Persistenz in PHP mit

Doctrine 2 ORM

Grundlagen, Konzepte und
praktische Anwendung

il
Michael Romer.'}:zW ‘
. |

}.
i
|...‘ g

R

Persistenz in PHP mit Doctrine 2 ORM
Grundlagen, Konzepte und die praktische Anwendung

Michael Romer
Dieses Buch konnen Sie hier kaufen http://leanpub.com/doctrine2

Diese Version wurde auf 2013-08-23 veroffentlicht

Das ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen mit Hilfe des
Lean-Publishing-Prozesses ganz neue Mdoglichkeiten des Publizierens. Lean Publishing bedeutet
die permanente, iterative Veroffentlichung neuer Beta-Versionen eines E-Books unter der
Zuhilfenahme schlanker Werkzeuge. Das Feedback der Erstleser hilft dem Autor bei der
Finalisierung und der anschliefenden Vermarktung des Buches. Lean Publishing unterstiitzt de
Autor darin ein Buch zu schreiben, das auch gelesen wird.

©2012 - 2013 by Michael Romer, Grevingstrasse 35, 48151 Miinster, Deutschland,
mail@michael-romer.de - Alle Rechte vorbehalten.

http://leanpub.com/doctrine2
http://leanpub.com
http://leanpub.com/manifesto

Ebenfalls von Michael Romer

Webentwicklung mit Zend Framework 2
Web Development with Zend Framework 2

PHP Data Persistence with Doctrine 2 ORM

http://leanpub.com/u/michaelromer
http://leanpub.com/zendframework2
http://leanpub.com/zendframework2-en
http://leanpub.com/doctrine2-en

Inhaltsverzeichnis

1 Uber dieses Buch (verfiigbar) 1
1.1 Early Access Edition 1
1.2 Die Community zumBuch o o 1
1.3 Softwareversion 1
1.4 Verwendetes Datenbanksystem 1
1.5 Konventionen e 2
1.6 Wichtige Hinweise fir Amazon-Kunden 2
1.7 Weitere Biicher des Autors 2
2 Einleitung (verfiigbar) 3
2.1 Objektorientierung & Domain Models 3
2.2 Beispielanwendung 4
3 Ein einfaches ORM-System selbstgebaut (verfiighar) 7
3.1 LadeneinerEntity. 7
3.2 Speicherneiner Entity 15
3.3 Assoziationenl e e 21
3.4 Ausblick & Fazit 28
4 Hallo, Doctrine 2! (verfiigbar) 29
41 Installation. 29
42 DieersteEntity o 30

4.3 Dieerste Assoziation e e 33

1 Uber dieses Buch (verfiigbar)

1.1 Early Access Edition

Wenn du diesen Abschnitt liest, hilst du die “Early Access Edition” dieses Buches in deinen Handen.
“Early Access” bedeutet, dass du bereits vorne im Buch mit dem Lesen anfangen kannst, wihrend
die weiteren Kapitel noch “in der Mache sind”. Sie werden dir automatisch zur Verfiigung gestellt,
sobald sie fertig sind. Dank’ der Idee des Lean Publishing" bist du jetzt also noch viel mehr “up-to-
date”, als du es jemals zuvor warst. Es ist sehr wahrscheinlich, dass du zum aktuellen Zeitpunkt noch
eine Reihe von Rechtschreibfehlern und den ein oder anderen Bug in den Code-Beispielen finden
wirst. Ich versuche sorgfiltig zu arbeiten, kann aber derzeit keine Fehlerfreiheit garantieren. Wenn
du mir helfen moéchtest, dieses Buch noch besser zu machen, werde doch gerne in der Community
zum Buch aktiv und teile dort deine Hinweise und Vorschldge mit. Ich nehme sie dankend entgegen.

1.2 Die Community zum Buch

Du hast einen Fehler gefunden, mochtest deine Ideen fiir die nachste Auflage loswerden oder dich
einfach nur zu den Themen im Buch und zu Doctrine 2 im Allgemeinen austauschen? Dann ist die
Community zum Buch? bei Google Groups der richtige Anlaufpunkt fiir dich. Dort bekommst du
nicht nur direkten Kontakt zu mir, dem Autor dieses Buches, sondern auch zu den anderen Lesern.
Du bendtigst lediglich einen Google-Account, den du dir bei Bedarf zuvor kostenlos erstellst.

1.3 Softwareversion

Die Inhalte in diesem Buch beziehen sich auf Doctrine 2.3, sind aber mit hoher Wahrscheinlichkeit
auch fiir spatere Versionen uneingeschrankt giltig.

1.4 Verwendetes Datenbanksystem

Fir die Beispiele in diesem Buch kommt das MySQL-Datenbanksystem® zum Einsatz. Doctrine 2
unterstiitzt neben MySQL aber auch weitere DBMS wie etwa PostgreSQL* oder SQLite’. Der grof3e
Teile der Beispiele sind uneingeschrankt auch fiir diese Systeme giiltig, stellenweise miissen ggf.
systemspezifische Anpassungen vorgenommen werden.

"http://leanpub.com
®https://groups.google.com/forum/#!forum/persistenz-in-php-mit-doctrine-2-orm
*mysql.de

“http://www.postgresql.org/

*http://www.sqlite.org/

http://leanpub.com
https://groups.google.com/forum/#!forum/persistenz-in-php-mit-doctrine-2-orm
mysql.de
http://www.postgresql.org/
http://www.sqlite.org/
http://leanpub.com
https://groups.google.com/forum/#!forum/persistenz-in-php-mit-doctrine-2-orm
mysql.de
http://www.postgresql.org/
http://www.sqlite.org/

Uber dieses Buch (verfiigbar) 2

1.5 Konventionen

Listings werden im gesamten Buch hervorgehoben und sind mit Zeilennummern versehen. An
entsprechenden Stellen wird auf ein 6ffentlich zugangliches Code-Repository bei github® verwiesen,
tiber das die Codebeispiele heruntergeladen werden konnen. Bei Listings, die ein $ vorangestellt
haben, handelt es sich um Befehle, die auf der Kommandozeile ausgefithrt werden miissen. Auf
Kommandos folgende Zeilen, die ein > vorangestellt haben, verstehen Sie sich als Kommandozei-
lenausgaben nach Kommandos. Neu eingefiihrte Fachbegriffe werden in kursiver Schrift dargestellt.
Eine Erklarung dieser Begriffe befindet sich im Glossar im Anhang zum Buch.

