drupal projects.

Fun fact: you’ll not even be using nodes at all but only custom entities.

Let’s take a deep dive!

1

[THIS IS A FREE SAMPLE FROM CHAPTER 3: Custom entities 101,
CRUD operations, workflow states and access]

3.2 Building our first content entity

👉 This section teaches you how to define a custom entity and create it in the
database. At the end you will be able to create your own custom entity with
custom tailored base fields and revisions support.

💻 If you follow this course ‘by doing’:
After you installed the recommended drupal 9 set-up like described in the
composer chapter, and added the custom configuration form in a custom
module (offer), install the following theme:

- drupal/gin
And the following modules:

- drupal/gin_admin_toolbar
- drupal/devel

Make gin the default theme (also the administration theme) via
admin/settings/appearance. Also in the theme settings, set the toolbar as
“horizontal, modern toolbar” and disable the “Users can override Gin settings”.

The first question that gets raised is why would we use custom content entities. Isn’t
the core node entity with it’s subtypes (bundles) enough?

If we’d have a simple website with just some blog posts and a portfolio, I’d always
recommend to use the core Node content entity. It is the de facto out-of-the-box
solution for this.

2

https://www.drupal.org/docs/administering-a-drupal-site/node-revisions

But our platform aims to have full control over all pages that create, edit and delete
content, as well as the overviews. Custom entities give us more power to define our
own access functions.

We build a platform that allows users to create offers as well as to make a bid on
offers. It would not make sense to use Nodes with bundles like this:

Entity Node
Bundle Offer
Bundle Bid

I’d have to add numerous access checks to make sure users only get access to their
own Offer entities and only their own Bids because they are from the same Entity.
Drupal’s node behaviour wasn’t really meant to separate access between these kind
of node types as well. No, instead we do:

Entity Offer
Entity Bid
...

Proper modelling of our data is crucial. The Entity API provides us all the tools
for doing this.

We start with creating a content entity ‘Offer’.

A file named Offer.php file inside modules/custom/offer/src/Entity will define our
entity. Copy this code to define the entity:

<?php

/**

* @file

* Contains \Drupal\offer\Entity\Offer.

*/

namespace Drupal\offer\Entity;

use Drupal\Core\Entity\EditorialContentEntityBase;

use Drupal\Core\Field\BaseFieldDefinition;

use Drupal\Core\Entity\EntityTypeInterface;

use Drupal\Core\Entity\ContentEntityInterface;

use Drupal\Core\Entity\EntityStorageInterface;

3

/**

* Defines the offer entity.

*

* @ingroup offer

*

* @ContentEntityType(

* id = "offer",

* label = @Translation("Offer"),

* base_table = "offer",

* data_table = "offer_field_data",

* revision_table = "offer_revision",

* revision_data_table = "offer_field_revision",

* entity_keys = {

* "id" = "id",

* "uuid" = "uuid",

* "label" = "title",

* "revision" = "vid",

* "status" = "status",

* "published" = "status",

* "uid" = "uid",

* "owner" = "uid",

* },

* revision_metadata_keys = {

* "revision_user" = "revision_uid",

* "revision_created" = "revision_timestamp",

* "revision_log_message" = "revision_log"

* },

*)

*/

class Offer extends EditorialContentEntityBase {

public static function baseFieldDefinitions(EntityTypeInterface

$entity_type) {

$fields = parent::baseFieldDefinitions($entity_type); // provides id

and uuid fields

$fields['user_id'] = BaseFieldDefinition::create('entity_reference')

->setLabel(t('User'))

->setDescription(t('The user that created the offer.'))

->setSetting('target_type', 'user')

->setSetting('handler', 'default')

->setDisplayOptions('view', [

'label' => 'hidden',

4

'type' => 'author',

'weight' => 0,

])

->setDisplayOptions('form', [

'type' => 'entity_reference_autocomplete',

'weight' => 5,

'settings' => [

'match_operator' => 'CONTAINS',

'size' => '60',

'autocomplete_type' => 'tags',

'placeholder' => '',

],

])

->setDisplayConfigurable('form', TRUE)

->setDisplayConfigurable('view', TRUE);

$fields['title'] = BaseFieldDefinition::create('string')

->setLabel(t('Title'))

->setDescription(t('The title of the offer'))

->setSettings([

'max_length' => 150,

'text_processing' => 0,

])

->setDefaultValue('')

->setDisplayOptions('view', [

'label' => 'above',

'type' => 'string',

'weight' => -4,

])

->setDisplayOptions('form', [

'type' => 'string_textfield',

'weight' => -4,

])

->setDisplayConfigurable('form', TRUE)

->setDisplayConfigurable('view', TRUE);

$fields['message'] = BaseFieldDefinition::create('string_long')

->setLabel(t('Message'))

->setRequired(TRUE)

->setDisplayOptions('form', [

'type' => 'string_textarea',

'weight' => 4,

'settings' => [

'rows' => 12,

],

5

])

->setDisplayConfigurable('form', TRUE)

->setDisplayOptions('view', [

'type' => 'string',

'weight' => 0,

'label' => 'above',

])

->setDisplayConfigurable('view', TRUE);

$fields['status'] = BaseFieldDefinition::create('boolean')

->setLabel(t('Publishing status'))

->setDescription(t('A boolean indicating whether the Offer entity

is published.'))

