

Doctrine en la práctica

Elton Minetto y Antonio Garcia Marin

Este libro está a la venta en http://leanpub.com/doctrine-en-la-practica

Esta versión se publicó en 2016-06-06

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 Elton Minetto y Antonio Garcia Marin

http://leanpub.com/doctrine-en-la-practica
http://leanpub.com
http://leanpub.com/manifesto

Índice general

Introducción . 1
Proyecto Doctrine . 1

Instalación . 2
Creando el bootstrap.php . 3
Configurar la herramienta de línea de comando . 5

Introducción
Proyecto Doctrine

Doctrine es un proyecto Open Source que tiene por objetivo crear una serie de bibliotecas PHP para
ofrecer funcionalidades de persistencia de datos y funciones relacionadas con ello.

El proyecto está dividido en varios sub-proyectos, siendo los dos más importantes el Database
Abstraction Layer (DBAL) y el Object Relational Mapper (ORM).

Database Abstraction Layer

Construido sobre PHP Data Objects (PDO) DBAL proporciona una capa de abstracción que facilita
la manipulación de datos usando una interfaz orientada a objetos. Para usar PDO es necesario tener
las extensiones correspondientes configuradas. Si fuéramos a usar DBAL para acceder a una base de
datos MySQL, por ejemplo, es necesario instalar la extensión correspondiente.

Además de la manipulación de datos (insert, update, etc) el paquete DBAL nos proporciona otras
funcionalidades importantes como introspección de la base de datos (podemos obtener información
sobre la estructura de tablas y campos), transacciones, eventos, etc. Vamos ver algunas de estas
funcionalidades en próximos capítulos.

Object Relational Mapper

Voy usar aquí la definición que encontramos en la Wikipedia ya que resume bien el concepto de
ORM :

[…]es una técnica de programación para convertir datos entre el sistema de tipos
utilizado en un lenguaje de programación orientado a objetos y la utilización de una
base de datos relacional como motor de persistencia. Las tablas de la base de datos son
representadas a través de clases y los registros de cada tabla son representados como
instancias de las clases correspondientes. Con esta técnica, el programador no precisa
preocuparse con los comandos en SQL; el usará una interfaz de programación simple
que realiza todo el trabajo de persistencia.

Los ORMs son usados en muchos lenguajes de programación y entornos para facilitar el uso de base
de datos y mantener una capa de abstracción entre diferentes bases de datos y conceptos.

Doctrine se ha convertido en un “standard de facto” para solucionar el problema de mapeamiennto
objeto relacional en el entorno PHP y esta siendo utilizado por proyectos de diversos tamaños y
frameworks como Symfony. A lo largo de los capítulos de este e-book aprenderemos a usarlo para
este fin.

1

Instalación
La forma más fácil de instalarDoctrine es usando Composer. Composer es un gestor de dependencias
para PHP. Con el puedes especificar que paquetes vamos usar en nuestro proyecto y gestionar la
instalación y actualización de los mismos.

El primer paso es instalar el propio Composer. En Linux oMacOSX es posible instalar Composer por
línea de comando, ejecutando el comando, dentro de directorio de nuestro proyecto:

1 curl -sS https://getcomposer.org/installer | php

Otra opción es ejecutar el siguiente comando, que no depende del paquete curl:

1 php -r "eval('?>'.file_get_contents('https://getcomposer.org/installer'));"

En Windows es posible descargar Composer de la url http://getcomposer.org/composer.phar¹ o usar
el instalador binario, según la documentación oficial².

Con Composer instalado faltaría configurarlo para especificar que paquetes vamos usar. Para eso
basta crear un archivo llamado composer.json en la raíz del proyecto. En nuestro caso vamos usar
dos paquetes del proyecto Doctrine en sus versiones más recientes en el momento de la publicación
de este libro, 2.4.X.:

1 {

2 "require": {

3 "doctrine/common": "2.4.*",

4 "doctrine/dbal": "2.4.*",

5 "doctrine/orm": "2.4.*"

6 }

7 }

Puedes encontrar otros paquetes disponibles paraComposer realizando una búsqueda en el directorio
oficial de paquetes, que se encuentra en la web https://packagist.org³.

Con el archivo composer.json creado podemos ejecutar el comando para que la instalación se realice:

¹http://getcomposer.org/composer.phar
²http://getcomposer.org/doc/00-intro.md#installation-windows
³https://packagist.org

2

http://getcomposer.org/composer.phar
http://getcomposer.org/doc/00-intro.md#installation-windows
https://packagist.org
http://getcomposer.org/composer.phar
http://getcomposer.org/doc/00-intro.md#installation-windows
https://packagist.org

Instalación 3

1 php composer.phar install

Creando el bootstrap.php

Ahora crearemos el bootstrap de nuestro proyecto. Este archivo posee este nombre puesto que es
usado para inicializar y configurar el entorno. Se ejecutará todas las veces que ejecutamos algún
script o página web, por eso es importante prestar especial atención a este archivo, para que no
contenga errores o procesos pesados que puedan ralentizar la aplicación.