1.6 Wichtige Hinweise fiir Amazon-Kunden

Wenn dieses Buch bei Amazon erworben wurde, ist es derzeit schwieriger, Updates des Buches
automatisch bereitzustellen. Um Probleme zu vermeiden, sende mir bitte nach dem Kauf eine kurze
E-Mail mit dem Betreff “Updates Doctrine 2” an mail@michael-romer.de. So kannst du sicher sein,
dass du tatsachlich immer den aktuellen Stand dieses Buches vorliegen hast. Als kleines Dankeschén
fir deine Mithen bekommst du zusatzlich dann auch die PDF- und EPUB-Versionen des Buches.

1.7 Weitere Bucher des Autors

Neben diesem Buch ist mit Webentwicklung mit Zend Framework 27 ein weiteres Buch des Autors
verfiigbar. Fiir alle, die sich fiir professionelle Webentwicklung interessieren, stellt dieses Buch eine
gute Ergdanzung dar.

*https://github.com/
"https://leanpub.com/zendframework?2

https://github.com/
https://leanpub.com/zendframework2
https://github.com/
https://leanpub.com/zendframework2

2 Einleitung (verflugbar)

2.1 Objektorientierung & Domain Models

Als PHP-Entwickler denkt und programmiert man in diesen Tagen in aller Regel objektorientiert.
Funktionalitat wird tiber Klassen, Objekte, Methoden, Vererbung und den vielen weiteren Ansatzen
und Moglichkeiten der Objektorientierung realisiert. In seiner Anfangszeit hat Objektorientierung
in PHP vor allem auf die technischen Aspekte von Applikationen Anwendung gefunden, etwa im
Rahmen von MVC-basierten Frameworks, Logging- oder Mailing-Bibliotheken. Diese Komponenten
verstehen sich aus fachlicher Sicht als allgemeingiiltige Losungen, die genauso gut etwa in E-
Commerce-Anwendungen, Portallésungen oder Community-Systemen einsetzbar sind. Fiir kom-
plexere Anwendungen oder grundsatzlich auch immer dann, wenn Systeme nachhaltig anderbar
und erweiterbar sein miissen, hat sich die Objektorientierung zudem mittlerweile aber auch in der
“Fachlichkeit” einer Anwendung manifestiert.

Grundsitzlich besteht jede Anwendung aus zwei Arten von Code: technisch-orientiertem Code
und fachlich-orientiertem Code. Wéhrend technisch-orientierter Code in aller Regel eben diesen
allgemein giiltigen Charakter besitzt und sich gut in Form von Bibliotheken oder Frameworks
kapseln, wiederverwenden und verteilen lasst, trifft das auf fachlich-orientierten Code aufgrund
seiner Spezialisierung in der Regel nur selten, oft gar nicht zu. Objektorientierter, fachlicher Code
zeichnet sich technisch durch das Vorhandensein eines sog. “Domain Models” in der Anwendung
aus. Das Domain Model hat meist u.a. die folgenden Charakteristika:

« Es existieren einzelne Klassen/Objekte fiir die Kernelemente der fachlichen Doméne, die sog.
Entities (streng genommen werden kann es sich bei diesen Elementen auch um sog. Value
Objects handeln, dazu aber spater mehr). In einem Shopsystem wéren dies etwa Klassen wie
“Customer”, “Order”, “Product”, “Cart” und so weiter.

« Die fachlichen Klassen/Objekte haben bei Bedarf untereinander Assoziationen, so hatte in
einem Shopsystem eine “Order” vermutlich mindestens eine Assoziation zum “Customer” als
auch zu den bestellten “Products”.

« Fachliche Funktionen sind Teil der jeweiligen Entity. In einem Shopsystem verfiigt die “Cart”
etwa oft iber eine calculateTotalPrice()-Methode, die den insgesamt vom Kunden zu
bezahlenden Preis auf Basis der im Warenkorb abgelegten Produkte und dessen Anzahl
berechnet.

« Funktionen, die sich auf mehrere Entity-Typen beziehen, werden in sog. Services implemen-
tiert, eben weil sie sich nicht eindeutig einer Entity zuordnen lassen. In einem Shopsystem
ware das etwa der “Checkout”, der Warenbestinde reduzieren, Rechnungen generieren und
Bestellhistorien modifizieren muss, es also mit einer ganzen Reihe von Entities zu tun hat.

Einleitung (verfiigbar) 4

« Innerhalb der Anwendung wird wann immer moglich mit den fachlichen Elementen ge-
arbeitet, anstelle von generischen Datencontainern wie etwa Arrays (sinnvolle Ausnahmen
bestatigen hier die Regel).

+ Geschaftslogik (z.B. auch Geschaftsregeln) wird wann immer moglich innerhalb der fachli-
chen Klassen implementiert und nicht etwa in den Controllern einer Anwendung.

Der grofie Vorteil des Domain Models liegt in der Kapselung der Fachlichkeit und damit der
Unterstitzung der Anderbarkeit und Erweiterbarkeit der Anwendung. Die Wahrscheinlichkeit,
bei Anderungen versehentlich etwas An ders kaputt zu machen, sinkt. Durch die Isolierung des
fachlichen Codes vom technischen Code steigt zudem die Portabilitat des Systems. Das ist etwa
immer dann sehr hilfreich, wenn man von einem “Application Framework” zu einem anderen
wechseln will (oder muss).

Ein Domain Model hat neben der technischen Komponente aber auch weitere Vorteile jenseits
des Codes: Wenn an der (Weiter-)Entwicklung eines Produktes nicht nur Programmierer beteiligt
sind, sondern auch BWLer, Vertriebler, Marketeers und so weiter - und das ist bei Anwendungen
mit wirtschaftlichem Interesse ja fast immer der Fall - ermdglicht es das Domain Model, eine
gemeinsame Sprache fiir die wichtigsten Aspekte der Geschéftstatigkeit zu entwickeln. Diskussionen
rund um das gemeinsame Produkt kénnen so deutlich effizienter und zielfithrender gestaltet werden.
Dies ist ein unschatzbarer Vorteil, der fiir sich alleine genommen fast schon ein Domain Model in
der Anwendung rechtfertigt.

