
A h m e d F a w z y G a d

DO
Machine
Learning
Yourself

with Python

Do Machine Learning Yourself with Python
Ahmed Fawzy Gad

This book is for sale at http://leanpub.com/doml

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress e-book using lightweight tools
and
many iterations to get reader feedback, pivot until you have the right book and build traction
once
you do.
© 2019 Ahmed Fawzy Gad

http://leanpub.com/doml

Preface
Do Machine Learning Yourself is a collection of do it yourself (DIY) projects about machine
learning, mainly about computer vision, for beginner and intermediate levels. Through a detailed
guidance per each project, everything required to do that project yourself will be clear. One
primary focus of the book is to make machine learning available for mobile devices.

The book is organized into 8 chapters where each chapter handles a topic. The first chapter is
about doing some machine learning projects using OpenCV. Because OpenCV is a cross-platform
library, then the projects can run in both desktop and mobile devices. For such a reason, the
book builds the project for running in Android devices.

The second chapter builds 3 computer vision projects for Raspberry Pi. This include preparing
Raspberry Pi for first time use in order to be able to access it and install some Python libraries. A
USB camera is connected to the Raspberry Pi to capture images for building a surveillance
system and also a simple robot car.

Chapter 3 discusses some topics about neural network such as selecting the best architecture
that works for a given data. Also a neural network is created in Keras that is deployed to a Flask
server. An Android client uploads images to be classified by the trained Keras model and then
return the response.

Chapter 4 uses the genetic algorithm for building doing some optimization. This include
optimizing the 8 queen puzzle to reach a solution. Besides that project, the algorithm is used for
reproducing images by evolving the pixel values.

Chapter 5 uses a framework named Kivy for building GUI Python applications. Based on the Kivy
app, cross-platform applications can be generated. This book focuses on building Android
applications by the help of 2 projects named Python-4-Android and Buildozer. Kivy allows some
Python libraries to be executed in Android such as NumPy which is one of the most important
libraries for building data science applications. An image classifier is created in Python that is able
to work in Android using NumPy. The book also discusses supporting the Arabic text with Kivy.

Chapter 6 uses OpenCV for building an Android application able to do some image effects. The
effects supported are horizontal and vertical image stitching, reducing the number of colors
representing the both color and gray images by editing the lookup tables, noise removal using
the median filter, converting images to binary, cartooning images, image blending using the
alpha channel, creating animated GIF image from a number of images, and creating image
patterns.

Chapter 7 builds a chat application for Android devices for sending and receiving text messages.
The app allows the users to register themselves by entering their information that include a
username, password, and an e-mail. One the e-mail address is verified, the user is registered and
able to send and receive messages. The project starts by building the database and the tables for
holding the users data and also the messages. A Flask-based server is created that is connected
to the Android app. The project supports instant notifications for new messages and encryption.

Chapter 8 lists some miscellaneous topics about machine learning. This includes a discussion
about how machine learning is not killed by the appearance of deep learning. Also this chapter
guides beginners to understand how ensemble algorithms work and understand the difference
between bagging and boosting ensemble models. The gradient boosting algorithm is discussed
which is an application of ensemble boosting.

af://n5

It is worth mentioning that the book is aggregating the tutorials and articles I posted in a number
of blogs including KDnuggets (https://www.kdnuggets.com/author/ahmed-gad), Heartbeat (http
s://heartbeat.fritz.ai/@ahmedfgad), Towards Data Science (https://towardsdatascience.com/@ah
medfgad), and Medium (https://medium.com/@ahmedfgad). The book organizes these tutorials
so that one tutorial takes you to another one in a way that let you feel they are a single part. The
tutorials are published in the last 2 years and new ones will be available in the future to give a
guide about some topics about software engineering, machine learning, deep learning, computer
vision, and Python.

https://www.kdnuggets.com/author/ahmed-gad
https://heartbeat.fritz.ai/@ahmedfgad
https://towardsdatascience.com/@ahmedfgad
https://medium.com/@ahmedfgad

Acknowledgment
First of all, I have to thanks Allah for granting me some of his knowledge and helping me to write
tens of tutorials and preparing 3 books up to 2019. I did not realize that I can do all of this stuff
but nothing is impossible.

I remember that day by the end of 2017 when I wrote my first tutorial about building artificial
neural networks using TensorFlow. I put KDnuggets as a target as it is an achievement to publish
there. I contacted Matthew Mayo, researcher and editor at KDnuggets, and he accepted it. He is
someone you like to know and work with. I admit he played a crucial rule in making me visible in
the community.

Later, I started contributing to Heartbeat, a Fritz AI blog lead by Austin Kodra and Jameson Toole.
They target reducing the gap between machine learning mobile devices. I enjoyed their target
and frequently build projects that run in Android and Raspberry Pi and document them in
tutorials. Austin, the head of the community, offers all help to increase the quality of the tutorials
and with his critical feedback. He is a consistent hard-working man and I am sure Fritz AI will be a
known name for all people in the field.

I also started with Paperspace, a cloud-computing platform that helps to build machine learning
and deep learning applications. The CEO of Paperspace Dillon Erb and its COO Daniel Kobran
welcome the idea and I started contributing with my writings there. They offer the necessary
tools for building projects based on their product called Gradient that provides effortless tools for
building and deploying machine learning models. The blog editor, Rachel Rapp, always do the
necessary revisions and edits over my writings until making it ready for the public.

