

Docker Recipes for Node.js
Development
Solve common problems with simple solutions
for Node.js in Docker!

Derick Bailey

This book is for sale at http://leanpub.com/docker-recipes

This version was published on 2017-05-25

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2016 - 2017 Muted Solutions, LLC. All Rights Reserved.

http://leanpub.com/docker-recipes
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Derick Bailey by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I just bought the Docker Recipes for Node.js ebook from @derickbailey - check it
out and be productive!

The suggested hashtag for this book is ##DockerRecipes4NodeJS.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

https://twitter.com/search?q=##DockerRecipes4NodeJS

http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20bought%20the%20Docker%20Recipes%20for%20Node.js%20ebook%20from%20@derickbailey%20-%20check%20it%20out%20and%20be%20productive!
https://twitter.com/intent/tweet?text=I%20just%20bought%20the%20Docker%20Recipes%20for%20Node.js%20ebook%20from%20@derickbailey%20-%20check%20it%20out%20and%20be%20productive!
https://twitter.com/search?q=%23#DockerRecipes4NodeJS
https://twitter.com/search?q=%23#DockerRecipes4NodeJS

Also By Derick Bailey
Building Backbone Plugins

6 Rules To Master JavaScript’s “this”

RabbitMQ Layout

RabbitMQ: Patterns for Applications

http://leanpub.com/u/derickbailey
http://leanpub.com/building-backbone-plugins
http://leanpub.com/mastering-javascripts-this
http://leanpub.com/rabbitmq-structures-and-layout
http://leanpub.com/rmq-patterns

Contents

Preface . i
Who Should Read This Book . i
How This Book Is Written . ii
Where To Get The Code and Configuration iii

Recipe 4: Editing Code with Volume Mounts 1
The Recipe . 1
Cooking Instructions . 2
Bring Your Own Editor . 3
What’s Next? . 3

Recipe 8: Debug with VS Code . 4
The Recipe . 4
Cooking Instructions . 6

Recipe 13: Encapsulate Command-Line Options 7
The Recipe . 8
Cooking Instructions . 9
What’s Next? . 11

About Derick Bailey . 12
Thanks For Reading . 13

Preface
When I first started working with Docker to build Node.js applications, I ran into a
series of rather difficult situations.

Some of the questions and situations included:

• How do I edit code in my container?
• What about debugging?
• Can I use Grunt, run my test and build processes in the container?
• What if I need to restart the app when code changes?

These, and other questions, drove me to understand the relationship between a
Docker image, container and my local computer as a host.

The result was a series of experiments that eventually turned into what I consider
good practices within specific situation and circumstances.

As with most of my development knowledge and experience, I began to record these
lessons as screencasts for WatchMeCode.

Over time, however, I began to realize that the tutorial approach to the screencasts
was only delivering half of the solution that a developer needs, when using Docker.

Learning how to use the individual parts of Docker and it’s related tools is absolutely
necessary, and the WatchMeCode screencasts cover this in great detail.

This book, however, aims to take the individual tools, bits of configuration and
options, and bring them all together into solutions for specific problems.

Who Should Read This Book

If you’re new to Docker, this book is not for you.

https://watchmecode.net/

Preface ii

I would recommend you start with the WatchMeCode Guide to Learning Docker if
you need to learn Docker from the ground, up.

If you’re already using Docker to run services like MongoDB, RabbitMQ, Oracle, etc,
and you’re looking for a resource to show you the basics of configuring Docker to
run a Node.js application, this book is not for you, either.

The WatchMeCode Guide to Building Node.js Apps in Docker will show you how to
configure a Docker container, run Node.js, get Express.js installed with npm install

and more.

If you’re already using Docker, already know how to configure a basic Node.js and
Express.js application in a container, but you find yourself running into difficult
situations with debugging, reloading code, and running your tool set within Docker,
this book is for you.

Within these recipes (chapters), you’ll find answers to the problems that plague
developers beyond the basics of standing up a Docker container.

You’ll learn how to combine tools, command-line options, Dockerfile configuration
items and more, into solutions for the unique problems that Node.js and JavaScript
developers face when building applications within a Docker container.

How This Book Is Written

Each of the recipes (chapters) of this book will address a specific circumstance and
problem, that requires a specific set of tools for a solution.

But, the goal of this book is to provide more than just text for you to read, to give
you an idea of what to do.

These problems and solutions are taken directly from real-world experiences and
problems, with solutions that can be applied to many different applications.