2.2 Beispielanwendung

Am besten lernt man an konkreten Beispielen. Auch in diesem Buch hilft uns die immer wiederkeh-
rende Beispielanwendung Talking dabei, Theorie und Praxis bestmoglich zu verzahnen. Talking ist
eine Webanwendung und erméglicht es Nutzern, ganz ahnlich zu Wordpress' oder Tumblr?, Texte
in Form sog. Posts zu veroffentlichen. Das Domain Model von Talking stellt sich wie folgt dar (in
den nachfolgenden Ausfithrungen sind die Entities durch Fettschrift hervorgehoben):

'https://wordpress.com/
*www.tumblr.com

https://wordpress.com/
www.tumblr.com
https://wordpress.com/
www.tumblr.com

Einleitung (verfiigbar) 5

\Tﬁc,
s

Beispielanwendung “Talking” - Domain Model

Ein User kann mehrere Posts schreiben, wobei ein Post immer nur einen User als Autor haben kann
und man sowohl vom User auf dessen Posts, als auch von einem Post auf dessen Autor, einen User,
schlieen kann. Ein User kann eine oder mehrere Roles im System einnehmen. Uber einen User
lasst sich auf dessen Roles schlieflen, nicht aber von einer Role-Entity auf die User, die ebenjene
Rolle einnehmen. Zu jedem User gibt es eine UserInfo, die Informationen tiber das Datum der
Registrierung bei Talking, sowie gegebenenfalls auch das Datum der Abmeldung enthalt. Es lasst
sich sowohl von einem User auf dessen UserInfo schlieflen, als bei Bedarf auch andersherum von
einer UserInfo auf einen User. Weiterhin verfiigt ein User tiber ContactData. Dort wird die E-Mail
und Telefonnummer (zusammen in einem “Container”) eines Users gespeichert, falls bekannt. Von
einem User lasst sich auf dessen ContactData schlieflen, nicht aber umgekehrt. Weiterhin kann ein
User einen anderen User als Lebenspartner kennzeichnen, der sich jeweils von beiden Seiten aus
ermitteln ldsst, als auch eine unbegrenzte Menge von Usern als Freunde. Man kann von einem
User auf dessen Freunde schlieflen, nicht aber umgekehrt. Ein einzelner Post eines Users kann
tiber beliebig viele Tags (Schlagworte) verfiigen und ein Tag kann in mehreren Posts verwendet
werden. Sowohl kann von einem Post auf dessen Tags, als auch von einem Tag auf alle Posts, die
iiber dieses Schlagwort verfiigen, geschlossen werden. Zusatzlich kénnen mehrere Posts in einer
Category gruppiert werden. Von einem Post aus lasst sich dessen Category ermitteln, es lassen

Einleitung (verfiigbar) 6

sich aber von einer Category aus nicht die dort gruppierten Posts ermitteln. Eine Category kann
iiber untergeordnete Categories verfiigen, wobei jeweils von einer Category ggf. auf untergeordnete
Categories, als auch eine ibergeordnete Category schlieflen lasst. Die Categories selbst sind einem
User zugeordnet, tiber den auf dessen Categories geschlossen werden kann, nicht aber tiber eine
Kategorie auf dessen User.

Das Domain Model ist so gewé&hlt, dass sich moglichst viele Funktionen von Doctrine 2 auch im
Rahmen der Beispielanwendung demonstrieren lassen. In einem produktiven System wiirde man
vermutlich den ein oder anderen Aspekt in einer anderen Form realisieren wollen.

Die oben genannten Einschrankungen beim Zugriff von einer Entity auf andere, referenzierte
Entities, sind, wie wir spater noch ausfiihrlich sehen werden, Funktionen eines ORM-Systems und
basieren auf fundamentalen Gegebenheit der objektorientierten Programmierung. Sie sind hingegen
nicht innerhalb einer relationalen Datenbank vorhanden. Doch mehr dazu spater.

© 0 N O O & W N =

[ENEEN
[l]

3 Ein einfaches ORM-System
selbstgebaut (verfugbar)

G Direkt mit Doctrine 2 starten?

Der folgende Abschnitt verdeutlicht, warum Doctrine 2 so eine grofie Hilfe fir den
Anwendungsentwickler ist. Stiick fiir Stiick werden Funktionen, die die Bibliothek schon
automatisch an Bord hat, exemplarisch “von Hand entwickelt”. Bei Bedarf kann dieser
Abschnitt iibersprungen werden.

3.1 Laden einer Entity

Ein Domain Model ist also eine gute Sache. Und solange man sich als Anwendungsentwickler
in der “objektorientierten Welt” aufhélt, gibt es auch keine unlésbaren Herausforderungen beim
Design und der Implementierung des jeweiligen Domain Models. Schwieriger wird es, wenn es
darum geht, nicht mehr nur mit den fliichtigen Daten zu arbeiten, sondern die Daten des Domain
Models in relationalen Datenbanken zu speichern, bzw. Objektbaume aus zuvor gespeicherten
Daten wieder aufzubauen. Da wire etwa die Tatsache, dass es sich bei Objekten im Gegensatz zu
Datenbanktabellen nicht nur um reine “Datenstrukturen” handelt, sondern Objekte auch tber ein
definiertes Verhalten in Form von Methoden verfiigen konnen. Nehmen wir das konkrete Beispiel
des User-Objekts der Beispielanwendung Talking:

<?php
namespace Entity;

class User

{
private $id;
private $firstName;
private $lastName;
private $gender;
private $namePrefix;

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Ein einfaches ORM-System selbstgebaut (verfiigbar)

const GENDER_MALE = 0O;
const GENDER_FEMALE = 1;

const GENDER_MALE_DISPLAY_VALUE = "Mr.";
const GENDER_FEMALE_DISPLAY_VALUE = "Mrs.";

public function assembleDisplayName()

{
$displayName = '';
if ($this->gender == self::GENDER_MALE) {
$displayName .= self::GENDER_MALE_DISPLAY_VALUE;
} elseif ($this->gender == self::GENDER_FEMALE) {
$displayName .= self::GENDER_FEMALE_DISPLAY_VALUE;
}
if ($this->namePrefix) {
$displayName .= ' ' . $this->namePrefix;
}
$displayName .= ' ' . $this->firstName . ' ' . $this->lastName;
return $displayName;
}
public function setFirstName($firstName)
{
$this->firstName = $firstName;
}
public function getFirstName()
{
return $this->firstName;
}
public function setGender($gender)
{
$this->gender = $gender;
}

public function getGender()
{

54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84
85
86

Ein einfaches ORM-System selbstgebaut (verfiigbar)

return $this->gender;

}
public function setId($id)
{
$this->id = $id;
}
public function getId()
{
return $this->id;
}

public function setlLastName($lastName)

{
$this->lastName = $lastName;

}
public function getlLastName()
{
return $this->lastName;
}

public function setNamePrefix($namePrefix)

{

$this->namePrefix = $namePrefix;

}
public function getNamePrefix()
{
return $this->namePrefix;
}
Listing 1.1

Interessant ist hier insbesondere die Methode assembleDisplayName(), die auf Basis der Daten des
Objekts den “Anzeigenamen” fiir einen User erzeugt, den man z.B. ben6tigt, wenn man den Autor
eines Posts anzeigen will. Der Aufruf von

© 0 N O O & W N =

-
(]

0 N O O & W N =

Ein einfaches ORM-System selbstgebaut (verfiigbar) 10

<?php
include('../entity/User.php');

$user = new Entity\User();
$user->setFirstName('Max');
$user->setlLastName('Mustermann');
$user->setCGender(0);
$user->setNamePrefix('Prof. Dr');

echo $user->assembleDisplayName();

Listing 1.2

etwa fiithrt zur Ausgabe von
Mr. Prof. Dr. Max Mustermann

Die Methode assembleDisplayName() definiert demnach ein bestimmtes Verhalten des User-
Objekts.