As usual, some people play an important rule in encouraging and supporting me to go further
and Dr. Mahmoud Albawaneh, Executive Director of Institutional Research & Analytics at
California State University, Long Beach, is at the top. He never saves effort in offering help and
support in a way that makes me feel calm and optimistic for the future.

Besides the revision offered by the blog editors, I always receive feedback over my writings from
Fatima Ezzahra Jarmouni which is an M.Sc. data scientist. She never keeps efforts to offer her
help as she reviews my posts and responds with some high-quality opinions.

af://n17
https://www.kdnuggets.com/2017/10/tensorflow-building-feed-forward-neural-networks-step-by-step.html
https://www.linkedin.com/in/mattmayo13
https://heartbeat.fritz.ai/@ahmedfgad
https://www.linkedin.com/in/austinkodra
https://www.linkedin.com/in/jameson-toole
https://blog.paperspace.com/author/ahmed
https://www.linkedin.com/in/dillonerb
https://www.linkedin.com/in/daniel-kobran-52798559
https://www.linkedin.com/in/rachelrapp
https://www.linkedin.com/in/mahmoud-albawaneh-3137b410

About the Author
Ahmed Fawzy Gad is a machine learning engineer teaching
assistant who received his B.Sc. and M.Sc. in Information
Technology. Ahmed is a software learning engineer interested in
machine/deep learning, computer vision, and Python. He is a
machine learning technical reviewer and consultant helping
others do their projects.

Ahmed contributes by written tutorials and articles to a number
of blogs including Paperspace, KDnuggets, Heartbeat, and
Towards Data Science. He has more than 60 tutorials and
articles.

Ahmed authored 3 technical books from 2017 to 2019 which are:

1. TensorFlow: A Guide to Build Artificial Neural Networks using Python (Labmert 2017)
2. Practical Computer Vision Applications Using Deep Learning with CNNs (Apress, 2018)
3. Building Android Apps in Python Using Kivy with Android Studio (Apress, 2019)

Ahmed is enthusiastic to start his Ph.D. degree in machine learning and looking for new work
positions. He welcomes connecting with him through

LinkedIn (https://www.linkedin.com/in/ahmedfgad)

Twitter (https://twitter.com/ahmedfgad)

Facebook (https://www.facebook.com/ahmed.f.gadd)

E-mail (ahmed.f.gad@gmail.com)

af://n24
https://blog.paperspace.com/author/ahmed
https://kdnuggets.com/author/ahmed-gad
https://heartbeat.fritz.ai/@ahmedfgad
https://towardsdatascience.com/@ahmedfgad
https://www.amazon.com/TensorFlow-Artificial-Networks-artificial-explanation/dp/6202073128
https://www.amazon.com/Practical-Computer-Vision-Applications-Learning/dp/1484241665
https://www.amazon.com/Building-Android-Python-Using-Studio/dp/1484250303
https://www.linkedin.com/in/ahmedfgad
https://www.linkedin.com/in/ahmedfgad
https://twitter.com/ahmedfgad
https://twitter.com/ahmedfgad
https://www.facebook.com/ahmed.f.gadd
https://www.facebook.com/ahmed.f.gadd
mailto:ahmed.f.gad@gmail.com

Chapter 1: Machine Learning with
OpenCV

The sample pages just include the second section of Chapter 1.

af://n47

Running Artificial Neural Networks in Android
using OpenCV

A step-by-step guide will be given for building an artificial neural network (ANN) using OpenCV for
Android devices. An ANN for creating a 2-input XOR gate is built and trained on a desktop
computer and then saved for later use in an Android app.

The IDE used for building the desktop app is NetBeans and the OS is Windows. For detailed steps
covering preparing OpenCV for Android, you can read section 1.1 titled A Guide to Preparing
OpenCV for Android.

You can also avoid preparing OpenCV for Android from scratch by downloading the Android
Studio project in which OpenCV is already linked. The project is available on GitHub:

https://github.com/ahmedfgad/OpenCVAndroid

Creating a New Java Application in NetBeans

The first step is to create a new Java app in the IDE we are using which is NetBeans. If you don’t
have this IDE, you can download it here: https://netbeans.org/downloads/8.0.2.

After downloading and installing the IDE, open it and click on the File menu and select New
Project:

 This opens a new window as shown below for selecting the project type. From the Categories
list, click on Java. From the Projects list, select Java Application.

af://n50
http://%20https//heartbeat.fritz.ai/a-guide-to-preparing-opencv-for-android-4e9532677809
https://github.com/ahmedfgad/OpenCVAndroid
af://n55
https://netbeans.org/downloads/8.0.2

After clicking on the Next button, a new window opens for entering the project name and path.
Enter the details of your choice. For me, the project name is set to OpenCVApp, and thus the
package name is automatically set to opencvapp. I prefer checking the “Create Main Class”
checkbox [which is already checked by default] for creating a default class within the package. As
specified on the right of the checkbox, the class name is OpenCVApp, which resided within the
opencvapp package. Click on Finish to build the project.

The project structure is shown in the next figure. Note that I created a new class named
OpenCVLoadModel that will be used later for loading the trained ANN model. You can either
create it now or later once the trained model is created.

The OpenCVApp class has just an empty main() method. We can print a message to make sure
the project is working correctly. The implementation of this class is as shown below, in which a
print message displays Java Application is Running Correctly :) once the class runs.