Many of these solutions are handled with configuration and code that can be re-used,
as well. And whenever possible, these re-usable elements will be provided to you as
additional resources outside of the book.

https://sub.watchmecode.net/guides/learn-docker/
https://sub.watchmecode.net/guides/build-node-apps-in-docker/

Preface iii

Where To Get The Code and Configuration

This is a work-in-progress, at the moment. It’s possible that a private Github
repository will be created, or a simple .zip file will be included as a part of this book’s
bundle.

Recipe 4: Editing Code with
Volume Mounts
With your core Docker images created and your code up and running, it’s time to
think about editing within the container.

However, a Docker image is immutable - meaning once the image is created, it can’t
be changed. Additionally, changes made directly inside of a Docker container (an
instance created from an image), will be reverted back to the image version, when
the container is shut down.

So, how do you edit code in a Docker container if you can’t change or save anything?

Host mounted volumes.

These allow you to specify a folder from your host operating system and mount
it directly inside of a container, at a path you specify. By mounting your project’s
code folder into your docker container, you can edit the code directly on your host
operating system (with your favorite editor!) and the changes will be immediately
reflected in the Docker container.

The Recipe

This recipe will modify the way in which you docker run a container instance,
adding a -v flag to specify a host mounted volume.

Recipe Listing

docker run -v /my/local/folder:/var/app # ...

Recipe 4: Editing Code with Volume Mounts 2

Cooking Instructions

When using the -v option with docker run, you need to specify a full path to the
current folder on the left-hand side of the local:remote value for the flag.

The local path must start with a /. If it does not begin with a /, then Docker treats
this as a named volume and not a host mounted volume (see Recipe 6 for more info
on that).

The remote path should be the correct folder where you code lives. In this case, it
will be the /var/app folder that was created in the Dockerfile. This is where the code
for the application is copied during the image build.

Specifying a -v flag with a remote destination of the /var/app folder will tell Docker
to use your local host folder instead of the folder contained in the Docker image.

Example Local Folder Specifications

On amacOS host, you can specify a local folder such as /Users/derick/dev/docker-
recipes/recipe-4/ on the left-hand side of the -v flag value. Note that you cannot
use the ∼/ shortcut as the path must start with /.

Linux machines will be similar to macOS, though the Users folder will differ
slightly in name. For example, on an Ubuntu Linux machine, the folder would be
/home/derick/...

OnWindowsmachines, you have to specify the drive letter using the //c/... format.
For example, if you have a folder at c:\dev\docker-recipes\recipe-4, you would
specify //c/dev/docker-recipes/recipe-4 for the volume mount.

Expanded Environment Variables

It’s often difficult to get the path to your current project correct, when creating host
mounted volumes. With long path names, the chance for mistakes increases greatly.

Fortunately, you can use environment variable to expand the current folder (or
“process working directory”) into the -v value.

On a macOs or Linux machine, use the $PWD variable in place of the volume location.

Recipe 4: Editing Code with Volume Mounts 3

docker run -v $PWD:/var/app/ # ...

In a Windows command shell, use %CD%.

docker run -v %CD%:/var/app/ # ...

Or in a Windows PowerShell environment, use ${PWD}

docker run -v ${PWD}:/var/app/ # ...

Bring Your Own Editor

With the -v flag set correctly and your code mounted from the host environment
into the Docker container, you can now edit your code with your own editor.

This is great news! Youwill not be limited to using text-based editors within a Docker
container. Instead, you can use any editor installed on your host computer.

Whether that is Visual Studio, VS Code, vim, emacs, Webstorm, Eclipse, or anything
else, you will have complete control and freedom in choosing an editor.

What’s Next?

Editing code is only part of the picture for development. You’ll find, over time, that
you need to install new and updated npm modules and other runtime dependencies.
This can be problematic with Docker and host mounted volumes, as they tend to be
rather slow in performance on Windows and macOS.

Coming up next, you’ll see how to correct for this using Docker’s volume instruc-
tions.

Recipe 8: Debug with VS Code
You have a container that is configured for development, and you need to debug
some code. The command-line debugger may be an option, but you don’t have time
to learn a new tool and get comfortable with it before your deadline for the next
delivery.

Fortunately, the editor you are using - Visual Studio Code - has a debugger built into
it, and you’re already familiar with it. In the past, you’ve had it configured to launch
your Node.js application with the debugger. Now, however, you need to launch the
debugger and have it attach to the running code inside of your Docker container.

Can I Use My Favorite Debugger?
YES!

While this recipe does provide configuration for VSCode, the concepts and
other configuration items are applicable to any editor that allows remote
debugging via a URL.

The Recipe

This recipe is split into three parts, requiring changes to your Docker image,
configuration for VS Code, and command-line tools to allow a remote debugger to
attach.