Wenn also etwa Daten aus der Datenbank geladen werden, z.B. die Stammdaten eines bereits regis-
trierten Users, missen sie derart verarbeitet werden, dass sie um das oben skizzierte Verhalten, sprich
um die assembleDisplayName()- Methode, angereichert werden. Oder anders gesagt: Die Daten
eines Users, die aus der Datenbank geladen werden, miissen irgendwie zur weiteren Verarbeitung
durch die Anwendung in ein User-Objekt tiberfithrt werden, denn in der Anwendung wollen wir
ja moglichst immer mit den fachlichen Objekten hantieren um einfach (und konsistent) auf die
assembleDisplayName()-Methode zugreifen zu konnen.

Erstellen wir dazu zunachst eine einfache Datenstruktur in der Datenbank:

CREATE TABLE users(
id int(10) NOT NULL auto_increment,
first_name varchar(50) NOT NULL,
last_name varchar(50) NOT NULL,
gender ENUM('@','1') NOT NULL,
name_prefix varchar(50) NOT NULL,
PRIMARY KEY (id)

)

Und fiigen die Testdaten fiir “Max Mustermann” hinzu:

© 00 N O O b W N =

s R
B W N =

Ein einfaches ORM-System selbstgebaut (verfiigbar) 11

INSERT INTO users (first_name, last_name, gender, name_prefix)
VALUES('Max', 'Mustermann', 'Q', 'Prof. Dr.');

Wenn wir nun das User-Objekt auf Basis der zuvor erstellten Daten aus der Datenbank erzeugen
wollen, konnten wir dies wie folgt erledigen:

<?php
include('../entity/User.php');

$db = new \PDO('mysql:host=localhost;dbname=app', 'root', '');
$userData = $db->query('SELECT * FROM users WHERE id = 1')->fetch();

$user = new Entity\User();
$user->setld($userDatal'id']);
$user->setFirstName($userData[' first_name']);
$user->setlastName($userData[' last_name']);
$user->setGender ($userData['gender']);
$user->setNamePrefix($userData['name_prefix']);

echo $user->assembleDisplayName();

G Verbindungsdaten in Produktivsystemen

In einem produktiven Systemen ist es selbstverstdndlich ratsam, im Gegensatz zum
Beispiel oben, mit einem (starken) Passwort und im Idealfall nicht direkt mit dem Nutzer
“root” zu arbeiten.

Mit diesen Zeilen haben wir damit begonnen, ein eigenes ORM-System zu schreiben, das hier die
Daten einer Tabelle der Datenbank auf die Eigenschaften eines Objekts abbildet. Machen wir damit
mal ein wenig weiter.

Um die Logik fiir ebenjenes “Mapping” zu kapseln, tiberfithren wir den Code in eine eigene Klasse:

O 0O = O O » wWw N =

NN NN NN NN NN S S s s 1 s s
© 0 < O O b W N =~ OO0 © 0 N O O b wWw N =~ 0©o

Ein einfaches ORM-System selbstgebaut (verfiigbar) 12

<?php
namespace Mapper;

class User

{
private $mapping = array(
'id' => 'id’,
"firstName' => 'first_name',
"lastName' => 'last_name',
'gender' => 'gender',
"namePrefix' => 'name_prefix'
);
public function populate($data, $user)
{
$mappingsFlipped = array_flip($this->mapping);
foreach($data as $key => $value) {
if(isset($mappingsFlipped[$key])) {
call_user_func_array(
array($user, 'set'. ucfirst($mappingsFlipped[$key])),
array($value)
),
}
}
return $user;
}
}

So konnte zumindest mal eine rudimentdre Implementierung ausschauen. Wasserdicht ist sie
natiirlich nicht, aber sie erfillt ihren Zweck. Der eigentliche Programmablauf sieht jetzt dann so
aus:

O 0O = O O » wWw N =

RN
N »~ O

O 00 9 O U B W N =~

NN NN NN PR R R L L L s
g b W N »~ O O 00 N O O b W N =~ 0O

Ein einfaches ORM-System selbstgebaut (verfiigbar) 13

<?php
include_once('../entity/User.php');
include_once('../mapper/User.php');

$db = new \PDO('mysql:host=localhost;dbname=app', 'root', '');
$userData = $db->query('SELECT * FROM users WHERE id = 1')->fetch();

$user = new Entity\User();
$userMapper = new Mapper\User();
$user = $userMapper->populate($userData, $user);

echo $user->assembleDisplayName();

Wir konnen aber noch weiter vereinfachen, wenn wir das SQL-Statement samt den weiteren
Arbeitsschritten zur Erzeugung des User-Objekts in einem eigenen Objekt, einem sog. Repository,
kapseln:

<?php
namespace Repository;

include_once('../entity/User.php');
include_once('../mapper/User.php');

use Mapper\User as UserMapper;
use Entity\User as UserEntity;

class User

{
private $em;
private $mapper;

public function __construct($em)

{
$this->mapper = new UserMapper;
$this->em = $em;

public function findOneById($id)
{
$userData = $this->em
~>query('SELECT * FROM users WHERE id = ' . $id)
->fetch();

26
27
28
29

© © 9 O U N W N e

W oW oW W WNNDNDNDNDNDNDNDNDDN A B R s s o s
A0 N E O © 00 O & ONROO O 10 U0 whh e~ o

Ein einfaches ORM-System selbstgebaut (verfiigbar) 14

return $this->mapper->populate($userData, new UserEntity());

Nun noch die Datenbankverbindungslogik im Entity Manager biindeln und das zuvor erstellte User-
Repository dariiber bereitstellen:

<?php
include_once('../repository/User.php');
use Repository\User as UserRepository;

class EntityManager

{
private $host;
private $db;
private $user;
private $pwd;
private $connection;

private $userRepository;

public function __construct($host, $db, $user, $pwd)

