DOGTRINE

en la practica

Antonio Garcia Flton Luis Minetto

Doctrine en la practica

Elton Minetto y Antonio Garcia Marin
Este libro esté a la venta en http://leanpub.com/doctrine-en-la-practica

Esta version se publico en 2016-06-06

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 Elton Minetto y Antonio Garcia Marin

http://leanpub.com/doctrine-en-la-practica
http://leanpub.com
http://leanpub.com/manifesto

Indice general

Introduccion

Proyecto Doctrine

Instalacion
Creando el bootstrap.php
Configurar la herramienta de linea de comando

Introduccion

Proyecto Doctrine

Doctrine es un proyecto Open Source que tiene por objetivo crear una serie de bibliotecas PHP para
ofrecer funcionalidades de persistencia de datos y funciones relacionadas con ello.

El proyecto esta dividido en varios sub-proyectos, siendo los dos mas importantes el Database
Abstraction Layer (DBAL) y el Object Relational Mapper (ORM).

Database Abstraction Layer

Construido sobre PHP Data Objects (PDO) DBAL proporciona una capa de abstracciéon que facilita
la manipulacién de datos usando una interfaz orientada a objetos. Para usar PDO es necesario tener
las extensiones correspondientes configuradas. Si fuéramos a usar DBAL para acceder a una base de
datos MySQL, por ejemplo, es necesario instalar la extension correspondiente.

Ademas de la manipulacién de datos (insert, update, etc) el paquete DBAL nos proporciona otras
funcionalidades importantes como introspeccion de la base de datos (podemos obtener informacion
sobre la estructura de tablas y campos), transacciones, eventos, etc. Vamos ver algunas de estas
funcionalidades en proximos capitulos.

Object Relational Mapper

Voy usar aqui la definicién que encontramos en la Wikipedia ya que resume bien el concepto de
ORM:

[...Jes una técnica de programacién para convertir datos entre el sistema de tipos
utilizado en un lenguaje de programacion orientado a objetos y la utilizaciéon de una
base de datos relacional como motor de persistencia. Las tablas de la base de datos son
representadas a través de clases y los registros de cada tabla son representados como
instancias de las clases correspondientes. Con esta técnica, el programador no precisa
preocuparse con los comandos en SQL; el usara una interfaz de programacién simple
que realiza todo el trabajo de persistencia.

Los ORM:s son usados en muchos lenguajes de programacion y entornos para facilitar el uso de base
de datos y mantener una capa de abstraccion entre diferentes bases de datos y conceptos.

Doctrine se ha convertido en un “standard de facto” para solucionar el problema de mapeamiennto
objeto relacional en el entorno PHP y esta siendo utilizado por proyectos de diversos tamafos y
frameworks como Symfony. A lo largo de los capitulos de este e-book aprenderemos a usarlo para
este fin.

N O O & W N -

Instalacion

La forma maés facil de instalar Doctrine es usando Composer. Composer es un gestor de dependencias
para PHP. Con el puedes especificar que paquetes vamos usar en nuestro proyecto y gestionar la
instalacion y actualizacion de los mismos.

El primer paso es instalar el propio Composer. En Linux o MacOSX es posible instalar Composer por
linea de comando, ejecutando el comando, dentro de directorio de nuestro proyecto:

curl -sS https://getcomposer.org/installer | php
Otra opciodn es ejecutar el siguiente comando, que no depende del paquete curl:
php -r "eval('?>'.file_get_contents('https://getcomposer.org/installer'));"

En Windows es posible descargar Composer de la url http://getcomposer.org/composer.phar' o usar
el instalador binario, segtin la documentacion oficial®.

Con Composer instalado faltaria configurarlo para especificar que paquetes vamos usar. Para eso
basta crear un archivo llamado composer.json en la raiz del proyecto. En nuestro caso vamos usar
dos paquetes del proyecto Doctrine en sus versiones mas recientes en el momento de la publicacién
de este libro, 2.4.X.:

{
"require": {
"doctrine/common": "2.4.%*",
"doctrine/dbal": "2.4 . *",
"doctrine/orm": "2.4. %"
}
}

Puedes encontrar otros paquetes disponibles para Composer realizando una busqueda en el directorio
oficial de paquetes, que se encuentra en la web https://packagist.org’.

Con el archivo composer.json creado podemos ejecutar el comando para que la instalacion se realice:

"http://getcomposer.org/composer.phar
®http://getcomposer.org/doc/00-intro.md#installation-windows
*https://packagist.org

http://getcomposer.org/composer.phar
http://getcomposer.org/doc/00-intro.md#installation-windows
https://packagist.org
http://getcomposer.org/composer.phar
http://getcomposer.org/doc/00-intro.md#installation-windows
https://packagist.org

0 N O O & W N -

W W W N DNDNDNDDNDNDNNNDMNNAS APPSR
N P © O 0 9 O O P+ WO NP, O 00 N0 0 b WOWN~-~O O

Instalacién 3

php composer.phar install

Creando el bootstrap.php

Ahora crearemos el bootstrap de nuestro proyecto. Este archivo posee este nombre puesto que es
usado para inicializar y configurar el entorno. Se ejecutara todas las veces que ejecutamos algin
script o pagina web, por eso es importante prestar especial atencién a este archivo, para que no
contenga errores o procesos pesados que puedan ralentizar la aplicacion.