The console output of the run is shown in the next figure. After making sure the project is
working as expected, the next step is to download OpenCV for Windows and import it within
NetBeans.

Downloading OpenCV for Windows

By visiting the OpenCV releases download page, you can find all OpenCV releases available for
different distributions. Let’s use the latest OpenCV release, which is 4.1.0. Because we’re using
Windows, the Windows distribution will be downloaded. This will download an .exe file which you
can extract as regular compressed files.

package opencvapp;

public class OpenCVApp{

public static void main(String[] args) {

 System.out.println("Java Application is Running Correctly :) ");

}

}

af://n69
https://opencv.org/releases

Locate the extracted OpenCV folder and go to \opencv\build\java . Within this folder, you will
find the contents listed below. The first 2 folders contain a DLL file, which will be used in the next
step. The JAR file contains the OpenCV classes.

x64/
x86/
opencv-410.jar

Importing OpenCV in NetBeans

The JAR file (opencv-410.jar) must be imported within the project in order to use OpenCV. In
order to import a JAR file within NetBeans, right click on the project and select Properties as
illustrated below.

af://n80

This opens the project properties window shown next. The window does not yet list any libraries
used by the project.

 On the right of this window, click the Add JAR/Folder button which opens a new window for
selecting the JAR file. Navigate to the location of the opencv-410.jar file, select it, and then click
Open.

By clicking on the Open button, the selected JAR file will be listed. Click on OK to finish importing
the JAR file.

Going to the project structure and expanding the Libraries directory, you can find the selected JAR
file listed as a library. This indicates a successful importation of the JAR file.

Based on the auto completion feature of NetBeans, you can find that it now detects OpenCV, as
shown below.

After that, let’s check to make sure OpenCV is working when used. We do this by creating an
empty Mat, according to the code below.

Solving the UnsatisfiedLinkError

After running the project, an UnsatisfiedLinkError exception is thrown. It indicates that there’s an
error in linking OpenCV to the project. The problem arises because the OpenCV DLL file is not
detected automatically, and thus it isn’t loaded. This happens because the DLL path used by
default by OpenCV is incorrect.

To fix this issue, we can load the DLL file manually by specifying the correct path within the
System.load() method. It’s very important to use the correct DLL based on your OS. If you’re
using a 64-bit OS, then use x64 within the path. For 32-bit, use x86 (I used x64 because I am using
64-bit OS).

After running the class, it will run successfully as indicated in the next figure.

As of now, OpenCV is loaded correctly within NetBeans. Now that everything’s loaded correctly,
we’ll start preparing training data for building the XOR gate using an ANN.

package opencvapp;

import static org.opencv.core.CvType.CV_32F;

import org.opencv.core.Mat;

public class OpenCVApp {

public static void main(String[] args) {

 Mat test = new Mat(1, 1, CV_32F);

}

}

package opencvapp;

import org.opencv.core.Core;

import static org.opencv.core.CvType.CV_32F;

import org.opencv.core.Mat;

public class OpenCVApp {

 public static void main(String[] args) {

 System.load("D:\\Opencv-4.1.0-vc14_vc15\\opencv\\build\\java\\x64\\" +

Core.NATIVE_LIBRARY_NAME + ".dll");

 Mat test = new Mat(1, 1, CV_32F);

 }

}

af://n95

Preparing the Training Data

The ANN is trained to mimic the operation of the 2-input XOR gate. The gate returns 0 when both
inputs are identical (either 0 or 1) and returns 1 when they are different (one input is 1 and the
other input is 0). Because the output is either 0 or 1, it’s a binary classification task. The truth
table of the gate is given in the next table, which maps the inputs to their class label (output).

In order to feed the training data (inputs and outputs) to the ANN build using OpenCV, the data
must be stored into an OpenCV Mat. We can simply create a regular Java array for holding the
data and then convert it into a Mat. The code for building the Mat for the training input data is
shown below.

A 2D Java array named XORTrainArray is created for holding the 2 inputs. The array has 4 rows,
one for each data sample. Each row has 2 columns, one for each input to the XOR gate.

After creating the Java array, next is to create an OpenCV Mat in which the array data are copied
to it. The Mat is created by instantiating the Mat class. The constructor of this class accepts 3
integer arguments:

1. int rows : Number of rows
2. int cols : Number of columns
3. int type : Data type

Because there are 4 samples, the rows argument is assigned 4. The cols argument is assigned 2
because each sample has 2 inputs. Finally, the type argument is assigned CV_32F , which refers to
a floating-point number stored into 32 bits (4 bytes). The OpenCV data types are stored into the
CvType class available in the org.opencv.core package. By doing that, an empty Mat is created.
The next step is to copy the Java array data into it.

package opencvapp;

import org.opencv.core.Core;

import static org.opencv.core.CvType.CV_32F;

import org.opencv.core.Mat;

public class OpenCVApp {

 public static void main(String[] args) {

 System.load("D:\\Opencv-4.1.0-vc14_vc15\\opencv\\build\\java\\x64\\" +

Core.NATIVE_LIBRARY_NAME + ".dll");

 double[][] XORTrainArray = {

 {0.0, 0.0},

 {0.0, 1.0},

 {1.0, 0.0},

 {1.0, 1.0}

 };

 Mat XORTrain = new Mat(4, 2, CV_32F);

 XORTrain.put(0, 0, XORTrainArray[0]);

 XORTrain.put(1, 0, XORTrainArray[1]);

af://n103
https://heartbeat.fritz.ai/binary-classification-using-keras-in-r-ef3d42202aaa

There’s a method in the Mat class called put() that inserts data into the Mat given the row and
column indices. It accepts 3 arguments:

1. int row : Start row index
2. int col : Start column index
3. double… data : Data to be inserted

For the first sample in the data array, the start row index will be 0 and the start column index will
be also 0. The first sample in the array is fetched using XORTrainArray[0] which returns [0.0,
0.0] . This sample will be inserted starting from the first row and first column in the Mat.
Because there’s only 1 row in this sample, only the first row in the Mat will be occupied. But 2
columns will be used from the first row because the sample has 2 values.