{
$this->host = $host;
$this->user = $user;
$this->pwd = $pwd;
$this->connection = new \PDO(
"mysql :host=$host ; dbname=$db",
$user,
$pwd);
$this->userRepository = null;
}
public function query($stmt)
{
return $this->connection->query($stmt);
}

35
36
37
38
39
40
41
42
43
44

Ein einfaches ORM-System selbstgebaut (verfiigbar) 15

public function getUserRepository()

{
if (lis_null($this->userRepository)) {
return $this->userRepository;
} else {
$this->userRepository = new UserRepository($this);
return $this->userRepository;
}
}

Der Entity Manager wird damit zum zentralen Einstiegspunkt, sowohl fiir die Erzeugung der
Datenbankverbindung, als auch fiir die spateren Abfragen. Nach allen Umbauten ist das angezeigte
Ergebnis nach wie vor identisch:

Mr. Prof. Dr. Max Mustermann

Jetzt haben wir schon eine ganze Menge Code geschrieben - und das nur, um die Daten aus der
Datenbanktabelle in ein Objekt zu iiberfithren. An der Anwendung haben wir hingegen so gut wie
noch gar nicht gearbeitet. Es zeigt sich bereits: Die Implementierung eines ORM ist ein “dickes Brett”,
die Realisierung wird aufwéndig. Und wir haben ja gerade erst einmal angefangen. Aber machen
wir noch einmal ein bisschen weiter, damit wir Doctrine 2 spéter auch wirklich richtig zu schatzen
wissen.

3.2 Speichern einer Entity

Bislang haben wir uns einen sehr trivialen Anwendungsfall angesehen: Wir holen ein einziges Objekt
auf Basis seiner ID aus einer einzigen Datenbanktabelle. Wie gehen wir aber mit Schreiboperationen
um? Grundsétzlich gibt es zwei Fille: Entweder, es wird ein neues Objekt erstellt, oder aber, ein
existierendes Objekt wird modifiziert. Je nach dem muss dann entweder ein Insert- oder aber ein
Update-Statement auf der Datenbank ausgefiihrt werden. Implementieren wir zunéchst den “Insert-
Fall”. Dazu erweitern wir zunéchst die den User-Mapper um eine Methode extract():

O 0O = O O » wWw N =

BB DWW W W WWWWWWNDNDNDDNDDNDNDDNDDNDNDDN-S S Ss s, sss,s e
N A O © 00 9 O O b W N~ OO © 03O0 O b N~ OO O 03O0 O k- WwN =~ o

Ein einfaches ORM-System selbstgebaut (verfiigbar) 16

<?php
namespace Mapper;

class User
{
private $mapping = array(

"id' => 'id',
"firstName' => 'first_name',
"lastName' => 'last_name',
'gender' => 'gender',
"namePrefix' => 'name_prefix'

)i
public function extract($user)
{
$data = array();
foreach($this->mapping as $keyObject => $keyColumn) {
if ($keyColumn != 'id") {
$data[$keyColumn] = call_user_func(
array($user, 'get'. ucfirst($keyObject))
)
}
}
return $data;
}

public function populate($data, $user)

{
$mappingsFlipped = array_flip($this->mapping);

foreach($data as $key => $value) {
if(isset($mappingsFlipped[$key])) {
call_user_func_array(
array($user, 'set'. ucfirst($mappingsFlipped[$key])),
array($value)

);

43
44
45

O 0 I O O B wWw N =

W W W W W N DD DNDNDDNDDNDNDNDNDDNDDNDDNRS - 2~ 2 2 2 2 B s
B O N 2P0 O 0N 0 0k 0N BP0 © 0N 0 0k N -~ o

Ein einfaches ORM-System selbstgebaut (verfiigbar) 17

return $user;

Auf diesem Wege bekommen wir die zu speichernden Daten also aus dem entsprechenden Objekt
heraus. Wenn wir nun noch den Entity Manager um eine saveUser ()-Methode erweitern, konnen
wir neue Datensatze einfiigen:

<?php

include_once('../repository/User.php');
include_once('../mapper/User.php');

use Repository\User as UserRepository;
use Mapper\User as UserMapper;

class EntityManager
{
private $host;
private $db;
private $user;
private $pwd;
private $connection;
private $userRepository;

public function __construct($host, $db, $user, $pwd)

{
$this->host = $host;
$this->user = $user;
$this->pwd = $pwd;
$this->connection =
new \PDO("mysql:host=$host;dbname=$db", $user, $pwd);
$this->userRepository = null;
}
public function query($stmt)
{
return $this->connection->query($stmt);
}

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61

O 00 9 O U B W N =~

[T =Y
w N =~ O

Ein einfaches ORM-System selbstgebaut (verfiigbar)

18

public function saveUser($user)
{
$userMapper = new UserMapper();
$data = $userMapper->extract($user);
$columnsString = implode(", ", array_keys($data));
$valuesString = implode(
array_map("mysql_real_escape_string", $data)
)i
return $this->query(
"INSERT INTO users ($columnsString) VALUES('$valuesString')"
);
}
public function getUserRepository()
{
if (lis_null($this->userRepository)) {
return $this->userRepository;
} else {
$this->userRepository = new UserRepository($this);
return $this->userRepository;
}
}
}

Das Einfiigen eines neuen Datensatzes funktioniert nun wie folgt:

<?php
include_once('../EntityManager.php');
$em = new EntityManager('localhost', 'app', 'root', '');

$user = $em->getUserRepository()->findOneById(1);
echo $user->assembleDisplayName() . '
';

$newUser = new Entity\User();
$newUser->setFirstName('Ute");
$newUser ->setlLastName('Musermann');
$newUser->setGender(1);
$em->savelUser ($newUser) ;

echo $newUser->assembleDisplayName();

© 0 I O O & W N =

W W W N NDNDNDDNDNDNDDNDNDDN A B 1y oy
N 2~ O O 0 0 U B WNAOO © W30 O »n Wwhhe~»r

Ein einfaches ORM-System selbstgebaut (verfiigbar) 19

So weit, so gut! Was nun aber, wenn wir ein existierendes Objekt / einen existierenden Datensatz ma-
nipulieren wollen? Woher wissen wir, ob wir es mit einem neuen oder einem gednderten Datensatz
zu tun haben? In unserem Fall wire es sicherlich legitim, wenn wir priifen wiirden, ob ein Wert fir
“id” gesetzt ist, denn schlief8lich handelt es sich ja um ein Feld mit “auto_increment” - die Datenbank
vergibt hier also selbst den notwendigen Wert beim initialen Speichern. So richtig wasserdicht
oder elegant ist diese Losung allerdings nicht. Aulerdem koénnten wir unter Verwendung einer sog.
Identity Map noch weitere Vorteile erzielen: So lasst sich etwa das wiederholte Laden zuvor bereits
geladener Entities vermeiden. Die Identity Map ist dabei nichts anderes als ein assoziatives Array,
dass Referenzen auf bereits geladene Objekte halt. Ein guter Ort dafiir ist der Entity Manager, den
ich auch gleich um die entsprechende “Lookup-Logik” in der saveUser ()-Methode erweitere:

<?php

include_once('../repository/User.php');
include_once('../mapper/User.php');

use Repository\User as UserRepository;
use Mapper\User as UserMapper;

class EntityManager
{
private $host;
private $db;
private $user;
private $pwd;
private $connection;
private $userRepository;
private $identityMap;

public function __construct($host, $db, $user, $pwd)

{
$this->host = $host;
$this->user = $user;
$this->pwd = $pwd;

$this->connection =
new \PDO("mysqgl:host=$host;dbname=$db", $user, $pwd);

$this->userRepository = null;
$this->identityMap = array('users' => array());

public function query($stmt)

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4

Ein einfaches ORM-System selbstgebaut (verfiigbar) 20

return $this->connection->query($stmt);

public function saveUser($user)

{

$userMapper = new UserMapper();
$data = $userMapper->extract($user);

$userId = call_user_func(
array($user, 'get'. ucfirst($userMapper->getIdColumn()))
);

if (array_key_exists($userld, $this->identityMap['users'])) {

$setString = ;

foreach ($data as $key => $value) {
$setString .= $key."='$value',";

}
return $this->query(
"UPDATE users SET " . substr($setString, 0, -1)
" WHERE " . $userMapper->getIdColumn() . "=" . $userld

);

} else {
$columnsString = implode(",

, array_keys($data));
$valuesString = implode(

na
’

T
7

array_map("mysql_real_escape_string", $data)

);

return $this->query(

"INSERT INTO users ($columnsString) VALUES('$valuesString')"

);

public function getUserRepository()

{

if (lis_null($this->userRepository)) {

75
76
T
78
79
80
81
82
83
84
85
86
87

o N O U b W N =

Ein einfaches ORM-System selbstgebaut (verfiigbar) 21

return $this->userRepository;

} else {
$this->userRepository = new UserRepository($this);
return $this->userRepository;

}

}

public function registerUserEntity($id, $user)

{
$this->identityMap['users'][$id] = $user;
return $user;

}

Den User-Mapper habe ich zudem noch um die Methode getIdColumn() erweitert, die den Wert
“id” zurtckliefert. Nun kann ich im Programm selbst Folgendes ausfiihren:

<?php

include_once('../EntityManager.php');

$em = new EntityManager('localhost', 'app', 'root', '');
$user = $em->getUserRepository()->findOneById(1);

echo $user->assembleDisplayName() . '
';

$user->setFirstname('Moritz');
$em->saveUser ($user);

Der Datensatz wird korrekt in der Datenbank geandert, es wird kein weiterer Datensatz hinzugefiigt.

3.3 Assoziationen

Nun wollen wir die Ubersicht aller Posts eines Nutzers generieren. Ich stelle mir vor, dass wir spéter
so auf einfache Weise iiber die Beitrige eines Nutzers iterieren und jeweils die Uberschrift des
Beitrags anzeigen konnen:

O 0O = O O » wWw N =

[ENEEN
[l]

=N O O & W N =

O 0 9 O O » W N =~

Y
O b W N -~ O

Ein einfaches ORM-System selbstgebaut (verfiigbar) 22

<7php

include_once('../EntityManager.php');

$em = new EntityManager('localhost', 'app', 'root', '');
$user = $em->getUserRepository()->findOneById(1);
2>

<h1> <?echo $user->assembleDisplayName(); 7></h1>

<?php foreach($user->getPosts() as $post) { 7>
<?php echo $post->getTitle(); 7></1i>

<?php } 7>

Was miissen wir dafiir alles tun? Zunéchst einmal erstellen wir eine passende Datenstruktur:

CREATE TABLE posts(
id int(10) NOT NULL auto_increment,
user_id int(10) NOT NULL,
title varchar(255) NOT NULL,
content text NOT NULL,
PRIMARY KEY (id)

)

Zudem legen wir dort fiir den Testnutzer auch Testposts ab, so dass wir unsere Implementierung
spater auch testen konnen. Jetzt gilt es eine ganze Reihe von Klassen zu erweitern. Die User-Entity
erweitern wir um die getPosts()-Methode, die beim ersten Aufruf fiir das Nachladen der Beitrage
des entsprechenden Nutzers tiber das entsprechende Repository sorgt:

<?php
namespace Entity;

class User

{
e

private $postRepository;

public function getPosts()

{
if (is_null($this->posts)) {
$this->posts = $this->postRepository->findByUser($this);

16
17
18
19
20

O 0O 9 O O » W N =

W W oW wWwNNNNDNNNDDNIDNIDNR B) N N)
W = O © 0 N0 O & 0N F O © 0 1 0 O b Ww N =~

Ein einfaches ORM-System selbstgebaut (verfiigbar) 23

return $this->posts;

s

Damit das funktioniert, muss der User-Entity allerdings das PostRepository zur Verfiigung stehen.
Dazu muss das User-Repository entsprechend in der Methode findOneById() erweitert werden:

<?php
namespace Repository;

include_once('../entity/User.php');
include_once('../mapper/User.php');

use Mapper\User as UserMapper;
use Entity\User as UserEntity;

class User

{
private $em;
private $mapper;

public function __construct($em)

{
$this->mapper = new UserMapper;
$this->em = $em;

public function findOneById($id)
{
$userData = $this->em
->query('SELECT * FROM users WHERE id = ' . $id)
->fetchAll1();

$newUser = new UserEntity();
$newUser ->setPostRepository($this->em->getPostRepository());

return $this->em->registerUserEntity(
$id,
$this->mapper->populate($userData, $newUser)

);

34
35

O 0O I O O » wWw N =~

T S = S G G G A G G
S © 0O N O O B Ww N =~ O

O 00 9 O U B W N =~

[T =Y
w N =~ O

Ein einfaches ORM-System selbstgebaut (verfiigbar) 24

Und dazu muss wiederum der EntityManager den Zugriff bieten:

<?php
/7]

class EntityManager

{
/7]
private $postRepository;
public function getPostRepository()
{
if (lis_null($this->postRepository)) {
return $this->postRepository;
} else {
$this->postRepository = new PostRepository($this);
return $this->postRepository;
}
}
}

Nun miissen die notwendigen Klassen, die jetzt bereits oben verfiigbar gemacht und verwendet
werden, aber natiirlich selbst noch entwickelt werden. Zunachst die Post-Entity selbst:

<?php
namespace Entity;

class Post

{
private $id;
private $title;
private $content;

public function setContent($content)

{

$this->content = $content;

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

O 0 = O O » wWw N =~

[T =Y
W N =~

Ein einfaches ORM-System selbstgebaut (verfiigbar)

public

function getContent()

return $this->content;

function setId($id)

$this->id = $id;

function getlId()

return $this->id;

function setTitle($title)

$this->title = $title;

function getTitle()

return $this->title;

Dann der obligatorische Mapper:

<?php

namespace Mapper;

class Post

{

private $mapping = array(

)

public
{

Iidl :> Iidl,
'title' => 'title’,
'content' => 'content',

function getIdColumn()

25

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Ein einfaches ORM-System selbstgebaut (verfiigbar) 26

return 'id';

}
public function extract($user)
{
$data = array();
foreach ($this->mapping as $keyObject => $keyColumn) {
if ($keyColumn != $this->getIdColumn()) {
$data[$keyColumn] = call_user_func(
array($user, 'get'. ucfirst($keyObject))
);
}
}
return $data;
}
public function populate($data, $user)
{
$mappingsFlipped = array_flip($this->mapping);
foreach ($data as $key => $value) {
if (isset($mappingsFlipped[$key])) {
call_user_func_array(
array($user, 'set'. ucfirst($mappingsFlipped[$key])),
array($value)
),
}
}
return $user;
}

Und nicht zu vergessen, das Post-Repository:

O 0O = O O » wWw N =

W W W W W W W N N NDNDDNDNDNDDNDDNDDNDDN=S -~ » 2 2 22
O O & WO NP O © 03 0 G d WA O © 0 3 0 O »h WwNd =~ O

Ein einfaches ORM-System selbstgebaut (verfiigbar) 27

<?php
namespace Repository;

include_once('../entity/Post.php');
include_once('../mapper/Post.php');

use Mapper\Post as PostMapper;
use Entity\Post as PostEntity;

class Post

{
private $em;
private $mapper;
public function __construct($em)
{
$this->mapper = new PostMapper;
$this->em = $em;
}
public function findByUser($user)
{
$postsData = $this->em
->query('SELECT * FROM posts WHERE user_id = ' . $user->getId())
->fetchAll();
$posts = array();
foreach($postsData as $postData) {
$newPost = new PostEntity();
$posts[] = $this->mapper->populate($postData, $newPost);
}
return $posts;
}
}

Alles in allem stellt sich das Anwendung-Verzeichnis im Dateisystem bis zu diesem Punkt also wie
folgt dar:

© 0 N O O & W N =

SN
N N O

Ein einfaches ORM-System selbstgebaut (verfiigbar) 28

EntityManager.php
entity/
Post.php
User.php
mapper/
Post .php
User .php
repository/
Post.php
User .php
public/
index.php

6 Code-Download

Den Code bis zu diesem Zeitpunkt findest du bei github zum Download".

3.4 Ausblick & Fazit

Prima, das haben wir soweit hinbekommen. So richtig gut sieht das alles aber bereits jetzt schon nicht
mehr aus. Ein Problem ist die Tatsache, dass sich technischer und fachlicher Code bereits sehr stark
mischt. Viele der Losungen sind zudem spezifisch nur fiir das jeweilige Problem, einige Codestellen
riechen nach “Copy & Paste” und missten bereits jetzt wieder vollstandig refactored werden.

Was ist jetzt aber mit zusammengesetzten Primarschliisseln, dem Loschen und Hinzufiigen von
Assoziationen, n:m-Beziehungen, Vererbung, Performance-Optimierungen, Caching, den Entities,
Mappern und Repositories fiir die fehlenden zig weiteren fachlichen Objekte der Anwendung und so
weiter? Und was passiert, wenn sich die Datenstrukturen der Anwendung auch nur ein kleinwenig
andern mussen? Dann missten wir im Grunde zig Klassen dndern. Es ist wohl endgiiltig an der Zeit,
dass wir uns Doctrine 2 ansehen.

*https://github.com/michael-romer/doctrine2buch

https://github.com/michael-romer/doctrine2buch
https://github.com/michael-romer/doctrine2buch

O b W N =

4 Hallo, Doctrine 2! (verfugbar)

G Keine Sorge ...

Im Laufe dieses Buches gehen wir noch alle Themen, die wir im Folgenden teils bereits
kurz anreiflen, noch einmal im Detail ein.

4.1 Installation

Am einfachsten lasst sich Doctrine 2 installieren, wenn man das Tool “Composer” zur Hilfe nimmt.
Dazu ladt man einmal Composer von dessen Website' herunter und legt die Phar-Datei im Root-
Verzeichnis der eigenen Anwendung ab. Zusétzlich erstellt man die Datei composer. json mit
folgendem Inhalt:

"require": {

"doctrine/orm": "2.3.1"

Das Kommando
$ php composer.phar install

im Root-Verzeichnis der Anwendung sorgt nun dafiir, dass Doctrine 2 heruntergeladen und
verfiigbar gemacht wird. Dazu erzeugt Composer ein neues Verzeichnis vendor. Aber Composer
ladt nicht nur den Code herunter, sondern richtet gleichzeitig auch das Autoloading der Doctrine-
Klassen ein, so dass an geeigneter Stelle, etwa friih in der index . php, nur noch die folgenden Zeilen
hinzugefiigt werden miissen:

'http://getcomposer.org/download/

http://getcomposer.org/download/
http://getcomposer.org/download/

a b W N =~

Hallo, Doctrine 2! (verfiigbar) 30

<?php

/7 []

if (file_exists('vendor/autoload.php')) {
$loader = include 'vendor/autoload.php';

4.2 Die erste Entity

Ausgehend von ersten Kapitel dieses Buch, in dem wir ein eigenes ORM-System zu programmieren
angefangen haben, konnen wir nun vieles radikal vereinfachen, wenn wir die User-Entity wie folgt

O 0O I O O » wWw N =

NN NN NN NN NDND RS A R R s s
© 00 9 O O b W N =~ OO O 0 3 O O b Vv N =~ O

mit Annotationen aus der Doctrine 2 Bibliothek versehen:

<?php
namespace Entity;

