

Persistenz in PHP mit Doctrine 2 ORM
Grundlagen, Konzepte und die praktische Anwendung

Michael Romer

Dieses Buch können Sie hier kaufen http://leanpub.com/doctrine2

Diese Version wurde auf 2013-08-23 veröffentlicht

Das ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen mit Hilfe des
Lean-Publishing-Prozesses ganz neue Möglichkeiten des Publizierens. Lean Publishing bedeutet
die permanente, iterative Veröffentlichung neuer Beta-Versionen eines E-Books unter der
Zuhilfenahme schlanker Werkzeuge. Das Feedback der Erstleser hilft dem Autor bei der
Finalisierung und der anschließenden Vermarktung des Buches. Lean Publishing unterstützt de
Autor darin ein Buch zu schreiben, das auch gelesen wird.

©2012 - 2013 by Michael Romer, Grevingstrasse 35, 48151 Münster, Deutschland,
mail@michael-romer.de - Alle Rechte vorbehalten.

http://leanpub.com/doctrine2
http://leanpub.com
http://leanpub.com/manifesto

Ebenfalls von Michael Romer
Webentwicklung mit Zend Framework 2

Web Development with Zend Framework 2

PHP Data Persistence with Doctrine 2 ORM

http://leanpub.com/u/michaelromer
http://leanpub.com/zendframework2
http://leanpub.com/zendframework2-en
http://leanpub.com/doctrine2-en

Inhaltsverzeichnis

1 Über dieses Buch (verfügbar) . 1
1.1 Early Access Edition . 1
1.2 Die Community zum Buch . 1
1.3 Softwareversion . 1
1.4 Verwendetes Datenbanksystem . 1
1.5 Konventionen . 2
1.6 Wichtige Hinweise für Amazon-Kunden . 2
1.7 Weitere Bücher des Autors . 2

2 Einleitung (verfügbar) . 3
2.1 Objektorientierung & Domain Models . 3
2.2 Beispielanwendung . 4

3 Ein einfaches ORM-System selbstgebaut (verfügbar) 7
3.1 Laden einer Entity . 7
3.2 Speichern einer Entity . 15
3.3 Assoziationen . 21
3.4 Ausblick & Fazit . 28

4 Hallo, Doctrine 2! (verfügbar) . 29
4.1 Installation . 29
4.2 Die erste Entity . 30
4.3 Die erste Assoziation . 33

1 Über dieses Buch (verfügbar)
1.1 Early Access Edition

Wenn du diesen Abschnitt liest, hälst du die “Early Access Edition” dieses Buches in deinen Händen.
“Early Access” bedeutet, dass du bereits vorne im Buch mit dem Lesen anfangen kannst, während
die weiteren Kapitel noch “in der Mache sind”. Sie werden dir automatisch zur Verfügung gestellt,
sobald sie fertig sind. Dank’ der Idee des Lean Publishing¹ bist du jetzt also noch viel mehr “up-to-
date”, als du es jemals zuvor warst. Es ist sehr wahrscheinlich, dass du zum aktuellen Zeitpunkt noch
eine Reihe von Rechtschreibfehlern und den ein oder anderen Bug in den Code-Beispielen finden
wirst. Ich versuche sorgfältig zu arbeiten, kann aber derzeit keine Fehlerfreiheit garantieren. Wenn
du mir helfen möchtest, dieses Buch noch besser zu machen, werde doch gerne in der Community
zum Buch aktiv und teile dort deine Hinweise und Vorschläge mit. Ich nehme sie dankend entgegen.

1.2 Die Community zum Buch

Du hast einen Fehler gefunden, möchtest deine Ideen für die nächste Auflage loswerden oder dich
einfach nur zu den Themen im Buch und zu Doctrine 2 im Allgemeinen austauschen? Dann ist die
Community zum Buch² bei Google Groups der richtige Anlaufpunkt für dich. Dort bekommst du
nicht nur direkten Kontakt zu mir, dem Autor dieses Buches, sondern auch zu den anderen Lesern.
Du benötigst lediglich einen Google-Account, den du dir bei Bedarf zuvor kostenlos erstellst.

1.3 Softwareversion

Die Inhalte in diesem Buch beziehen sich auf Doctrine 2.3, sind aber mit hoher Wahrscheinlichkeit
auch für spätere Versionen uneingeschränkt gültig.

1.4 Verwendetes Datenbanksystem

Für die Beispiele in diesem Buch kommt das MySQL-Datenbanksystem³ zum Einsatz. Doctrine 2
unterstützt neben MySQL aber auch weitere DBMS wie etwa PostgreSQL⁴ oder SQLite⁵. Der große
Teile der Beispiele sind uneingeschränkt auch für diese Systeme gültig, stellenweise müssen ggf.
systemspezifische Anpassungen vorgenommen werden.

¹http://leanpub.com
²https://groups.google.com/forum/#!forum/persistenz-in-php-mit-doctrine-2-orm
³mysql.de
⁴http://www.postgresql.org/
⁵http://www.sqlite.org/

http://leanpub.com
https://groups.google.com/forum/#!forum/persistenz-in-php-mit-doctrine-2-orm
mysql.de
http://www.postgresql.org/
http://www.sqlite.org/
http://leanpub.com
https://groups.google.com/forum/#!forum/persistenz-in-php-mit-doctrine-2-orm
mysql.de
http://www.postgresql.org/
http://www.sqlite.org/

Über dieses Buch (verfügbar) 2

1.5 Konventionen

Listings werden im gesamten Buch hervorgehoben und sind mit Zeilennummern versehen. An
entsprechenden Stellen wird auf ein öffentlich zugängliches Code-Repository bei github⁶ verwiesen,
über das die Codebeispiele heruntergeladen werden können. Bei Listings, die ein $ vorangestellt
haben, handelt es sich um Befehle, die auf der Kommandozeile ausgeführt werden müssen. Auf
Kommandos folgende Zeilen, die ein > vorangestellt haben, verstehen Sie sich als Kommandozei-
lenausgaben nach Kommandos. Neu eingeführte Fachbegriffe werden in kursiver Schrift dargestellt.
Eine Erklärung dieser Begriffe befindet sich im Glossar im Anhang zum Buch.

1.6 Wichtige Hinweise für Amazon-Kunden

Wenn dieses Buch bei Amazon erworben wurde, ist es derzeit schwieriger, Updates des Buches
automatisch bereitzustellen. Um Probleme zu vermeiden, sende mir bitte nach dem Kauf eine kurze
E-Mail mit dem Betreff “Updates Doctrine 2” an mail@michael-romer.de. So kannst du sicher sein,
dass du tatsächlich immer den aktuellen Stand dieses Buches vorliegen hast. Als kleines Dankeschön
für deine Mühen bekommst du zusätzlich dann auch die PDF- und EPUB-Versionen des Buches.