For the second sample, the start column index will still be 0, but the row index will be 1. The
second sample from the Java array will be returned by using the index 1 for XORTrainArray . The
process continues until filling the Mat with the 4 samples. The last line prints the Mat as shown in
the next figure.

 Similar to creating the training inputs and converting them into an OpenCV Mat, the training
outputs will be also inserted into a Mat according to the code below. The Java array that holds the
outputs is named XORTrainOutArray . The array contents are inserted into a Mat named
XORTrainOut . It has 4 rows as the XORTrain Mat but only 1 column because there is only 1 class
label (output) for each sample.

 XORTrain.put(2, 0, XORTrainArray[2]);

 XORTrain.put(3, 0, XORTrainArray[3]);

 System.out.println("Train Inputs : \n" + XORTrain.dump());

 }

}

package opencvapp;

import org.opencv.core.Core;

import static org.opencv.core.CvType.CV_32F;

import org.opencv.core.Mat;

public class OpenCVApp {

 public static void main(String[] args) {

 System.load("D:\\Opencv-4.1.0-vc14_vc15\\opencv\\build\\java\\x64\\" +

Core.NATIVE_LIBRARY_NAME + ".dll");

 double[][] XORTrainArray = {

 {0.0, 0.0},

 {0.0, 1.0},

 {1.0, 0.0},

 {1.0, 1.0}

 };

 Mat XORTrain = new Mat(4, 2, CV_32F);

 XORTrain.put(0, 0, XORTrainArray[0]);

 XORTrain.put(1, 0, XORTrainArray[1]);

 XORTrain.put(2, 0, XORTrainArray[2]);

The printed data (both inputs and labels) is given below. By doing this, the training data (inputs
and outputs) are prepared and ready to be fed to the ANN. Next is to build and train the ANN.

Building the ANN (Architecture and Parameters)

From its name, Open Computer Vision, OpenCV is known to focus on building computer vision
algorithms that run in real-time. Now, OpenCV is more than that. OpenCV now supports building
and training machine learning (ML) algorithms using the org.opencv.ml package.

In terms of ANNs, the OpenCV library has a class named ANN_MLP inside the org.opencv.ml
package for building ANNs. ANN_MLP stands for Artificial Neural Network — Multi-Layer
Perceptrons.

The first step towards building an ANN using OpenCV is to create an empty ANN by calling the
static create() method inside the ANN_MLP class. This returns an instance of this class that
represents the ANN.

After creating this instance, the regular work for any ANN is to be done. This includes specifying
the ANN architecture, selecting the activation function, training the network, and more. The code
below extends the previous class to create an ANN and specify the network architecture. The
instance of the ANN_MLP is returned into the ANN variable.

 XORTrain.put(3, 0, XORTrainArray[3]);

 System.out.println("Train Inputs : \n" + XORTrain.dump());

 double[][] XORTrainOutArray = {

 {0.0},

 {1.0},

 {1.0},

 {0.0}

 };

 Mat XORTrainOut = new Mat(4, 1, CV_32F);

 XORTrainOut.put(0, 0, XORTrainOutArray[0]);

 XORTrainOut.put(1, 0, XORTrainOutArray[1]);

 XORTrainOut.put(2, 0, XORTrainOutArray[2]);

 XORTrainOut.put(3, 0, XORTrainOutArray[3]);

 System.out.println("Train Labels : \n" + XORTrainOut.dump());

 }

}

package opencvapp;

import org.opencv.core.Core;

import static org.opencv.core.CvType.CV_32F;

import static org.opencv.core.CvType.CV_8U;

import org.opencv.core.Mat;

af://n133
https://docs.opencv.org/3.4.3/d0/dce/classcv_1_1ml_1_1ANN__MLP.html

In order to specify the numbers and sizes of the network layers, the setLayerSizes() method is
used. It accepts a vector representing the number of neurons within each layer. The vector length
represents the number of layers, given that the input and output layers are counted. For
example, if the vector length is 5, then the network has 1 input layer, 1 output layer, and 3 hidden
layers.

The vector is created according to the 1D Mat named layerSizes . It has 3 rows and just 1
column. Its data type is set to CV_8U , which corresponds to an unsigned 8-bit integer. Remember
that all OpenCV data types are available in the org.opencv.core.CvType class.