1 <?php

2 //AutoLoader de Composer

3 $loader = require __DIR__.'/vendor/autoload.php';

4 //Añadimos nuestras clases al AutoLoader

5 $loader->add('DoctrineNaPratica', __DIR__.'/src');

6

7 use Doctrine\ORM\Tools\Setup;

8 use Doctrine\ORM\EntityManager;

9 use Doctrine\ORM\Mapping\Driver\AnnotationDriver;

10 use Doctrine\Common\Annotations\AnnotationReader;

11 use Doctrine\Common\Annotations\AnnotationRegistry;

12

13 //Si es FALSE se usa APC como cache, si fuese TRUE se arrays para la cache

14 $isDevMode = false;

15

16 //rutas de las entidades

17 $paths = array(__DIR__ . '/src/DoctrineNaPratica/Model');

18 // configuración de base de datos

19 $dbParams = array(

20 'driver' => 'pdo_mysql',

21 'user' => 'root',

22 'password' => '',

23 'dbname' => 'dnp',

24);

25

26 $config = Setup::createConfiguration($isDevMode);

27

28 //lector de las annotations de las entidades

29 $driver = new AnnotationDriver(new AnnotationReader(), $paths);

30 $config->setMetadataDriverImpl($driver);

31 //registra las annotations de Doctrine

32 AnnotationRegistry::registerFile(

Instalación 4

33 __DIR__ . '/vendor/doctrine/orm/lib/Doctrine/ORM/Mapping/Driver/DoctrineAnno\

34 tations.php'

35);

36 //Crea el entityManager

37 $entityManager = EntityManager::create($dbParams, $config);

https://gist.github.com/eminetto/7312206⁴

Intente documentar las principales funciones del archivo en los comentarios del código, pero voy a
detallar algunos puntos importantes.

• Las primeras dos líneas de código son importantes pues cargan el autoloader de Composer y
lo configuramos para reconocer las clases de proyecto, que crearemos a lo largo del libro. El
autoloader es responsable de incluir los archivos PHP necesarios siempre que hagamos uso
de las clases definidas en la seccion use.

• En la línea 18 definimos donde estarán las clases de nuestras entidades. En este contexto,
entidades son la representación de las tablas de nuestra base de datos, que serán usadas por el
ORM Doctrine. Creamos estas clases en el próximo capítulo.

• El código entre la línea 30 y la 36 es responsable de configurar las Annotations de Doctrine.
Como veremos en el próximo capítulo existe más de una forma de configurar las entidades
(YAML y XML) pero en este libro usaremos el formato de anotaciones de bloques de códigos,
que es una de las formas más utilizadas.

• La línea 38 crea una instancia de EntityManager, que es el componente principal de ORM
y como su nombre sugiere es el responsable de la manipulación de las entidades (creación,
borrado, actualización, etc). Lo usaremos muchas veces a lo largo del libro.

Ahora necesitamos crear la estructura de directorios donde guardaremos las clases de nuestras
entidades, conforme a lo configurado en la línea 18 de bootstrap.php. Esta estructura de directorios
sigue el patrón PSR⁵ que es usado por los principales frameworks y proyectos, inclusive el propio
Doctrine. Con el siguiente comando, en Linux/MacOSX, creamos el directorio src dentro de la raíz
de nuestro proyecto:

1 mkdir -p src/DoctrineNaPratica/Model

En la línea 20 de bootstrap.php configuramos Doctrine para conectar con una base de datosMySQL
llamada dnp. Doctrine es capaz de crear las tablas representadas por las entidades, pero no puede
crear la base de datos, ya que esto es algo que depende bastante de sistema gestor de base de datos.
Por eso vamos crear la base de datos para nuestro proyecto, enMySQL:

⁴https://gist.github.com/eminetto/7312206
⁵https://github.com/php-fig/fig-standards/tree/master/accepted

https://gist.github.com/eminetto/7312206
https://github.com/php-fig/fig-standards/tree/master/accepted
https://gist.github.com/eminetto/7312206
https://github.com/php-fig/fig-standards/tree/master/accepted

Instalación 5

1 mysql -uroot

2 create database dnp;

En el caso que este usando otro sistema gestor de base de datos como el PostgreSQL, Oracle, SQLite,
etc, es necesario que verifique la necesidad o no de crear una base de datos antes de pasar al siguiente
paso.

Configurar la herramienta de línea de comando

Uno de los recursos más útiles de Doctrine es su herramienta de línea de comando, que proporciona
funcionalidades de gestión como crear tablas, limpiar cache, etc. El primero paso será crear el archivo
de configuración de la herramienta, cli-config.php, en la raíz de nuestro proyecto:

1 <?php

2 // cli-config.php

3 require_once 'bootstrap.php';

4

5 $helperSet = new \Symfony\Component\Console\Helper\HelperSet(array(

6 'db' => new \Doctrine\DBAL\Tools\Console\Helper\ConnectionHelper($entityMana\

7 ger->getConnection()),

8 'em' => new \Doctrine\ORM\Tools\Console\Helper\EntityManagerHelper($entityMa\

9 nager)

10));

11 return $helperSet;

https://gist.github.com/eminetto/7312213⁶

Como podemos ver, se hace uso de bootstrap.php y crea una instancia de la clase HelperSet que es
usada por el propio Doctrine, en la herramienta de línea de comandos.

Podemos probar si hemos configurado todo correctamente ejecutando:

1 ./vendor/bin/doctrine

Si usamos Windows ejecutamos:

1 php vendor/bin/doctrine.php [1]

Se todo esta correcto veras una lista de comandos disponibles y una pequeña ayuda explicando como
usarlo. Usaremos algunos de ellos en próximos capítulos.

(El uso de comillas dobles “” es obligatorio)

⁶https://gist.github.com/eminetto/7312213

https://gist.github.com/eminetto/7312213
https://gist.github.com/eminetto/7312213

	Tabla de contenidos
	Introducción
	Proyecto Doctrine

	Instalación
	Creando el bootstrap.php
	Configurar la herramienta de línea de comando