1.7 Weitere Bücher des Autors

Neben diesem Buch ist mit Webentwicklung mit Zend Framework 2⁷ ein weiteres Buch des Autors
verfügbar. Für alle, die sich für professionelle Webentwicklung interessieren, stellt dieses Buch eine
gute Ergänzung dar.

⁶https://github.com/
⁷https://leanpub.com/zendframework2

https://github.com/
https://leanpub.com/zendframework2
https://github.com/
https://leanpub.com/zendframework2

2 Einleitung (verfügbar)
2.1 Objektorientierung & Domain Models

Als PHP-Entwickler denkt und programmiert man in diesen Tagen in aller Regel objektorientiert.
Funktionalität wird über Klassen, Objekte, Methoden, Vererbung und den vielen weiteren Ansätzen
und Möglichkeiten der Objektorientierung realisiert. In seiner Anfangszeit hat Objektorientierung
in PHP vor allem auf die technischen Aspekte von Applikationen Anwendung gefunden, etwa im
Rahmen vonMVC-basierten Frameworks, Logging- oderMailing-Bibliotheken. Diese Komponenten
verstehen sich aus fachlicher Sicht als allgemeingültige Lösungen, die genauso gut etwa in E-
Commerce-Anwendungen, Portallösungen oder Community-Systemen einsetzbar sind. Für kom-
plexere Anwendungen oder grundsätzlich auch immer dann, wenn Systeme nachhaltig änderbar
und erweiterbar sein müssen, hat sich die Objektorientierung zudem mittlerweile aber auch in der
“Fachlichkeit” einer Anwendung manifestiert.

Grundsätzlich besteht jede Anwendung aus zwei Arten von Code: technisch-orientiertem Code
und fachlich-orientiertem Code. Während technisch-orientierter Code in aller Regel eben diesen
allgemein gültigen Charakter besitzt und sich gut in Form von Bibliotheken oder Frameworks
kapseln, wiederverwenden und verteilen lässt, trifft das auf fachlich-orientierten Code aufgrund
seiner Spezialisierung in der Regel nur selten, oft gar nicht zu. Objektorientierter, fachlicher Code
zeichnet sich technisch durch das Vorhandensein eines sog. “Domain Models” in der Anwendung
aus. Das Domain Model hat meist u.a. die folgenden Charakteristika:

• Es existieren einzelne Klassen/Objekte für die Kernelemente der fachlichen Domäne, die sog.
Entities (streng genommen werden kann es sich bei diesen Elementen auch um sog. Value
Objects handeln, dazu aber später mehr). In einem Shopsystem wären dies etwa Klassen wie
“Customer”, “Order”, “Product”, “Cart” und so weiter.

• Die fachlichen Klassen/Objekte haben bei Bedarf untereinander Assoziationen, so hätte in
einem Shopsystem eine “Order” vermutlich mindestens eine Assoziation zum “Customer” als
auch zu den bestellten “Products”.

• Fachliche Funktionen sind Teil der jeweiligen Entity. In einem Shopsystem verfügt die “Cart”
etwa oft über eine calculateTotalPrice()-Methode, die den insgesamt vom Kunden zu
bezahlenden Preis auf Basis der im Warenkorb abgelegten Produkte und dessen Anzahl
berechnet.

• Funktionen, die sich auf mehrere Entity-Typen beziehen, werden in sog. Services implemen-
tiert, eben weil sie sich nicht eindeutig einer Entity zuordnen lassen. In einem Shopsystem
wäre das etwa der “Checkout”, der Warenbestände reduzieren, Rechnungen generieren und
Bestellhistorien modifizieren muss, es also mit einer ganzen Reihe von Entities zu tun hat.

Einleitung (verfügbar) 4

• Innerhalb der Anwendung wird wann immer möglich mit den fachlichen Elementen ge-
arbeitet, anstelle von generischen Datencontainern wie etwa Arrays (sinnvolle Ausnahmen
bestätigen hier die Regel).

• Geschäftslogik (z.B. auch Geschäftsregeln) wird wann immer möglich innerhalb der fachli-
chen Klassen implementiert und nicht etwa in den Controllern einer Anwendung.

Der große Vorteil des Domain Models liegt in der Kapselung der Fachlichkeit und damit der
Unterstützung der Änderbarkeit und Erweiterbarkeit der Anwendung. Die Wahrscheinlichkeit,
bei Änderungen versehentlich etwas An ders kaputt zu machen, sinkt. Durch die Isolierung des
fachlichen Codes vom technischen Code steigt zudem die Portabilität des Systems. Das ist etwa
immer dann sehr hilfreich, wenn man von einem “Application Framework” zu einem anderen
wechseln will (oder muss).

Ein Domain Model hat neben der technischen Komponente aber auch weitere Vorteile jenseits
des Codes: Wenn an der (Weiter-)Entwicklung eines Produktes nicht nur Programmierer beteiligt
sind, sondern auch BWLer, Vertriebler, Marketeers und so weiter - und das ist bei Anwendungen
mit wirtschaftlichem Interesse ja fast immer der Fall - ermöglicht es das Domain Model, eine
gemeinsame Sprache für die wichtigsten Aspekte der Geschäftstätigkeit zu entwickeln. Diskussionen
rund um das gemeinsame Produkt können so deutlich effizienter und zielführender gestaltet werden.
Dies ist ein unschätzbarer Vorteil, der für sich alleine genommen fast schon ein Domain Model in
der Anwendung rechtfertigt.

2.2 Beispielanwendung

Am besten lernt man an konkreten Beispielen. Auch in diesem Buch hilft uns die immer wiederkeh-
rende Beispielanwendung Talking dabei, Theorie und Praxis bestmöglich zu verzahnen. Talking ist
eine Webanwendung und ermöglicht es Nutzern, ganz ähnlich zu Wordpress¹ oder Tumblr², Texte
in Form sog. Posts zu veröffentlichen. Das Domain Model von Talking stellt sich wie folgt dar (in
den nachfolgenden Ausführungen sind die Entities durch Fettschrift hervorgehoben):

