
Docker for Web Developers

Craig Buckler, @craigbuckler

DockerWebDev.com, v1.1.0

Contents

0.1 Version history . 1
0.2 Preface . 2
0.3 Prerequisites . 3
0.4 Course website . 4
0.5 Book and/or videos? . 4
0.6 Example code . 4
0.7 Chat room . 5
0.8 Code conventions . 5
0.9 Further tips . 5
0.10 About me . 6
0.11 Copyright and distribution . 7

1 Introduction 9
1.1 “It works on my machine, buddy” . 9
1.2 Virtual machining . 10
1.3 Docker delivers . 11
1.4 Nah, I’m still not convinced . 11
1.5 Isn’t {insert-technology-here} where it’s at? . 13
1.6 Key points . 15

2 What is Docker? 17
2.1 Containers . 18
2.2 Images . 23
2.3 Volumes . 25
2.4 Networks . 26

i

DockerWebDev.com, v1.1.0 Docker for Web Developers

2.5 Docker Compose . 27
2.6 Orchestration . 27
2.7 Docker client-server application . 28
2.8 Docker deployment strategies . 28
2.9 Simpler development and production . 30
2.10 When not to use Docker . 30
2.11 Docker alternatives . 32
2.12 Key points . 33

3 How to install Docker 35
3.1 Install Docker on Linux . 36
3.2 Install Docker on macOS . 38
3.3 Install Docker on Windows . 39
3.4 Test your Docker installation . 48
3.5 Key points . 50

4 Launch a MySQL database with Docker 51
4.1 Locate a suitable MySQL image on Docker Hub 52
4.2 Launch a MySQL container . 54
4.3 Connect to the database using a MySQL client 57
4.4 Connect to a container shell . 58
4.5 View, stop, and restart containers . 60
4.6 Define a Docker network . 61
4.7 Cleaning up . 63
4.8 Launch multiple containers with Docker Compose 66
4.9 Key points . 70

5 WordPress development with Docker 71
5.1 WordPress requirements . 72
5.2 Docker configuration plan . 73
5.3 Docker Compose configuration . 75
5.4 Launch your WordPress environment . 79
5.5 Install WordPress . 80

ii Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.1.0

5.6 Local WordPress Development . 83
5.7 Key points . 86

6 Application development with Docker 87
6.1 Container-based application development . 88
6.2 What is Node.js? . 89
6.3 Hello World application overview . 90
6.4 Docker configuration plan . 95
6.5 Dockerfiles . 96
6.6 Build an image . 102
6.7 Launch a production container from your image 103
6.8 Launch a development environment with Docker Compose 104
6.9 Live code editing . 106
6.10 Remote container debugging . 107
6.11 Create an image from a container . 117
6.12 Key points . 118

7 Push your Docker image to a Repository 119
7.1 Why push an image to Docker Hub? . 119
7.2 Docker Hub alternatives . 120
7.3 Image names and tags . 120
7.4 Create a Docker Hub repository . 121
7.5 Log in locally . 122
7.6 Build an application image . 122
7.7 Tag an image . 123
7.8 Push to Docker Hub . 124
7.9 Distribute your image . 125
7.10 Key points . 126

8 Docker orchestration on production servers 127
8.1 Dependency planning . 127
8.2 Application scaling . 128
8.3 Orchestration overview . 129

Craig Buckler, @craigbuckler iii

DockerWebDev.com, v1.1.0 Docker for Web Developers

8.4 Docker Swarm . 130
8.5 Kubernetes . 133
8.6 Key points . 138

9 Your Docker journey 139
9.1 Docker’s future . 139
9.2 Further Docker help . 140

10 Appendix A: Docker command-line reference 141
10.1 Log into Docker Hub . 141
10.2 Search Docker Hub . 141
10.3 Pull a Docker Hub image . 142
10.4 List Docker images . 142
10.5 Build an image from a Dockerfile . 142
10.6 Tag an image . 143
10.7 Push tagged images to Docker Hub . 143
10.8 Launch a container from an image . 143
10.9 List containers . 145
10.10Run a command in a container . 145
10.11Attach to a container shell . 145
10.12Restart a container . 145
10.13Pause a container . 146
10.14Unpause (resume) a container . 146
10.15View container metrics . 146
10.16Increase container resources . 146
10.17Stop a container . 147
10.18Remove stopped containers . 147
10.19View Docker volumes . 148
10.20Delete a volume . 148
10.21Bind mount a host directory . 148
10.22Define a Docker network . 149
10.23View networks . 149
10.24Delete a network . 149

iv Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.1.0

10.25View system disk usage . 149
10.26Full clean start . 150

11 Appendix B: Dockerfile reference 151
11.1 # comment . 151
11.2 ARG arguments . 151
11.3 ENV environment variables . 152
11.4 FROM <image> starting image . 152
11.5 WORKDIR working directory . 153
11.6 COPY files from the host to image . 153
11.7 ADD files . 153
11.8 Mount a VOLUME . 153
11.9 Set a USER . 154
11.10RUN a command . 154
11.11EXPOSE a port . 154
11.12CMD execute container . 155
11.13ENTRYPOINT execute container . 155
11.14.dockerignore file patterns . 156