The vector length is 3, and thus the network has a single hidden layer. The reason is that the
optimal number of hidden layers for building the XOR gate is 1. Do you want to know why? Read
my DataCamp tutorial titled Deduce the Number of Layers and Neurons for ANN.

import org.opencv.ml.ANN_MLP;

public class OpenCVApp {

 public static void main(String[] args) {

 System.load("D:\\Opencv-4.1.0-vc14_vc15\\opencv\\build\\java\\x64\\" +

Core.NATIVE_LIBRARY_NAME + ".dll");

 double[][] XORTrainArray = {

 {0.0, 0.0},

 {0.0, 1.0},

 {1.0, 0.0},

 {1.0, 1.0}

 };

 Mat XORTrain = new Mat(4, 2, CV_32F);

 XORTrain.put(0, 0, XORTrainArray[0]);

 XORTrain.put(1, 0, XORTrainArray[1]);

 XORTrain.put(2, 0, XORTrainArray[2]);

 XORTrain.put(3, 0, XORTrainArray[3]);

 System.out.println("Train Inputs : \n" + XORTrain.dump());

 double[][] XORTrainOutArray = {

 {0.0},

 {1.0},

 {1.0},

 {0.0}

 };

 Mat XORTrainOut = new Mat(4, 1, CV_32F);

 XORTrainOut.put(0, 0, XORTrainOutArray[0]);

 XORTrainOut.put(1, 0, XORTrainOutArray[1]);

 XORTrainOut.put(2, 0, XORTrainOutArray[2]);

 XORTrainOut.put(3, 0, XORTrainOutArray[3]);

 System.out.println("Train Labels : \n" + XORTrainOut.dump());

 ANN_MLP ANN = ANN_MLP.create();

 Mat layerSizes = new Mat(3, 1, CV_8U);

 layerSizes.put(0, 0, 2);

 layerSizes.put(1, 0, 2);

 layerSizes.put(2, 0, 1);

 ANN.setLayerSizes(layerSizes);

 System.out.println("Layers Sizes : \n" + layerSizes.dump());

 }

}

https://www.datacamp.com/community/tutorials/layers-neurons-artificial-neural-networks

The values inside the vector refer to the number of neurons for each layer. The first value at
index 0 refers to the number of input neurons, the last value refers to the number of neurons in
the output layers, and the in-between values refer to the number of neurons in the hidden
layers.

Using the put() method, the values are inserted into the Mat. A value of 2 is inserted at the first
location of the Mat (index 0) to reflect that 2 inputs are available in the input layer. At index 1, a
value of 2 is inserted, which refers to the number of hidden neurons in the hidden layer. Note
that 2 neurons in the hidden layer is the optimal choice for building an XOR gate. Finally, just one
neuron is specified in the output layer because there is only 1 class label for each sample.

After running the above class, the layerSizes Mat is printed, as given below.

Up to this point, just the number of layers and their sizes are specified; but this isn’t everything.
Other parameters need to be specified. The code below specifies that the activation function type
is sigmoid using the setActivationFunction() method. It also specifies that the training
method is set to back propagation according to the setTrainMethod() method.

package opencvapp;

import org.opencv.core.Core;

import static org.opencv.core.CvType.CV_32F;

import static org.opencv.core.CvType.CV_8U;

import org.opencv.core.Mat;

import org.opencv.core.TermCriteria;

import org.opencv.ml.ANN_MLP;

public class OpenCVApp {

 public static void main(String[] args) {

 System.load("D:\\Opencv-4.1.0-vc14_vc15\\opencv\\build\\java\\x64\\" +

Core.NATIVE_LIBRARY_NAME + ".dll");

 double[][] XORTrainArray = {

 {0.0, 0.0},

 {0.0, 1.0},

 {1.0, 0.0},

 {1.0, 1.0}

 };

 Mat XORTrain = new Mat(4, 2, CV_32F);

 XORTrain.put(0, 0, XORTrainArray[0]);

 XORTrain.put(1, 0, XORTrainArray[1]);

An ANN is an iterative algorithm in which the algorithm iterates through the data until reaching a
good level of accuracy. To prevent such algorithms from going into infinite iterations, some other
parameters need to be specified to determine when the algorithm terminates. OpenCV supports
a class called TermCriteria which defines these parameters. The constructor of this class
accepts 3 arguments:

1. int type : Termination type. Either stop when the error reaches a given limit, or when the
number of iterations exceeds a maximum limit.

2. int maxCount : Maximum number of iterations.
3. double epsilon : The maximum difference between the desired and expected outputs. The

lower the difference the more accurate the predictions.

The type could be one of these 3 values:

1. TermCriteria.EPS : Stop training when the desired error is reached.
2. TermCriteria.COUNT : Stop training when the maximum number of iterations is reached.
3. TermCriteria.EPS + TermCriteria.COUNT : Stop training when either the desired error is

reached or when the maximum number of iterations is reached.

If the type is set to TermCriteria.COUNT , then the algorithm stops training when the number of
iterations exceed the number assigned to the maxCount argument.