Ve
* @Entity
* @Table(name="users"
*/
class User
{
Vet

* @Id @Column(type="integer")

* @GeneratedValue
*/
private $id;

/** @Column(type="string",
private $firstName;

/** @Column(type="string",
private $lastName;

/** @Column(type="string",

private $gender;

/** @Column(type="string",
private $namePrefix;

const GENDER_MALE

const GENDER_FEMALE

name="first_name", nullable=true) */

name="last_name", nullable=true) */

nullable=true) */

—n

name="name_prefix", nullable=true) */

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71

Hallo, Doctrine 2! (verfiigbar)

const GENDER_MALE_DISPLAY_VALUE = "Mr.";
const GENDER_FEMALE_DISPLAY_VALUE = "Mrs.";

public function assembleDisplayName()

{
$displayName = '';
if ($this->gender == self::GENDER_MALE) {
$displayName .= self::GENDER_MALE_DISPLAY_ VALUE;
} elseif ($this->gender == self::GENDER_FEMALE) {
$displayName .= self::GENDER_FEMALE_DISPLAY_VALUE;
}
if ($this->namePrefix) {
$displayName .= ' ' . $this->namePrefix;
}
$displayName .= ' ' . $this->firstName . ' ' . $this->lastName;
return $displayName;
}
public function setFirstName($firstName)
{
$this->firstName = $firstName;
}
public function getFirstName()
{
return $this->firstName;
}
public function setGender($gender)
{
$this->gender = $gender;
}

public function getGender()
{

return $this->gender;

31

72
73
74
5
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

Hallo, Doctrine 2! (verfiigbar)

public

public
{

function setId($id)

$this->id = $id;

function getlId()

return $this->id;

function setlLastName($lastName)

$this->lastName = $lastName;

function getlLastName()

return $this->lastName;

function setNamePrefix($namePrefix)

$this->namePrefix = $namePrefix;

function getNamePrefix()

return $this->namePrefix;

32

Die index.php kann wie folgt gedndert werden, um die Entity via Doctrine zu lesen und zu dndern:

O 0O = O O » wWw N =

NN N NN P R R 1 N Ly s
B WO N 20 O 0N 0 O b N~

O 0 = O O » W N =~

(RN
= O

Hallo, Doctrine 2! (verfiigbar) 33

<?php
include '../entity/User.php';
include '../vendor/autoload.php';

use Doctrine\ORM\Tools\Setup;
use Doctrine\ORM\EntityManager;

$paths = array(__DIR__ . "/../entity/");
$isDevMode = true;

$dbParams = array(
'driver’ => 'pdo_mysql',
"user' => 'root',
'"password' => '',
"dbname’ => ‘'app',

)

$config = Setup: :createAnnotationMetadataConfiguration($paths, $isDevMode);
$em = EntityManager: :create($dbParams, $config);

$user = $em->getRepository('Entity\User')->findOneById(1);

echo $user->assembleDisplayName() . '
';
$user->setFirstname('Moritz"');

$em->persist($user);

$em->flush();

4.3 Die erste Assoziation

Und das war es schon. Auch die Assoziation ist kein grofleres Problem. Dazu muss die User-Entity
noch einmal wie folgt erweitert werden:

<?php
namespace Entity;

JHk
* @Entity
* @Table(name="users"
*/
class User
{
e

12
13
14
15
16
17
18
19
20
21
22
23
24
25

O 00 9 O U B W N =~

NN NN NN R R R | | s |y s
g b W N »~ O O 00 N O O b W N =~ 0O

Hallo, Doctrine 2! (verfiigbar)

ok
* @0OneToMany (targetEntity="Entity\Post", mappedBy
*/

private $posts;

—n

user"

e

public function __construct()

{

$this->posts = new \Doctrine\Common\Collections\ArrayCollection();

ey

Und die notwendigen Annotationen bei der Post-Entity:

<?php
namespace Entity;

JHk
* @Entity

* @Table(name="posts")
*/

class Post

{
Vess
* @Id @Column(type="integer")
* @GeneratedValue
*/
private $id;

Vess
* @ManyToOne(targetEntity="Entity\User", inversedBy="posts")
* @JoinColumn(name="user_id", referencedColumnName="id")

*/

private $user;

/** @Column(type="string") */
private $title;

/** @Column(type="string") */

34

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

Hallo, Doctrine 2! (verfiigbar)

private $content;

public
{

function setUserId($user_id)

$this->user_id = $user_id;

function getUserId()

return $this->user_id;

function setContent($content)

$this->content = $content;

function getContent()

return $this->content;

function setId($id)

$this->id = $id;

function getlId()

return $this->id;

function setTitle($title)

$this->title = $title;

function getTitle()

return $this->title;

35

© 00 N O O & W N =

-
o

O b W N -

Hallo, Doctrine 2! (verfiigbar) 36

Sobald der entsprechende User geladen ist, kann wie gehabt iiber die Posts des Nutzers iteriert
werden:

<7php

// L]

$user = $em->getRepository('Entity\User')->£findOneById(1);
2>

<h1><?echo $user->assembleDisplayName(); ?></h1>

<?php foreach($user->getPosts() as $post) {?>
<1i><?php echo $post->getTitle(); ?>
<?php } 7>

Alles in allem kommen wir nun allerdings mit deutlich weniger Klassen aus:

entity/
Post.php
User.php
public/
index.php

Einfacher geht es kaum - Doctrine 2 sei Dank! Bevor wir Talking im Folgenden Stiick fir Stiick
weiterentwickeln, schauen wir uns zunachst ein paar theoretische Konzepte von Doctrine 2 an.

6 Code-Download

Den Code bis zu diesem Zeitpunkt findest du bei github zum Download®.

*https://github.com/michael-romer/doctrine2buch/tree/doctrine

https://github.com/michael-romer/doctrine2buch/tree/doctrine
https://github.com/michael-romer/doctrine2buch/tree/doctrine

	Inhaltsverzeichnis
	Über dieses Buch (verfügbar)
	Early Access Edition
	Die Community zum Buch
	Softwareversion
	Verwendetes Datenbanksystem
	Konventionen
	Wichtige Hinweise für Amazon-Kunden
	Weitere Bücher des Autors

	Einleitung (verfügbar)
	Objektorientierung & Domain Models
	Beispielanwendung

	Ein einfaches ORM-System selbstgebaut (verfügbar)
	Laden einer Entity
	Speichern einer Entity
	Assoziationen
	Ausblick & Fazit

	Hallo, Doctrine 2! (verfügbar)
	Installation
	Die erste Entity
	Die erste Assoziation