¹https://wordpress.com/
²www.tumblr.com

https://wordpress.com/
www.tumblr.com
https://wordpress.com/
www.tumblr.com

Einleitung (verfügbar) 5

Beispielanwendung “Talking” - Domain Model

Ein User kann mehrere Posts schreiben, wobei ein Post immer nur einen User als Autor haben kann
und man sowohl vom User auf dessen Posts, als auch von einem Post auf dessen Autor, einen User,
schließen kann. Ein User kann eine oder mehrere Roles im System einnehmen. Über einen User
lässt sich auf dessen Roles schließen, nicht aber von einer Role-Entity auf die User, die ebenjene
Rolle einnehmen. Zu jedem User gibt es eine UserInfo, die Informationen über das Datum der
Registrierung bei Talking, sowie gegebenenfalls auch das Datum der Abmeldung enthält. Es lässt
sich sowohl von einem User auf dessen UserInfo schließen, als bei Bedarf auch andersherum von
einer UserInfo auf einen User. Weiterhin verfügt ein User über ContactData. Dort wird die E-Mail
und Telefonnummer (zusammen in einem “Container”) eines Users gespeichert, falls bekannt. Von
einem User lässt sich auf dessen ContactData schließen, nicht aber umgekehrt. Weiterhin kann ein
User einen anderen User als Lebenspartner kennzeichnen, der sich jeweils von beiden Seiten aus
ermitteln lässt, als auch eine unbegrenzte Menge von Usern als Freunde. Man kann von einem
User auf dessen Freunde schließen, nicht aber umgekehrt. Ein einzelner Post eines Users kann
über beliebig viele Tags (Schlagworte) verfügen und ein Tag kann in mehreren Posts verwendet
werden. Sowohl kann von einem Post auf dessen Tags, als auch von einem Tag auf alle Posts, die
über dieses Schlagwort verfügen, geschlossen werden. Zusätzlich können mehrere Posts in einer
Category gruppiert werden. Von einem Post aus lässt sich dessen Category ermitteln, es lassen

Einleitung (verfügbar) 6

sich aber von einer Category aus nicht die dort gruppierten Posts ermitteln. Eine Category kann
über untergeordnete Categories verfügen, wobei jeweils von einer Category ggf. auf untergeordnete
Categories, als auch eine übergeordnete Category schließen lässt. Die Categories selbst sind einem
User zugeordnet, über den auf dessen Categories geschlossen werden kann, nicht aber über eine
Kategorie auf dessen User.

Das Domain Model ist so gewählt, dass sich möglichst viele Funktionen von Doctrine 2 auch im
Rahmen der Beispielanwendung demonstrieren lassen. In einem produktiven System würde man
vermutlich den ein oder anderen Aspekt in einer anderen Form realisieren wollen.

Die oben genannten Einschränkungen beim Zugriff von einer Entity auf andere, referenzierte
Entities, sind, wie wir später noch ausführlich sehen werden, Funktionen eines ORM-Systems und
basieren auf fundamentalen Gegebenheit der objektorientierten Programmierung. Sie sind hingegen
nicht innerhalb einer relationalen Datenbank vorhanden. Doch mehr dazu später.

3 Ein einfaches ORM-System
selbstgebaut (verfügbar)

Direkt mit Doctrine 2 starten?

Der folgende Abschnitt verdeutlicht, warum Doctrine 2 so eine große Hilfe für den
Anwendungsentwickler ist. Stück für Stück werden Funktionen, die die Bibliothek schon
automatisch an Bord hat, exemplarisch “von Hand entwickelt”. Bei Bedarf kann dieser
Abschnitt übersprungen werden.

3.1 Laden einer Entity

Ein Domain Model ist also eine gute Sache. Und solange man sich als Anwendungsentwickler
in der “objektorientierten Welt” aufhält, gibt es auch keine unlösbaren Herausforderungen beim
Design und der Implementierung des jeweiligen Domain Models. Schwieriger wird es, wenn es
darum geht, nicht mehr nur mit den flüchtigen Daten zu arbeiten, sondern die Daten des Domain
Models in relationalen Datenbanken zu speichern, bzw. Objektbäume aus zuvor gespeicherten
Daten wieder aufzubauen. Da wäre etwa die Tatsache, dass es sich bei Objekten im Gegensatz zu
Datenbanktabellen nicht nur um reine “Datenstrukturen” handelt, sondern Objekte auch über ein
definiertes Verhalten in Form von Methoden verfügen können. Nehmen wir das konkrete Beispiel
des User-Objekts der Beispielanwendung Talking:

1 <?php

2 namespace Entity;

3

4 class User

5 {

6 private $id;

7 private $firstName;

8 private $lastName;

9 private $gender;

10 private $namePrefix;

11

Ein einfaches ORM-System selbstgebaut (verfügbar) 8

12 const GENDER_MALE = 0;

13 const GENDER_FEMALE = 1;

14

15 const GENDER_MALE_DISPLAY_VALUE = "Mr.";

16 const GENDER_FEMALE_DISPLAY_VALUE = "Mrs.";

17

18 public function assembleDisplayName()

19 {

20 $displayName = '';

21

22 if ($this->gender == self::GENDER_MALE) {

23 $displayName .= self::GENDER_MALE_DISPLAY_VALUE;

24 } elseif ($this->gender == self::GENDER_FEMALE) {

25 $displayName .= self::GENDER_FEMALE_DISPLAY_VALUE;

26 }

27

28 if ($this->namePrefix) {

29 $displayName .= ' ' . $this->namePrefix;

30 }

31

32 $displayName .= ' ' . $this->firstName . ' ' . $this->lastName;

33

34 return $displayName;

35 }

36

37 public function setFirstName($firstName)

38 {

39 $this->firstName = $firstName;

40 }

41

42 public function getFirstName()

43 {

44 return $this->firstName;

45 }

46

47 public function setGender($gender)

48 {

49 $this->gender = $gender;

50 }

51

52 public function getGender()

53 {

Ein einfaches ORM-System selbstgebaut (verfügbar) 9

54 return $this->gender;

55 }

56

57 public function setId($id)

58 {

59 $this->id = $id;

60 }

61

62 public function getId()

63 {

64 return $this->id;

65 }

66

67 public function setLastName($lastName)

68 {

69 $this->lastName = $lastName;

70 }

71

72 public function getLastName()

73 {

74 return $this->lastName;

75 }

76

77 public function setNamePrefix($namePrefix)

78 {

79 $this->namePrefix = $namePrefix;

80 }

81

82 public function getNamePrefix()

83 {

84 return $this->namePrefix;

85 }

86 }

Listing 1.1

Interessant ist hier insbesondere die Methode assembleDisplayName(), die auf Basis der Daten des
Objekts den “Anzeigenamen” für einen User erzeugt, den man z.B. benötigt, wenn man den Autor
eines Posts anzeigen will. Der Aufruf von

Ein einfaches ORM-System selbstgebaut (verfügbar) 10

1 <?php

2 include('../entity/User.php');

3

4 $user = new Entity\User();

5 $user->setFirstName('Max');

6 $user->setLastName('Mustermann');

7 $user->setGender(0);

8 $user->setNamePrefix('Prof. Dr');

9

10 echo $user->assembleDisplayName();

Listing 1.2

etwa führt zur Ausgabe von

1 Mr. Prof. Dr. Max Mustermann

Die Methode assembleDisplayName() definiert demnach ein bestimmtes Verhalten des User-
Objekts.