->setDefaultValue(TRUE);

$fields['created'] = BaseFieldDefinition::create('created')

->setLabel(t('Created'))

->setDescription(t('The time that the entity was created.'));

$fields['changed'] = BaseFieldDefinition::create('changed')

->setLabel(t('Changed'))

->setDescription(t('The time that the entity was last edited.'));

return $fields;

}

}

After clearing cache our entity is created and two extra database tables were added:

6

Now let’s proceed with the CRUD operations. For every offer, we’d like to have an add,
edit and delete form. But first, we secure the access.

Securing access of our entities

👉 In this important section you will be taught how entity access works. At the end
of the section you will be able to create custom permissions for users and
translate it towards your entity. In the use case of this project it means that
authors can only see/edit/delete their own created entities.

There is something worth noticing about our entities. While the author of the entity
will be the owner (thanks to the PreCreate() function in our Offer entity) he has no
exclusive access towards viewing, or even editing and deleting the entity.

While drupal will typically provide separate “view”, “create”, “edit” and “delete” options
we will (for now) make this 1 single permission: administer own offers.

7

But we did not specify which access this means towards the entity itself. Let us
make sure that everyone with this access can create offers and more importantly
that they can only edit and delete their own offers and not those of others.

First, add a file modules/custom/offer/offer.permissions.yml with the following:

administer own offers:

title: 'Create/edit/delete own offers'

Second, add the following methods to the custom/offer/src/Offer class at the
bottom, these are two methods that are used quite a lot. The first one is to make
sure the user id gets stored as the author of the entity, The other ones are typical
methods to quickly get info about the author of an entity:

/**

* {@inheritdoc}

*

* Makes the current user the owner of the entity

*/

public static function preCreate(EntityStorageInterface

$storage_controller, array &$values) {

parent::preCreate($storage_controller, $values);

$values += array(

'user_id' => \Drupal::currentUser()->id(),

);

}

/**

* {@inheritdoc}

*/

public function getOwner() {

return $this->get('user_id')->entity;

}

/**

* {@inheritdoc}

*/

public function getOwnerId() {

return $this->get('user_id')->target_id;

}

8

In the end we want full CRUD access for our authenticated users. When accessing an
entity in drupal, there are 4 operations that can be requested:

● view
● update
● edit
● delete

Add the following to the annotations of your entity inside the
modules/custom/offer/src/Entity/Offer.php file:

* handlers = {

* "access" = "Drupal\offer\OfferAccessControlHandler",

* }

This file will handle access towards our entity. Add a file called
OfferAccessControlHandler.php inside modules/custom/offer/src:

<?php

namespace Drupal\offer;

use Drupal\Core\Access\AccessResult;

use Drupal\Core\Entity\EntityAccessControlHandler;

use Drupal\Core\Entity\EntityInterface;

use Drupal\Core\Session\AccountInterface;

/**

* Access controller for the offer entity. Controls create/edit/delete

access for entity and fields.

*

* @see \Drupal\offer\Entity\Offer.

*/

class OfferAccessControlHandler extends EntityAccessControlHandler {

/**

* {@inheritdoc}

*

* Link the activities to the permissions. checkAccess is called with

the

* $operation as defined in the routing.yml file.

*/

protected function checkAccess(EntityInterface $entity, $operation,

AccountInterface $account) {

9

https://www.drupal.org/docs/8/api/entity-api/structure-of-an-entity-annotation

$access = AccessResult::forbidden();

switch ($operation) {

case 'view':

if ($account->hasPermission('administer own offers')) {

$access = AccessResult::allowedIf($account->id() ==

$entity->getOwnerId())->cachePerUser()->addCacheableDependency($entity);

}

break;

case 'update': // Shows the edit buttons in operations

if ($account->hasPermission('administer own offers')) {

$access = AccessResult::allowedIf($account->id() ==

$entity->getOwnerId())->cachePerUser()->addCacheableDependency($entity);

}

break;

case 'edit': // Lets me in on the edit-page of the entity

if ($account->hasPermission('administer own offers')) {

$access = AccessResult::allowedIf($account->id() ==

$entity->getOwnerId())->cachePerUser()->addCacheableDependency($entity);

}

break;

case 'delete': // Shows the delete buttons + access to delete this

entity

if ($account->hasPermission('administer own offers')) {

$access = AccessResult::allowedIf($account->id() ==

$entity->getOwnerId())->cachePerUser()->addCacheableDependency($entity);

}

break;

}

return $access;

}

/**

* {@inheritdoc}

*

* Separate from the checkAccess because the entity does not yet exist,

it

* will be created during the 'add' process.

*/

protected function checkCreateAccess(AccountInterface $account, array

$context, $entity_bundle = NULL) {

return AccessResult::allowedIfHasPermission($account, 'administer own

offers');

10

}

}

?>

This access controller gives us a variety of power towards our entity. We now have full
control in code on who can access different modes of our entity.

If you take a closer look, it is here that we integrate our permission (administer own
offers) with our view/edit/update/delete access. As an extra we add a check to make
sure there is only access to own entities.

💻 Add the newly created “administer own offers” permission to all authenticated
users via admin/people/permissions.

In a later stage of the software, we can create different user roles for which entire
access to the CRUD section can be granted with one click.

With our entity access completely nailed, we are about to use these access checks in
our routing and crud forms. Let’s move on to the next chapter!

11