 XORTrain.put(2, 0, XORTrainArray[2]);

 XORTrain.put(3, 0, XORTrainArray[3]);

 System.out.println("Train Inputs : \n" + XORTrain.dump());

 double[][] XORTrainOutArray = {

 {0.0},

 {1.0},

 {1.0},

 {0.0}

 };

 Mat XORTrainOut = new Mat(4, 1, CV_32F);

 XORTrainOut.put(0, 0, XORTrainOutArray[0]);

 XORTrainOut.put(1, 0, XORTrainOutArray[1]);

 XORTrainOut.put(2, 0, XORTrainOutArray[2]);

 XORTrainOut.put(3, 0, XORTrainOutArray[3]);

 System.out.println("Train Labels : \n" + XORTrainOut.dump());

 ANN_MLP ANN = ANN_MLP.create();

 Mat layerSizes = new Mat(3, 1, CV_8U);

 layerSizes.put(0, 0, 2);

 layerSizes.put(1, 0, 2);

 layerSizes.put(2, 0, 1);

 ANN.setLayerSizes(layerSizes);

 System.out.println("Layers Sizes : \n" + layerSizes.dump());

 ANN.setActivationFunction(ANN_MLP.SIGMOID_SYM);

 ANN.setTrainMethod(ANN_MLP.BACKPROP);

 TermCriteria criteria = new TermCriteria(TermCriteria.EPS +

TermCriteria.COUNT, 10000, 0.00000001);

 ANN.setTermCriteria(criteria);

 }

}

If the type is set to TermCriteria.EPS , then the algorithm stops training when the error
(difference between the desired and predicted outputs) exceeds a specified value. This value
should always be small. For example, 0.0001 or even smaller. The value used is 0.00000001.

If the termination type is set to TermCriteria.EPS + TermCriteria.COUNT , then the algorithm
trains until the desired error is reached. If this error is not reached, then the algorithm stops after
the specified number of iterations.

After specifying all parameters necessary for training the ANN, next we’ll need to start training.
Note that there are other parameters that might be necessary for you.

Training the ANN

In order to train the ANN, the train() method is called according to the modified class listed
below. This method has different signatures, but the one used includes the following 3
arguments:

1. InputArray samples : Input training data
2. int layout : Sample layout.
3. InputArray responses : Output training data (labels)

The first argument is set to the training inputs Mat created previously inside the XORTrain
variable. The last argument is set to the training outputs Mat stored into the XORTrainOut
variable.

The second argument could be set to either COL_SAMPLE or ROW_SAMPLE based on how the
sample is represented. If each sample is represented as a row, then the layout is set to
ROW_SAMPLE . If each sample is represented as a column, then the layout is set to COL_SAMPLE .
Throughout our discussion, each sample is represented as a row, and thus the used layout is
ROW_SAMPLE .

package opencvapp;

import org.opencv.core.Core;

import static org.opencv.core.CvType.CV_32F;

import static org.opencv.core.CvType.CV_8U;

import org.opencv.core.Mat;

import org.opencv.core.TermCriteria;

import org.opencv.ml.ANN_MLP;

import org.opencv.ml.Ml;

public class OpenCVApp {

 public static void main(String[] args) {

 System.load("D:\\Opencv-4.1.0-vc14_vc15\\opencv\\build\\java\\x64\\" +

Core.NATIVE_LIBRARY_NAME + ".dll");

 double[][] XORTrainArray = {

 {0.0, 0.0},

 {0.0, 1.0},

 {1.0, 0.0},

 {1.0, 1.0}

 };

 Mat XORTrain = new Mat(4, 2, CV_32F);

 XORTrain.put(0, 0, XORTrainArray[0]);

 XORTrain.put(1, 0, XORTrainArray[1]);

 XORTrain.put(2, 0, XORTrainArray[2]);

 XORTrain.put(3, 0, XORTrainArray[3]);

 System.out.println("Train Inputs : \n" + XORTrain.dump());

af://n168

 After the network is trained, the final weights can be fetched using the getWeights() method. It
accepts the layer index and then returns its weights as a Mat. The weights of all 3 layers are
fetched and printed, as shown below.

 double[][] XORTrainOutArray = {

 {0.0},

 {1.0},

 {1.0},

 {0.0}

 };

 Mat XORTrainOut = new Mat(4, 1, CV_32F);

 XORTrainOut.put(0, 0, XORTrainOutArray[0]);

 XORTrainOut.put(1, 0, XORTrainOutArray[1]);

 XORTrainOut.put(2, 0, XORTrainOutArray[2]);

 XORTrainOut.put(3, 0, XORTrainOutArray[3]);

 System.out.println("Train Labels : \n" + XORTrainOut.dump());

 ANN_MLP ANN = ANN_MLP.create();

 Mat layerSizes = new Mat(3, 1, CV_8U);

 layerSizes.put(0, 0, 2);

 layerSizes.put(1, 0, 2);

 layerSizes.put(2, 0, 1);

 ANN.setLayerSizes(layerSizes);

 System.out.println("Layers Sizes : \n" + layerSizes.dump());

 ANN.setActivationFunction(ANN_MLP.SIGMOID_SYM);

 ANN.setTrainMethod(ANN_MLP.BACKPROP);

 TermCriteria criteria = new TermCriteria(TermCriteria.EPS +

TermCriteria.COUNT, 10000, 0.00000001);

 ANN.setTermCriteria(criteria);

 ANN.train(XORTrain, Ml.ROW_SAMPLE, XORTrainOut);

 System.out.println("Model is trained? " + ANN.isTrained());

 Mat input_weights = ANN.getWeights(0);

 Mat hidden_weights = ANN.getWeights(1);

 Mat output_weights = ANN.getWeights(2);

 System.out.println("Input Layer Weights : \n" + input_weights.dump());

 System.out.println("Hidden Layer Weights : \n" + hidden_weights.dump());

 System.out.println("Output Layer Weights : \n" + output_weights.dump());

 try{

 ANN.save("OpenCV_ANN_XOR.yml");

 System.out.println("Model Saved Successfully.");

 } catch(Exception ex) {

 System.err.println("Error Saving Model.");

 }

 }

}

After training completes, the trained ANN model is saved in a YML file named
OpenCV_ANN_XOR.yml . This enables us to use the trained model later for making predictions. The
file is saved under the root of the NetBeans project directory, as shown below.