Wenn also etwa Daten aus der Datenbank geladen werden, z.B. die Stammdaten eines bereits regis-
trierten Users, müssen sie derart verarbeitet werden, dass sie um das oben skizzierte Verhalten, sprich
um die assembleDisplayName()- Methode, angereichert werden. Oder anders gesagt: Die Daten
eines Users, die aus der Datenbank geladen werden, müssen irgendwie zur weiteren Verarbeitung
durch die Anwendung in ein User-Objekt überführt werden, denn in der Anwendung wollen wir
ja möglichst immer mit den fachlichen Objekten hantieren um einfach (und konsistent) auf die
assembleDisplayName()-Methode zugreifen zu können.

Erstellen wir dazu zunächst eine einfache Datenstruktur in der Datenbank:

1 CREATE TABLE users(

2 id int(10) NOT NULL auto_increment,

3 first_name varchar(50) NOT NULL,

4 last_name varchar(50) NOT NULL,

5 gender ENUM('0','1') NOT NULL,

6 name_prefix varchar(50) NOT NULL,

7 PRIMARY KEY (id)

8);

Und fügen die Testdaten für “Max Mustermann” hinzu:

Ein einfaches ORM-System selbstgebaut (verfügbar) 11

1 INSERT INTO users (first_name, last_name, gender, name_prefix)

2 VALUES('Max', 'Mustermann', '0', 'Prof. Dr.');

Wenn wir nun das User-Objekt auf Basis der zuvor erstellten Daten aus der Datenbank erzeugen
wollen, könnten wir dies wie folgt erledigen:

1 <?php

2 include('../entity/User.php');

3

4 $db = new \PDO('mysql:host=localhost;dbname=app', 'root', '');

5 $userData = $db->query('SELECT * FROM users WHERE id = 1')->fetch();

6

7 $user = new Entity\User();

8 $user->setId($userData['id']);

9 $user->setFirstName($userData['first_name']);

10 $user->setLastName($userData['last_name']);

11 $user->setGender($userData['gender']);

12 $user->setNamePrefix($userData['name_prefix']);

13

14 echo $user->assembleDisplayName();

Verbindungsdaten in Produktivsystemen

In einem produktiven Systemen ist es selbstverständlich ratsam, im Gegensatz zum
Beispiel oben, mit einem (starken) Passwort und im Idealfall nicht direkt mit demNutzer
“root” zu arbeiten.

Mit diesen Zeilen haben wir damit begonnen, ein eigenes ORM-System zu schreiben, das hier die
Daten einer Tabelle der Datenbank auf die Eigenschaften eines Objekts abbildet. Machen wir damit
mal ein wenig weiter.

Um die Logik für ebenjenes “Mapping” zu kapseln, überführen wir den Code in eine eigene Klasse:

Ein einfaches ORM-System selbstgebaut (verfügbar) 12

1 <?php

2 namespace Mapper;

3

4 class User

5 {

6 private $mapping = array(

7 'id' => 'id',

8 'firstName' => 'first_name',

9 'lastName' => 'last_name',

10 'gender' => 'gender',

11 'namePrefix' => 'name_prefix'

12);

13

14 public function populate($data, $user)

15 {

16 $mappingsFlipped = array_flip($this->mapping);

17

18 foreach($data as $key => $value) {

19 if(isset($mappingsFlipped[$key])) {

20 call_user_func_array(

21 array($user, 'set'. ucfirst($mappingsFlipped[$key])),

22 array($value)

23);

24 }

25 }

26

27 return $user;

28 }

29 }

So könnte zumindest mal eine rudimentäre Implementierung ausschauen. Wasserdicht ist sie
natürlich nicht, aber sie erfüllt ihren Zweck. Der eigentliche Programmablauf sieht jetzt dann so
aus:

Ein einfaches ORM-System selbstgebaut (verfügbar) 13

1 <?php

2 include_once('../entity/User.php');

3 include_once('../mapper/User.php');

4

5 $db = new \PDO('mysql:host=localhost;dbname=app', 'root', '');

6 $userData = $db->query('SELECT * FROM users WHERE id = 1')->fetch();

7

8 $user = new Entity\User();

9 $userMapper = new Mapper\User();

10 $user = $userMapper->populate($userData, $user);

11

12 echo $user->assembleDisplayName();

Wir können aber noch weiter vereinfachen, wenn wir das SQL-Statement samt den weiteren
Arbeitsschritten zur Erzeugung des User-Objekts in einem eigenen Objekt, einem sog. Repository,
kapseln:

1 <?php

2 namespace Repository;

3

4 include_once('../entity/User.php');

5 include_once('../mapper/User.php');

6

7 use Mapper\User as UserMapper;

8 use Entity\User as UserEntity;

9

10 class User

11 {

12 private $em;

13 private $mapper;

14

15 public function __construct($em)

16 {

17 $this->mapper = new UserMapper;

18 $this->em = $em;

19 }

20

21 public function findOneById($id)

22 {

23 $userData = $this->em

24 ->query('SELECT * FROM users WHERE id = ' . $id)

25 ->fetch();

Ein einfaches ORM-System selbstgebaut (verfügbar) 14

26

27 return $this->mapper->populate($userData, new UserEntity());

28 }

29 }

Nun noch die Datenbankverbindungslogik im Entity Manager bündeln und das zuvor erstellte User-
Repository darüber bereitstellen:

1 <?php

2

3 include_once('../repository/User.php');

4

5 use Repository\User as UserRepository;

6

7 class EntityManager

8 {

9 private $host;

10 private $db;

11 private $user;

12 private $pwd;

13 private $connection;

14 private $userRepository;

15

16 public function __construct($host, $db, $user, $pwd)

17 {

18 $this->host = $host;

19 $this->user = $user;

20 $this->pwd = $pwd;

21

22 $this->connection = new \PDO(

23 "mysql:host=$host;dbname=$db",

24 $user,

25 $pwd);

26

27 $this->userRepository = null;

28 }

29

30 public function query($stmt)

31 {

32 return $this->connection->query($stmt);

33 }

34

Ein einfaches ORM-System selbstgebaut (verfügbar) 15

35 public function getUserRepository()

36 {

37 if (!is_null($this->userRepository)) {

38 return $this->userRepository;

39 } else {

40 $this->userRepository = new UserRepository($this);

41 return $this->userRepository;

42 }

43 }

44 }

Der Entity Manager wird damit zum zentralen Einstiegspunkt, sowohl für die Erzeugung der
Datenbankverbindung, als auch für die späteren Abfragen. Nach allen Umbauten ist das angezeigte
Ergebnis nach wie vor identisch:

1 Mr. Prof. Dr. Max Mustermann

Jetzt haben wir schon eine ganze Menge Code geschrieben - und das nur, um die Daten aus der
Datenbanktabelle in ein Objekt zu überführen. An der Anwendung haben wir hingegen so gut wie
noch gar nicht gearbeitet. Es zeigt sich bereits: Die Implementierung eines ORM ist ein “dickes Brett”,
die Realisierung wird aufwändig. Und wir haben ja gerade erst einmal angefangen. Aber machen
wir noch einmal ein bisschen weiter, damit wir Doctrine 2 später auch wirklich richtig zu schätzen
wissen.