Part 1 sets the NODE_ENV and exposes port 5858, which is the port on which the
Node.js debugger will listen.

Recipe 8: Debug with VS Code 5

Recipe, Pt 1: dev.dockerfile

FROM node-recipes:prod

ensure development configuration is used

ENV NODE_ENV=development

allow a debugger to attach

EXPOSE 5858

Part 2 adds configuration to VS Code, in the launch.json configuration file. The
specific settings and highlights will be explained, below.

Recipe, Pt 2: launch.json

{

"configurations": [

{

"type": "node",

"request": "attach",

"name": "Attach to Process",

"address": "localhost",

"port": 5858,

"localRoot": "${workspaceRoot}/",

"remoteRoot": "/var/app"

}

]

}

Part 3 tells the Node.js runtime, inside of your container, to start the debugger.

Recipe 8: Debug with VS Code 6

Recipe, Pt 3. Start The Node Debugger

docker exec <container> ps -a

docker exec <container> kill -s SIGUSR1 <pid>

Cooking Instructions

Part 1 of the recipe modifies your dev.dockerfile to expose port 5858 along with
port 3000.

Build this image as you normally would, and run it with both ports mapped to your
local machine.

Build and Run, Mapping Port 5858

docker build -t node-recipes:dev -f dev.dockerfile .

docker run -d \

-p 3000:3000 \

-p 5858:5858 \

-v <local/folder/>:/var/app \

--name node-recipes-dev \

node-recipes:dev

Once you have the application up and running, you will need to force the debugger
to start, from within the container. This is done with the kill -s SIGUSR1 <pid>

command.

Node.js reserves the SIGUSR1 signal for starting the debugger. While you
can trap this signal and run other code in response to it, you cannot prevent
the Node runtime from starting the debugger.

Get the PID for the running application, by executing ps -a and then kill that PID,
as shown.

After the node debugger has been started in the container, you can attach the VS
Code debugger.

Recipe 13: Encapsulate
Command-Line Options
For all of Docker’s power and capabilities, there is one major flaw that consistently
trips up even the most seasoned of Docker experts: command-line options.

It’s not secret that Docker comes with a large amount of command-line tools,
an incredibly lengthy command-line option list, and often requires command-line
values that are extremely verbose.

This just makes it easy to make mistakes. Constantly.

Like any good developer, however, there are simple solutions and automation tools
that we can use to solve the command-line complexity problem.

By using any of a number of command build tools or command-line / shell scripting
tools, you can easily create a set of very simple scripts that will take care of 90 to 95
percent of your Docker command-line needs.

But which tool should you choose for this?

If you’re on Windows, you could write .cmd scripts or PowerShell scripts. If you’re
on Linux or macOS, you could write .sh shell scripts. But writing individual scripts
inside of individual files clutters your folder structure. And if you have a cross-
platform team, you’ll end up duplicating these scripts for each platform.

Instead, you should look to the myriad of build tools available. These tend to be
cross-platform, and will encapsulate multiple commands and scripts into a single
file.

Themost commonly available build tools include Gulp, Grunt,Make and npm scripts.
Each of these has their own benefit, but not all of them fit well with the goal of
executing command-line tooling. You can throw Gulp and Grunt out the window
almost immediately, for this deficiency.

Recipe 13: Encapsulate Command-Line Options 8

This leaves you with Make and npm scripts (among many others not mentioned
here). B since you’re a Node.js developer, it makes sense to choose npm scripts. Use
the tools that you already have, to your advantage.

The Recipe

The npm command-line tool may seem like a bad choice off-hand. Aren’t you just
trading one command-line tool for another? Technically, this is true. The benefit
that npm offers, though, is encapsulating many scripts and command-line parameters
into a single command.

This recipe will show you how to encapsulate some common commands from the
rest of this book, into simple one-liners with no additional parameters required.

Recipe Listing: package.json

{

...

"scripts": {

"docker:build": "docker build -t docker-recipes .",

"docker:build:dev": "docker build -t docker-recipes:dev -f dev.d\

ockerfile .",

"docker:run": "docker run -d -p 3000:3000 --name recipes-prod do\

cker-recipes",

"docker:run:dev": "docker run -d -p 3000:3000 -p 5858:5858 -p 35\

729:35729 -v $PWD:/var/app --name recipes-dev docker-recipes:dev",

"docker:shell:dev": "docker exec -it recipes-dev /bin/sh; exit 0\

",

"docker:shell:dev:root": "docker exec -it --user root recipes-de\

v /bin/sh; exit 0",

"docker:clean": "docker stop recipes-dev recipes-prod; docker rm\

recipes-dev rcipes-prod; docker rmi docker-recipes docker-recipes:d\

ev; exit 0"

},

Recipe 13: Encapsulate Command-Line Options 9

...