Loading and Testing the Trained ANN in NetBeans

After saving the trained model successfully, next we load it and make predictions according to
testing samples. If you didn’t create the OpenCVLoadModel class earlier, create it now. The
contents of this class are listed below.

The class prepares the data exactly the same as done in the OpenCVApp class. The testing
samples are the same as the training samples because the XOR gate has just 4 samples, and it’s
impossible to split its data into training and testing.

This class loads the model using the load() method. Predictions take place using the
predict() method, which accepts 3 arguments:

1. Mat samples : Inputs of testing samples.
2. Mat results : Mat to save the prediction results.
3. int flags : Optional flags. Set to 0 if not required.

Note that the results Mat returned by this method represents not the predicted class label but
a score. For example, it returns a score of 0.01. How to deduce the class label from this score? If
this score is less than 0.5, then it refers to class 0. Otherwise, it refers to class 1. This is why
there’s a threshold applied to the values inside the results Mat.

A for loop iterates through the samples, feeds each sample to the predict() method, returns
the result, thresholds it to return the predicted class label, compares it with the desired class
label, and increases a counter named num_correct_predictions for each correct prediction.

af://n184

Finally, the class prints the accuracy by dividing the value within this variable by the number of
samples. Because each sample is represented as a row in the XORTrain Mat, the number of
samples is equal to the number of rows within it. The number of rows is returned using the
rows() method.

package opencvapp;

import org.opencv.core.Core;

import static org.opencv.core.CvType.CV_32F;

import org.opencv.core.Mat;

import org.opencv.ml.ANN_MLP;

public class OpenCVLoadModel {

 public static void main(String[] args) {

 System.load("D:\\FCI\\Programming\\OpenCV\\OpenCV 4.1.0\\opencv-4.1.0-

vc14_vc15\\opencv\\build\\java\\x64\\" + Core.NATIVE_LIBRARY_NAME + ".dll");

 double[][] XORTrainArray = {

 {0.0, 0.0},

 {0.0, 1.0},

 {1.0, 0.0},

 {1.0, 1.0}

 };

 Mat XORTrain = new Mat(4, 2, CV_32F);

 XORTrain.put(0, 0, XORTrainArray[0]);

 XORTrain.put(1, 0, XORTrainArray[1]);

 XORTrain.put(2, 0, XORTrainArray[2]);

 XORTrain.put(3, 0, XORTrainArray[3]);

 System.out.println("Train Inputs : \n" + XORTrain.dump());

 double[][] XORTrainOutArray = {

 {0.0},

 {1.0},

 {1.0},

 {0.0}

 };

 Mat XORTrainOut = new Mat(4, 1, CV_32F);

 XORTrainOut.put(0, 0, XORTrainOutArray[0]);

 XORTrainOut.put(1, 0, XORTrainOutArray[1]);

 XORTrainOut.put(2, 0, XORTrainOutArray[2]);

 XORTrainOut.put(3, 0, XORTrainOutArray[3]);

 System.out.println("Train Labels : \n" + XORTrainOut.dump());

 ANN_MLP ANN =

ANN_MLP.load("C:\\Users\\Dell\\Documents\\NetBeansProjects\\OpenCVApp\\OpenCV_AN

N_XOR.yml");

 double num_correct_predictions = 0;

 for (int i = 0; i < XORTrain.rows(); i++) {

 Mat sample = XORTrain.row(i);

 double correct_label = XORTrainOut.get(i, 0)[0];

 Mat results = new Mat();

 ANN.predict(sample, results, 0);

 double response = results.get(0, 0)[0];

 double predicted_label;

The next figure shows that predicted scores of all 4 samples, in addition to the accuracy of the
trained model, which is 100%. Note how the predicted scores for samples with 0 as the correct
class label are very close to 0. Also the predicted scores for samples with 1 as the correct class
label are very close to 1. The reason for reaching such results is selecting a small value for the
epsilon argument in the constructor of the TermCriteria class, which is 0.00000001.

After making sure that the model is loaded successfully and it predicts the samples with high
accuracy, we can deploy it to Android. So let’s create an Android Studio project that loads the
trained model and then execute the same code used in the OpenCVLoadModel class.

Building an Android Studio Project

Is is expected that the reader already has an Android Studio project linked with OpenCV. If you do
not yet have a project prepared to use OpenCV, then you can download the one available on
GitHub at this link https://github.com/ahmedfgad/openCVAndroid.

For details about linking OpenCV to Android Studio, you can read the the post in section 1.1 titled
A Guide to Prepare OpenCV for Android.

For creating a new Android Studio project, click on File, then New, and select New Project.
Follow the steps of project creation and chose to create an activity with an empty layout.

 if (response >= 0.5) {

 predicted_label = 1.0;

 } else {

 predicted_label = 0.0;

 }

 System.out.println("Input Sample : " + sample.dump() + ", Predicted

Score : " + response + ", Predicted Label : " + predicted_label + ", Correct

Label : " + correct_label);

 if (predicted_label == correct_label) {

 num_correct_predictions += 1;

 }

 }

 double accuracy = (num_correct_predictions / XORTrain.rows()) * 100;

 System.out.println("Accuracy : " + accuracy);

 }

}

af://n202
https://github.com/ahmedfgad/OpenCVAndroid
https://heartbeat.fritz.ai/a-guide-to-preparing-opencv-for-android-4e9532677809

After the project is created, load OpenCV and you’ll see the Android view of the project.