3.2 Speichern einer Entity

Bislang habenwir uns einen sehr trivialenAnwendungsfall angesehen:Wir holen ein einziges Objekt
auf Basis seiner ID aus einer einzigen Datenbanktabelle. Wie gehen wir aber mit Schreiboperationen
um? Grundsätzlich gibt es zwei Fälle: Entweder, es wird ein neues Objekt erstellt, oder aber, ein
existierendes Objekt wird modifiziert. Je nach dem muss dann entweder ein Insert- oder aber ein
Update-Statement auf der Datenbank ausgeführt werden. Implementieren wir zunächst den “Insert-
Fall”. Dazu erweitern wir zunächst die den User-Mapper um eine Methode extract():

Ein einfaches ORM-System selbstgebaut (verfügbar) 16

1 <?php

2 namespace Mapper;

3

4 class User

5 {

6 private $mapping = array(

7 'id' => 'id',

8 'firstName' => 'first_name',

9 'lastName' => 'last_name',

10 'gender' => 'gender',

11 'namePrefix' => 'name_prefix'

12);

13

14 public function extract($user)

15 {

16 $data = array();

17

18 foreach($this->mapping as $keyObject => $keyColumn) {

19

20 if ($keyColumn != 'id') {

21 $data[$keyColumn] = call_user_func(

22 array($user, 'get'. ucfirst($keyObject))

23);

24 }

25 }

26

27 return $data;

28 }

29

30 public function populate($data, $user)

31 {

32 $mappingsFlipped = array_flip($this->mapping);

33

34 foreach($data as $key => $value) {

35 if(isset($mappingsFlipped[$key])) {

36 call_user_func_array(

37 array($user, 'set'. ucfirst($mappingsFlipped[$key])),

38 array($value)

39);

40 }

41 }

42

Ein einfaches ORM-System selbstgebaut (verfügbar) 17

43 return $user;

44 }

45 }

Auf diesem Wege bekommen wir die zu speichernden Daten also aus dem entsprechenden Objekt
heraus. Wenn wir nun noch den Entity Manager um eine saveUser()-Methode erweitern, können
wir neue Datensätze einfügen:

1 <?php

2

3 include_once('../repository/User.php');

4 include_once('../mapper/User.php');

5

6 use Repository\User as UserRepository;

7 use Mapper\User as UserMapper;

8

9 class EntityManager

10 {

11 private $host;

12 private $db;

13 private $user;

14 private $pwd;

15 private $connection;

16 private $userRepository;

17

18 public function __construct($host, $db, $user, $pwd)

19 {

20 $this->host = $host;

21 $this->user = $user;

22 $this->pwd = $pwd;

23

24 $this->connection =

25 new \PDO("mysql:host=$host;dbname=$db", $user, $pwd);

26

27 $this->userRepository = null;

28 }

29

30 public function query($stmt)

31 {

32 return $this->connection->query($stmt);

33 }

34

Ein einfaches ORM-System selbstgebaut (verfügbar) 18

35 public function saveUser($user)

36 {

37 $userMapper = new UserMapper();

38 $data = $userMapper->extract($user);

39 $columnsString = implode(", ", array_keys($data));

40

41 $valuesString = implode(

42 "',

43 '",

44 array_map("mysql_real_escape_string", $data)

45);

46

47 return $this->query(

48 "INSERT INTO users ($columnsString) VALUES('$valuesString')"

49);

50 }

51

52 public function getUserRepository()

53 {

54 if (!is_null($this->userRepository)) {

55 return $this->userRepository;

56 } else {

57 $this->userRepository = new UserRepository($this);

58 return $this->userRepository;

59 }

60 }

61 }

Das Einfügen eines neuen Datensatzes funktioniert nun wie folgt:

1 <?php

2 include_once('../EntityManager.php');

3 $em = new EntityManager('localhost', 'app', 'root', '');

4 $user = $em->getUserRepository()->findOneById(1);

5 echo $user->assembleDisplayName() . '
';

6

7 $newUser = new Entity\User();

8 $newUser->setFirstName('Ute');

9 $newUser->setLastName('Musermann');

10 $newUser->setGender(1);

11 $em->saveUser($newUser);

12

13 echo $newUser->assembleDisplayName();

Ein einfaches ORM-System selbstgebaut (verfügbar) 19

Soweit, so gut!Was nun aber, wennwir ein existierendes Objekt / einen existierenden Datensatz ma-
nipulieren wollen? Woher wissen wir, ob wir es mit einem neuen oder einem geänderten Datensatz
zu tun haben? In unserem Fall wäre es sicherlich legitim, wenn wir prüfen würden, ob ein Wert für
“id” gesetzt ist, denn schließlich handelt es sich ja um ein Feld mit “auto_increment” - die Datenbank
vergibt hier also selbst den notwendigen Wert beim initialen Speichern. So richtig wasserdicht
oder elegant ist diese Lösung allerdings nicht. Außerdem könnten wir unter Verwendung einer sog.
Identity Map noch weitere Vorteile erzielen: So lässt sich etwa das wiederholte Laden zuvor bereits
geladener Entities vermeiden. Die Identity Map ist dabei nichts anderes als ein assoziatives Array,
dass Referenzen auf bereits geladene Objekte hält. Ein guter Ort dafür ist der Entity Manager, den
ich auch gleich um die entsprechende “Lookup-Logik” in der saveUser()-Methode erweitere:

1 <?php

2

3 include_once('../repository/User.php');

4 include_once('../mapper/User.php');

5

6 use Repository\User as UserRepository;

7 use Mapper\User as UserMapper;

8

9 class EntityManager

10 {

11 private $host;

12 private $db;

13 private $user;

14 private $pwd;

15 private $connection;

16 private $userRepository;