<?7php

//Autoloader de Composer

$loader = require __DIR__.'/vendor/autoload.php';
//Afadimos nuestras clases al Autoloader
$loader->add('DoctrineNaPratica', __DIR__.'/src');

use Doctrine\ORM\Tools\Setup;

use Doctrine\ORM\EntityManager;

use Doctrine\ORM\Mapping\Driver\AnnotationDriver;
use Doctrine\Common\Annotations\AnnotationReader;
use Doctrine\Common\Annotations\AnnotationRegistry;

//Si es FALSE se usa APC como cache, si fuese TRUE se arrays para la cache
$isDevMode = false;

//rutas de las entidades
$paths = array(__DIR__ . '/src/DoctrineNaPratica/Model');
// configuracion de base de datos
$dbParams = array(
'driver' => 'pdo_mysql',
'user' => 'root',
'password' => '',
"dbname’ => 'dnp',

);
$config = Setup::createConfiguration($isDevMode);

//lector de las annotations de las entidades

$driver = new AnnotationDriver(new AnnotationReader(), $paths);
$config->setMetadataDriverImpl($driver);

//registra las annotations de Doctrine

AnnotationRegistry: :registerfFile(

33
34
35
36
37

Instalacién 4

__DIR__ . '"/vendor/doctrine/orm/lib/Doctrine/ORM/Mapping/Driver/DoctrineAnno\
tations.php'
),
//Crea el entityManager
$entityManager = EntityManager: :create($dbParams, $config);

https://gist.github.com/eminetto/7312206*

Intente documentar las principales funciones del archivo en los comentarios del c6digo, pero voy a
detallar algunos puntos importantes.

« Las primeras dos lineas de cédigo son importantes pues cargan el autoloader de Composer y
lo configuramos para reconocer las clases de proyecto, que crearemos a lo largo del libro. El
autoloader es responsable de incluir los archivos PHP necesarios siempre que hagamos uso
de las clases definidas en la seccion use.

« En la linea 18 definimos donde estaran las clases de nuestras entidades. En este contexto,
entidades son la representacion de las tablas de nuestra base de datos, que seran usadas por el
ORM Doctrine. Creamos estas clases en el proximo capitulo.

« El codigo entre la linea 30 y la 36 es responsable de configurar las Annotations de Doctrine.
Como veremos en el préximo capitulo existe mas de una forma de configurar las entidades
(YAML y XML) pero en este libro usaremos el formato de anotaciones de bloques de cddigos,
que es una de las formas mas utilizadas.

+ La linea 38 crea una instancia de EntityManager, que es el componente principal de ORM
y como su nombre sugiere es el responsable de la manipulacion de las entidades (creacion,
borrado, actualizacion, etc). Lo usaremos muchas veces a lo largo del libro.

Ahora necesitamos crear la estructura de directorios donde guardaremos las clases de nuestras
entidades, conforme a lo configurado en la linea 18 de bootstrap.php. Esta estructura de directorios
sigue el patron PSR® que es usado por los principales frameworks y proyectos, inclusive el propio
Doctrine. Con el siguiente comando, en Linux/MacOSX, creamos el directorio src dentro de la raiz
de nuestro proyecto:

mkdir -p src/DoctrineNaPratica/Model

En la linea 20 de bootstrap.php configuramos Doctrine para conectar con una base de datos MySQL
llamada dnp. Doctrine es capaz de crear las tablas representadas por las entidades, pero no puede
crear la base de datos, ya que esto es algo que depende bastante de sistema gestor de base de datos.
Por eso vamos crear la base de datos para nuestro proyecto, en MySQL:

“https://gist.github.com/eminetto/7312206
*https://github.com/php-fig/fig-standards/tree/master/accepted

https://gist.github.com/eminetto/7312206
https://github.com/php-fig/fig-standards/tree/master/accepted
https://gist.github.com/eminetto/7312206
https://github.com/php-fig/fig-standards/tree/master/accepted

RGN

R O © 0N O O b W N =

Instalacién 5

mysql -uroot
create database dnp;

En el caso que este usando otro sistema gestor de base de datos como el PostgreSQL, Oracle, SQLite,
etc, es necesario que verifique la necesidad o no de crear una base de datos antes de pasar al siguiente
paso.

Configurar la herramienta de linea de comando

Uno de los recursos mas tutiles de Doctrine es su herramienta de linea de comando, que proporciona
funcionalidades de gestion como crear tablas, limpiar cache, etc. El primero paso sera crear el archivo
de configuracion de la herramienta, cli-config.php, en la raiz de nuestro proyecto:

<?php
// cli-config.php

require_once 'bootstrap.php';

$helperSet = new \Symfony\Component\Console\Helper\HelperSet(array(

'"db' => new \Doctrine\DBAL\Tools\Console\Helper\ConnectionHelper($entityMana\
ger->getConnection()),

'em' => new \Doctrine\ORM\Tools\Console\Helper\EntityManagerHelper($entityMa\
nager)

));
return $helperSet;

https://gist.github.com/eminetto/7312213°

Como podemos ver, se hace uso de bootstrap.php y crea una instancia de la clase HelperSet que es
usada por el propio Doctrine, en la herramienta de linea de comandos.

Podemos probar si hemos configurado todo correctamente ejecutando:

./vendor/bin/doctrine

Si usamos Windows ejecutamos:

php vendor/bin/doctrine.php [1]

Se todo esta correcto veras una lista de comandos disponibles y una pequefa ayuda explicando como

usarlo. Usaremos algunos de ellos en proximos capitulos.

[13))

(El uso de comillas dobles *” es obligatorio)

®https://gist.github.com/eminetto/7312213

https://gist.github.com/eminetto/7312213
https://gist.github.com/eminetto/7312213

	Tabla de contenidos
	Introducción
	Proyecto Doctrine

	Instalación
	Creando el bootstrap.php
	Configurar la herramienta de línea de comando