In this case, I loaded both OpenCV 3.4.4 and OpenCV 4.1.0. Which one to use? This is specified
inside the dependencies section of the build.gradle file of the application. As give below, I
used OpenCV 3.4.4. If openCVLibrary344 is replaced by openCVLibrary410 , then OpenCV 4.1.0
will be used.

After creating the project and making sure OpenCV is imported correctly within it, next we need
to load the trained model and make predictions.

Loading the Trained ANN in Android Studio and Making Predictions

dependencies {

...

 implementation project(':openCVLibrary344')

}

af://n212

The XML layout of the main activity is listed below. There is a Button view and an EditText
view. The user should enters the path of the trained YML model inside the EditText view. When
the button is clicked, the callback method named predictANN() is called where the path is
returned and fed to the load() model.

The implementation of the predictANN() method is found inside the MainActivity class listed
below. Note that you have to upload the trained model (YML) file to your device and enter the
path into the EditText view where it will be fetched and fed to the load() method.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context="com.example.dell.opencvandroid.MainActivity">

 <Button

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="Load ANN using OpenCV"

 android:onClick="predictANN"

 />

 <EditText

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="/storage/emulated/0/OpenCV_ANN_XOR.yml"

 android:id="@+id/modelPath"/>

</LinearLayout>

package com.example.dell.opencvandroid;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

import android.widget.EditText;

import android.widget.Toast;

import org.opencv.android.OpenCVLoader;

import org.opencv.core.Mat;

import org.opencv.ml.ANN_MLP;

import static org.opencv.core.CvType.CV_32F;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

// OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION, this, null);

 OpenCVLoader.initDebug();

 }

 public void predictANN(View v){

 double[][] XORTrainArray = {

 {0.0, 0.0},

 {0.0, 1.0},

 {1.0, 0.0},

 {1.0, 1.0}

 };

 Mat XORTrain = new Mat(4, 2, CV_32F);

 XORTrain.put(0, 0, XORTrainArray[0]);

 XORTrain.put(1, 0, XORTrainArray[1]);

 XORTrain.put(2, 0, XORTrainArray[2]);

 XORTrain.put(3, 0, XORTrainArray[3]);

 System.out.println("Train Inputs : \n" + XORTrain.dump());

 double[][] XORTrainOutArray = {

 {0.0},

 {1.0},

 {1.0},

 {0.0}

 };

 Mat XORTrainOut = new Mat(4, 1, CV_32F);

 XORTrainOut.put(0, 0, XORTrainOutArray[0]);

 XORTrainOut.put(1, 0, XORTrainOutArray[1]);

 XORTrainOut.put(2, 0, XORTrainOutArray[2]);

 XORTrainOut.put(3, 0, XORTrainOutArray[3]);

 System.out.println("Train Labels : \n" + XORTrainOut.dump());

 EditText modelPath = findViewById(R.id.modelPath);

 ANN_MLP ANN = ANN_MLP.load(modelPath.getText().toString());

 double num_correct_predictions = 0;

 for (int i = 0; i < XORTrain.rows(); i++) {

 Mat sample = XORTrain.row(i);

 double correct_label = XORTrainOut.get(i, 0)[0];

 Mat results = new Mat();

 ANN.predict(sample, results, 0);

 double response = results.get(0, 0)[0];

 double predicted_label = 0.0;

 if (response >= 0.5) {

 predicted_label = 1.0;

 } else {

 predicted_label = 0.0;

 }

 System.out.println("Input Sample : " + sample.dump() + ", Predicted

Score : " + response + ", Predicted Label : " + predicted_label + ", Correct

Label : " + correct_label);

 if (predicted_label == correct_label) {

 num_correct_predictions += 1;

 }

 }

 double accuracy = (num_correct_predictions / XORTrain.rows()) * 100;

After launching the app and clicking the button, the result is shown in the next figure. A Toast
message prints the accuracy, which is 100.

 Toast.makeText(getApplicationContext(), "Accuracy : " + accuracy,

Toast.LENGTH_LONG).show();

 }

}

Conclusion

We discussed how to build ANN in Android devices using OpenCV. By doing this, there are much
more apps to build. For example, capture images using Android camera and classify them using
the ANN running in Android. In section 1.3, OpenCV will be used in Android for extracting
features from images. The extracted features will be fed into a pre-trained ANN for classification.

af://n220

	Preface
	Acknowledgment
	About the Author
	Chapter 1: Machine Learning with OpenCV
	Running Artificial Neural Networks in Android using OpenCV
	Creating a New Java Application in NetBeans
	Downloading OpenCV for Windows
	Importing OpenCV in NetBeans
	Solving the UnsatisfiedLinkError

	Preparing the Training Data
	Building the ANN (Architecture and Parameters)
	Training the ANN

	Loading and Testing the Trained ANN in NetBeans
	Building an Android Studio Project
	Loading the Trained ANN in Android Studio and Making Predictions

	Conclusion