17 private $identityMap;

18

19 public function __construct($host, $db, $user, $pwd)

20 {

21 $this->host = $host;

22 $this->user = $user;

23 $this->pwd = $pwd;

24

25 $this->connection =

26 new \PDO("mysql:host=$host;dbname=$db", $user, $pwd);

27

28 $this->userRepository = null;

29 $this->identityMap = array('users' => array());

30 }

31

32 public function query($stmt)

Ein einfaches ORM-System selbstgebaut (verfügbar) 20

33 {

34 return $this->connection->query($stmt);

35 }

36

37 public function saveUser($user)

38 {

39 $userMapper = new UserMapper();

40 $data = $userMapper->extract($user);

41

42 $userId = call_user_func(

43 array($user, 'get'. ucfirst($userMapper->getIdColumn()))

44);

45

46 if (array_key_exists($userId, $this->identityMap['users'])) {

47 $setString = '';

48

49 foreach ($data as $key => $value) {

50 $setString .= $key."='$value',";

51 }

52

53 return $this->query(

54 "UPDATE users SET " . substr($setString, 0, -1) .

55 " WHERE " . $userMapper->getIdColumn() . "=" . $userId

56);

57

58 } else {

59 $columnsString = implode(", ", array_keys($data));

60 $valuesString = implode(

61 "',

62 '",

63 array_map("mysql_real_escape_string", $data)

64);

65

66 return $this->query(

67 "INSERT INTO users ($columnsString) VALUES('$valuesString')"

68);

69 }

70 }

71

72 public function getUserRepository()

73 {

74 if (!is_null($this->userRepository)) {

Ein einfaches ORM-System selbstgebaut (verfügbar) 21

75 return $this->userRepository;

76 } else {

77 $this->userRepository = new UserRepository($this);

78 return $this->userRepository;

79 }

80 }

81

82 public function registerUserEntity($id, $user)

83 {

84 $this->identityMap['users'][$id] = $user;

85 return $user;

86 }

87 }

Den User-Mapper habe ich zudem noch um die Methode getIdColumn() erweitert, die den Wert
“id” zurückliefert. Nun kann ich im Programm selbst Folgendes ausführen:

1 <?php

2 include_once('../EntityManager.php');

3 $em = new EntityManager('localhost', 'app', 'root', '');

4 $user = $em->getUserRepository()->findOneById(1);

5 echo $user->assembleDisplayName() . '
';

6

7 $user->setFirstname('Moritz');

8 $em->saveUser($user);

Der Datensatz wird korrekt in der Datenbank geändert, es wird kein weiterer Datensatz hinzugefügt.

3.3 Assoziationen

Nun wollen wir die Übersicht aller Posts eines Nutzers generieren. Ich stelle mir vor, dass wir später
so auf einfache Weise über die Beiträge eines Nutzers iterieren und jeweils die Überschrift des
Beitrags anzeigen können:

Ein einfaches ORM-System selbstgebaut (verfügbar) 22

1 <?php

2 include_once('../EntityManager.php');

3 $em = new EntityManager('localhost', 'app', 'root', '');

4 $user = $em->getUserRepository()->findOneById(1);

5 ?>

6 <h1><?echo $user->assembleDisplayName(); ?></h1>

7

8 <?php foreach($user->getPosts() as $post) { ?>

9 <?php echo $post->getTitle(); ?>

10 <?php } ?>

11

Was müssen wir dafür alles tun? Zunächst einmal erstellen wir eine passende Datenstruktur:

1 CREATE TABLE posts(

2 id int(10) NOT NULL auto_increment,

3 user_id int(10) NOT NULL,

4 title varchar(255) NOT NULL,

5 content text NOT NULL,

6 PRIMARY KEY (id)

7);

Zudem legen wir dort für den Testnutzer auch Testposts ab, so dass wir unsere Implementierung
später auch testen können. Jetzt gilt es eine ganze Reihe von Klassen zu erweitern. Die User-Entity
erweitern wir um die getPosts()-Methode, die beim ersten Aufruf für das Nachladen der Beiträge
des entsprechenden Nutzers über das entsprechende Repository sorgt:

1 <?php

2 namespace Entity;

3

4 class User

5 {

6 // [..]

7

8 private $postRepository;

9

10 public function getPosts()

11 {

12 if (is_null($this->posts)) {

13 $this->posts = $this->postRepository->findByUser($this);

14 }

15

Ein einfaches ORM-System selbstgebaut (verfügbar) 23

16 return $this->posts;

17 }

18

19 // [..]

20 }

Damit das funktioniert, muss der User-Entity allerdings das PostRepository zur Verfügung stehen.
Dazu muss das User-Repository entsprechend in der Methode findOneById() erweitert werden:

1 <?php

2 namespace Repository;

3

4 include_once('../entity/User.php');

5 include_once('../mapper/User.php');

6

7 use Mapper\User as UserMapper;

8 use Entity\User as UserEntity;

9

10 class User

11 {

12 private $em;

13 private $mapper;

14

15 public function __construct($em)

16 {

17 $this->mapper = new UserMapper;

18 $this->em = $em;

19 }

20

21 public function findOneById($id)

22 {

23 $userData = $this->em

24 ->query('SELECT * FROM users WHERE id = ' . $id)

25 ->fetchAll();

26

27 $newUser = new UserEntity();

28 $newUser->setPostRepository($this->em->getPostRepository());

29

30 return $this->em->registerUserEntity(

31 $id,

32 $this->mapper->populate($userData, $newUser)

33);

Ein einfaches ORM-System selbstgebaut (verfügbar) 24

34 }

35 }

Und dazu muss wiederum der EntityManager den Zugriff bieten:

1 <?php

2

3 // [..]

4

5 class EntityManager

6 {

7 // [..]