}

The content from the above listingwill go into your package.json file, in the scripts
section. Each command can be executed with npm run <command name> in a terminal
window or command prompt.

Cooking Instructions

Each of the scripts does essentially one thing - even if that “one thing” involves
multiple commands. This is the nature of encapsulation - hiding the details and giving
the higher concept a common name.

You’ll notice the use of : to separate sub-commands and grouping of commands.
This is not any official structure or anything - it’s simply a way of distinguishing
commands that are related to each other.

docker:build

npm run docker:build

This command will build your production Docker image from the Dockerfile,
applying a tag of docker-recipes and using a build context of the current folder.

The result is a Docker image that can be used for creating containers or other images.

docker:build:dev

npm run docker:build:dev

This command will build your development image from the dev.dockerfile. It
applies a tag of docker-recipes:dev and uses the current folder as the build context.

Since the dev.dockerfile builds FROM docker-recipes, you will need to have a build
of the production image before running this command.

Recipe 13: Encapsulate Command-Line Options 10

docker:run

npm run docker:run

The name seems a little redundant, but it also fits the effect: running a Docker
container from the production image that you previously built.

This commandmaps TCIP/IP port 3000, and names the new container recipes-prod.

docker:run:dev

npm run docker:run:dev

Similar to the docker:run command, this one creates a new Docker container from
the development image you had previously created. The new container is named
recipes-dev.

In addition to TCP/IP port 3000, this command also maps port 5858 for debugging
purposes.

docker:shell:dev

npm run docker:shell:dev

This command opens a shell into the existing recipes-dev container. Since the
container has a USER app instruction in the Dockerfile, the shell will run as the app
user.

docker:shell:dev:root

npm run docker:shell:dev:root

This command also opens a shell into the existing recipes-dev container. However,
the --user root parameter is added, to ensure the shell is executed as the root user
in the container.

Recipe 13: Encapsulate Command-Line Options 11

docker:clean

npm run docker:clean

The nuclear option - completely stop and remove the Docker Recipes containers and
images. This will delete everything created from the previous commands.

What’s Next?

As you build your Docker infrastructure for your project, you should encapsulate
the commands that you find yourself repeating. The above list is a good place to
start, but will certainly not be the end result for your project. You’ll want to add new
commands as you need them, modify the existing commands to suit your needs, and
remove commands that don’t fit your environment.

Additionally, the above commands are an extremely important part of a good Docker
development process. But they only represent a part of the process.

For more information on how to perfect your Docker builds and development
process, see the Debugging Docker Images video and resources (included in the
Webinar bundle of this book, or sold separately at the above link).

https://sub.watchmecode.net/debugging-docker-images/

About Derick Bailey
Hello, my name is Derick Bailey.

I’m an entrepreneur and software developer, a consultant, screencaster, blogger,
speaker, and so more. I’ve been working professionally in software development
since the late 90’s and have been writing code since the late 80’s.

You can find me writing about these and many other subjects at my blog. I also
produce screencasts, provide information about my consulting services, and more,
through the following websites:

• My Blog: DerickBailey.com
• Screencasts (free and paid): WatchMeCode.net
• Open Source Projects: GitHub.com/DerickBailey
• Entrepreneurial Podcast: The Entreprogrammers

If you have any questions, comments or concerns, you can contact me using the
following:

• Email: derick@mutedsolutions.com
• Twitter: @derickbailey

http://derickbailey.com/
http://watchmecode.net/
http://github.com/derickbailey
http://entreprogrammers.com/
mailto:derick@mutedsolutions.com
http://twitter.com/derickbailey

About Derick Bailey 13

Thanks For Reading

I hope you’ve enjoyed …

If you need anything else, have any questions or want to know more about how I
work with Docker and Node.js, let me know! I’ll be happy to answer any question
you have, and I love getting feedback (good and bad).

Thanks for reading, and happy Dockering. :)

Derick

	Table of Contents
	Preface
	Who Should Read This Book
	How This Book Is Written
	Where To Get The Code and Configuration

	Recipe 4: Editing Code with Volume Mounts
	The Recipe
	Cooking Instructions
	Bring Your Own Editor
	What's Next?

	Recipe 8: Debug with VS Code
	The Recipe
	Cooking Instructions

	Recipe 13: Encapsulate Command-Line Options
	The Recipe
	Cooking Instructions
	What's Next?

	About Derick Bailey
	Thanks For Reading