8

9 private $postRepository;

10

11 public function getPostRepository()

12 {

13 if (!is_null($this->postRepository)) {

14 return $this->postRepository;

15 } else {

16 $this->postRepository = new PostRepository($this);

17 return $this->postRepository;

18 }

19 }

20 }

Nun müssen die notwendigen Klassen, die jetzt bereits oben verfügbar gemacht und verwendet
werden, aber natürlich selbst noch entwickelt werden. Zunächst die Post-Entity selbst:

1 <?php

2 namespace Entity;

3

4 class Post

5 {

6 private $id;

7 private $title;

8 private $content;

9

10 public function setContent($content)

11 {

12 $this->content = $content;

13 }

Ein einfaches ORM-System selbstgebaut (verfügbar) 25

14

15 public function getContent()

16 {

17 return $this->content;

18 }

19

20 public function setId($id)

21 {

22 $this->id = $id;

23 }

24

25 public function getId()

26 {

27 return $this->id;

28 }

29

30 public function setTitle($title)

31 {

32 $this->title = $title;

33 }

34

35 public function getTitle()

36 {

37 return $this->title;

38 }

39 }

Dann der obligatorische Mapper:

1 <?php

2 namespace Mapper;

3

4 class Post

5 {

6 private $mapping = array(

7 'id' => 'id',

8 'title' => 'title',

9 'content' => 'content',

10);

11

12 public function getIdColumn()

13 {

Ein einfaches ORM-System selbstgebaut (verfügbar) 26

14 return 'id';

15 }

16

17 public function extract($user)

18 {

19 $data = array();

20

21 foreach ($this->mapping as $keyObject => $keyColumn) {

22 if ($keyColumn != $this->getIdColumn()) {

23 $data[$keyColumn] = call_user_func(

24 array($user, 'get'. ucfirst($keyObject))

25);

26 }

27 }

28

29 return $data;

30 }

31

32 public function populate($data, $user)

33 {

34 $mappingsFlipped = array_flip($this->mapping);

35

36 foreach ($data as $key => $value) {

37 if (isset($mappingsFlipped[$key])) {

38 call_user_func_array(

39 array($user, 'set'. ucfirst($mappingsFlipped[$key])),

40 array($value)

41);

42 }

43 }

44

45 return $user;

46 }

47 }

Und nicht zu vergessen, das Post-Repository:

Ein einfaches ORM-System selbstgebaut (verfügbar) 27

1 <?php

2 namespace Repository;

3

4 include_once('../entity/Post.php');

5 include_once('../mapper/Post.php');

6

7 use Mapper\Post as PostMapper;

8 use Entity\Post as PostEntity;

9

10 class Post

11 {

12 private $em;

13 private $mapper;

14

15 public function __construct($em)

16 {

17 $this->mapper = new PostMapper;

18 $this->em = $em;

19 }

20

21 public function findByUser($user)

22 {

23 $postsData = $this->em

24 ->query('SELECT * FROM posts WHERE user_id = ' . $user->getId())

25 ->fetchAll();

26

27 $posts = array();

28

29 foreach($postsData as $postData) {

30 $newPost = new PostEntity();

31 $posts[] = $this->mapper->populate($postData, $newPost);

32 }

33

34 return $posts;

35 }

36 }

Alles in allem stellt sich das Anwendung-Verzeichnis im Dateisystem bis zu diesem Punkt also wie
folgt dar:

Ein einfaches ORM-System selbstgebaut (verfügbar) 28

1 EntityManager.php

2 entity/

3 Post.php

4 User.php

5 mapper/

6 Post.php

7 User.php

8 repository/

9 Post.php

10 User.php

11 public/

12 index.php

Code-Download

Den Code bis zu diesem Zeitpunkt findest du bei github zum Download¹.

3.4 Ausblick & Fazit

Prima, das habenwir soweit hinbekommen. So richtig gut sieht das alles aber bereits jetzt schon nicht
mehr aus. Ein Problem ist die Tatsache, dass sich technischer und fachlicher Code bereits sehr stark
mischt. Viele der Lösungen sind zudem spezifisch nur für das jeweilige Problem, einige Codestellen
riechen nach “Copy & Paste” und müssten bereits jetzt wieder vollständig refactored werden.

Was ist jetzt aber mit zusammengesetzten Primärschlüsseln, dem Löschen und Hinzufügen von
Assoziationen, n:m-Beziehungen, Vererbung, Performance-Optimierungen, Caching, den Entities,
Mappern und Repositories für die fehlenden zig weiteren fachlichen Objekte der Anwendung und so
weiter? Und was passiert, wenn sich die Datenstrukturen der Anwendung auch nur ein kleinwenig
ändern müssen? Dann müssten wir im Grunde zig Klassen ändern. Es ist wohl endgültig an der Zeit,
dass wir uns Doctrine 2 ansehen.

¹https://github.com/michael-romer/doctrine2buch

https://github.com/michael-romer/doctrine2buch
https://github.com/michael-romer/doctrine2buch

4 Hallo, Doctrine 2! (verfügbar)

Keine Sorge …

Im Laufe dieses Buches gehen wir noch alle Themen, die wir im Folgenden teils bereits
kurz anreißen, noch einmal im Detail ein.

4.1 Installation

Am einfachsten lässt sich Doctrine 2 installieren, wenn man das Tool “Composer” zur Hilfe nimmt.
Dazu lädt man einmal Composer von dessen Website¹ herunter und legt die Phar-Datei im Root-
Verzeichnis der eigenen Anwendung ab. Zusätzlich erstellt man die Datei composer.json mit
folgendem Inhalt:

1 {

2 "require": {

3 "doctrine/orm": "2.3.1"

4 }

5 }

Das Kommando

1 $ php composer.phar install

im Root-Verzeichnis der Anwendung sorgt nun dafür, dass Doctrine 2 heruntergeladen und
verfügbar gemacht wird. Dazu erzeugt Composer ein neues Verzeichnis vendor. Aber Composer
lädt nicht nur den Code herunter, sondern richtet gleichzeitig auch das Autoloading der Doctrine-
Klassen ein, so dass an geeigneter Stelle, etwa früh in der index.php, nur noch die folgenden Zeilen
hinzugefügt werden müssen:

¹http://getcomposer.org/download/

http://getcomposer.org/download/
http://getcomposer.org/download/

Hallo, Doctrine 2! (verfügbar) 30

1 <?php

2 // [..]

3 if (file_exists('vendor/autoload.php')) {

4 $loader = include 'vendor/autoload.php';

5 }

4.2 Die erste Entity

Ausgehend von ersten Kapitel dieses Buch, in dem wir ein eigenes ORM-System zu programmieren
angefangen haben, können wir nun vieles radikal vereinfachen, wenn wir die User-Entity wie folgt
mit Annotationen aus der Doctrine 2 Bibliothek versehen:

1 <?php

2 namespace Entity;

3

4 /**

5 * @Entity

6 * @Table(name="users")

7 */

8 class User

9 {

10 /**

11 * @Id @Column(type="integer")

12 * @GeneratedValue

13 */

14 private $id;

15

16 /** @Column(type="string", name="first_name", nullable=true) */

17 private $firstName;

18

19 /** @Column(type="string", name="last_name", nullable=true) */

20 private $lastName;

21

22 /** @Column(type="string", nullable=true) */

23 private $gender;

24

25 /** @Column(type="string", name="name_prefix", nullable=true) */

26 private $namePrefix;

27

28 const GENDER_MALE = 0;

29 const GENDER_FEMALE = 1;

Hallo, Doctrine 2! (verfügbar) 31

30

31 const GENDER_MALE_DISPLAY_VALUE = "Mr.";

32 const GENDER_FEMALE_DISPLAY_VALUE = "Mrs.";

33

34 public function assembleDisplayName()

35 {

36 $displayName = '';

37

38 if ($this->gender == self::GENDER_MALE) {

39 $displayName .= self::GENDER_MALE_DISPLAY_VALUE;

40 } elseif ($this->gender == self::GENDER_FEMALE) {

41 $displayName .= self::GENDER_FEMALE_DISPLAY_VALUE;

42 }

43

44 if ($this->namePrefix) {

45 $displayName .= ' ' . $this->namePrefix;

46 }

47

48 $displayName .= ' ' . $this->firstName . ' ' . $this->lastName;

49

50 return $displayName;

51 }

52

53 public function setFirstName($firstName)

54 {

55 $this->firstName = $firstName;

56 }

57

58 public function getFirstName()

59 {

60 return $this->firstName;

61 }

62

63 public function setGender($gender)

64 {

65 $this->gender = $gender;

66 }

67

68 public function getGender()

69 {

70 return $this->gender;

71 }

Hallo, Doctrine 2! (verfügbar) 32

72

73 public function setId($id)

74 {

75 $this->id = $id;

76 }

77

78 public function getId()

79 {

80 return $this->id;

81 }

82

83 public function setLastName($lastName)

84 {

85 $this->lastName = $lastName;

86 }

87

88 public function getLastName()

89 {

90 return $this->lastName;

91 }

92

93 public function setNamePrefix($namePrefix)

94 {

95 $this->namePrefix = $namePrefix;

96 }

97

98 public function getNamePrefix()

99 {

100 return $this->namePrefix;

101 }

102 }

Die index.php kann wie folgt geändert werden, um die Entity via Doctrine zu lesen und zu ändern:

Hallo, Doctrine 2! (verfügbar) 33

1 <?php

2 include '../entity/User.php';

3 include '../vendor/autoload.php';

4

5 use Doctrine\ORM\Tools\Setup;

6 use Doctrine\ORM\EntityManager;

7

8 $paths = array(__DIR__ . "/../entity/");

9 $isDevMode = true;

10

11 $dbParams = array(

12 'driver' => 'pdo_mysql',

13 'user' => 'root',

14 'password' => '',

15 'dbname' => 'app',

16);

17

18 $config = Setup::createAnnotationMetadataConfiguration($paths, $isDevMode);

19 $em = EntityManager::create($dbParams, $config);

20 $user = $em->getRepository('Entity\User')->findOneById(1);

21 echo $user->assembleDisplayName() . '
';

22 $user->setFirstname('Moritz');

23 $em->persist($user);

24 $em->flush();

4.3 Die erste Assoziation

Und das war es schon. Auch die Assoziation ist kein größeres Problem. Dazu muss die User-Entity
noch einmal wie folgt erweitert werden:

1 <?php

2 namespace Entity;

3

4 /**

5 * @Entity

6 * @Table(name="users")

7 */

8 class User

9 {

10 // [..]

11

Hallo, Doctrine 2! (verfügbar) 34

12 /**

13 * @OneToMany(targetEntity="Entity\Post", mappedBy="user")

14 */

15 private $posts;

16

17 // [..]

18

19 public function __construct()

20 {

21 $this->posts = new \Doctrine\Common\Collections\ArrayCollection();

22 }

23

24 // [..]

25 }

Und die notwendigen Annotationen bei der Post-Entity:

1 <?php

2 namespace Entity;

3

4 /**

5 * @Entity

6 * @Table(name="posts")

7 */

8 class Post

9 {

10 /**

11 * @Id @Column(type="integer")

12 * @GeneratedValue

13 */

14 private $id;

15

16 /**

17 * @ManyToOne(targetEntity="Entity\User", inversedBy="posts")

18 * @JoinColumn(name="user_id", referencedColumnName="id")

19 */

20 private $user;

21

22 /** @Column(type="string") */

23 private $title;

24

25 /** @Column(type="string") */

Hallo, Doctrine 2! (verfügbar) 35

26 private $content;

27

28 public function setUserId($user_id)

29 {

30 $this->user_id = $user_id;

31 }

32

33 public function getUserId()

34 {

35 return $this->user_id;

36 }

37

38 public function setContent($content)

39 {

40 $this->content = $content;

41 }

42

43 public function getContent()

44 {

45 return $this->content;

46 }

47

48 public function setId($id)

49 {

50 $this->id = $id;

51 }

52

53 public function getId()

54 {

55 return $this->id;

56 }

57

58 public function setTitle($title)

59 {

60 $this->title = $title;

61 }

62

63 public function getTitle()

64 {

65 return $this->title;

66 }

67 }

Hallo, Doctrine 2! (verfügbar) 36

Sobald der entsprechende User geladen ist, kann wie gehabt über die Posts des Nutzers iteriert
werden:

1 <?php

2 // [..]

3 $user = $em->getRepository('Entity\User')->findOneById(1);

4 ?>

5 <h1><?echo $user->assembleDisplayName(); ?></h1>

6

7 <?php foreach($user->getPosts() as $post) {?>

8 <?php echo $post->getTitle(); ?>

9 <?php } ?>

10

Alles in allem kommen wir nun allerdings mit deutlich weniger Klassen aus:

1 entity/

2 Post.php

3 User.php

4 public/

5 index.php

Einfacher geht es kaum - Doctrine 2 sei Dank! Bevor wir Talking im Folgenden Stück für Stück
weiterentwickeln, schauen wir uns zunächst ein paar theoretische Konzepte von Doctrine 2 an.

Code-Download

Den Code bis zu diesem Zeitpunkt findest du bei github zum Download².

²https://github.com/michael-romer/doctrine2buch/tree/doctrine

https://github.com/michael-romer/doctrine2buch/tree/doctrine
https://github.com/michael-romer/doctrine2buch/tree/doctrine

	Inhaltsverzeichnis
	Über dieses Buch (verfügbar)
	Early Access Edition
	Die Community zum Buch
	Softwareversion
	Verwendetes Datenbanksystem
	Konventionen
	Wichtige Hinweise für Amazon-Kunden
	Weitere Bücher des Autors

	Einleitung (verfügbar)
	Objektorientierung & Domain Models
	Beispielanwendung

	Ein einfaches ORM-System selbstgebaut (verfügbar)
	Laden einer Entity
	Speichern einer Entity
	Assoziationen
	Ausblick & Fazit

	Hallo, Doctrine 2! (verfügbar)
	Installation
	Die erste Entity
	Die erste Assoziation