12 Appendix C: Docker Compose reference 157
12.1 Docker Compose CLI . 157
12.2 docker-compose.yml outline . 159
12.3 Starting image . 159
12.4 build an image from a Dockerfile . 160
12.5 Set the container_name . 160
12.6 Container depends_on another . 160
12.7 Set environment variables . 160
12.8 Set environment variables from a env_file 161
12.9 Attach to Docker networks . 161
12.10Attach persistent Docker volumes . 162
12.11Set a custom dns server . 163
12.12expose ports . 163
12.13Define external_links to other containers 164

Craig Buckler, @craigbuckler v

DockerWebDev.com, v1.1.0 Docker for Web Developers

12.14Override the default command . 164
12.15Override the default entrypoint . 164
12.16Specify a restart policy . 164
12.17Run a healthcheck . 165
12.18Define a logging service . 165

13 Appendix D: quiz project 167
13.1 Project overview . 168
13.2 Launch in development mode . 170
13.3 Launch in production mode . 171
13.4 Clean up . 171
13.5 Project file structure . 172
13.6 nodejs Docker image . 173
13.7 nginx Docker image . 177
13.8 mongodb Docker image . 180
13.9 Node.js build process . 181
13.10Node.js Express.js application . 182
13.11Client-side files . 189
13.12Key points . 194

14 Want to read more?.. . 195

vi Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.1.0

0.1 Version history

v1.1.0, October 2020 release

• image description clarification (chapter 2)
• Windows WSL2 installation and settings (chapter 3)
• MySQL credentials (chapter 4)
• docker compose down usage (chapter 4)
• reddit.com link (chapter 9)
• Dockerfile command corrections (Appendix B)
• links to example code directories
• minor updates and clarifications throughout

v1.0.0, July 2020

• initial release

Craig Buckler, @craigbuckler 1

DockerWebDev.com, v1.1.0 Docker for Web Developers

0.2 Preface

Docker is the most useful web development tool you’re not using.

Using Docker, you can:

• install and run dependencies in minutes. This includes web servers, databases,
language runtimes, applications such as WordPress, and more.

• manage isolated applications. Your PC is not polluted; you can run multiple editions of
any so�ware on the same device at the same time, e.g. MySQL 5 and 8.

• use your favorite development tools, editors, and workflows. Web development with
Docker is no more di�icult than developing code on your local system.

• distribute your web application to others on your team. It won’t matter if they use
another operating system or some dependencies are not available on their platform.

• deploy your application to live production servers. It’s guaranteed to work and o�ers
scaling opportunities.

Despite these benefits, Docker is o�en shunned by web developers. It’s considered too technical,
unnecessary, or something for DevOps experts. Terminology and resources can be impenetrable
and tutorials rarely explain how to use Docker during development. I first tried Docker in 2016
and gave up. It took another three years before I realised what I’d been missing.

This course concisely illustrates how to setup good Docker development environments with
examples you can adapt for your own web development projects. You’ll be running a database, a
WordPress environment, and a Node.js application on Windows, macOS, or Linux in minutes.
You’ll discover how to edit and debug live code using browser DevTools and VS Code. You’ll find
out how to share your application with others and push to production servers.

I considered naming this book “Docker: the Good Parts” or “Docker Essentials”.

Perhaps “How to Use Docker Quickly and Easily for Web Development Projects Without Having to
Wade Through Complex Documentation First” is more apt, but a little long (unless you’re into
SEO).

2 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.1.0

0.3 Prerequisites

This book is technology-agnostic where possible. The examples refer to specific web
development dependencies such as PHP, Node.js, MySQL, and WordPress but you do not require
working knowledge of those technologies. All Docker commands and techniques can be used on
Windows, macOS, or Linux and adapted to your own stack.

Ideally, you should know a little about web development concepts:

1. web servers and browsers
2. client-side HTML, CSS, and JavaScript
3. server-side languages or runtimes such as Node.js, PHP, Python, Ruby, .NET, etc.
4. databases such as MySQL, PostgreSQL, MongoDB, etc.
5. other dependencies used by your web application, such as build tools, queuing systems,

caches, etc.

You don’t need to be a full-stack developer, but it’s practical to have some knowledge of how
these technologies mesh together.

You will also require a terminal and a text editor. Some familiarity with the command-line and Git
will be useful.

0.3.1 Docker Community Edition

You should be running a recent edition of Windows, macOS, or Linux which supports Docker. All
commands shown are cross-platform unless stated otherwise.

The open source (free) Docker Community edition version 19 and Docker Compose 1.26 have
been used to create examples and code snippets. These should be compatible with later
versions, but consider upgrading if you have earlier installations.

The commercial Docker Enterprise Edition (EE) is primarily a support plan, so it should be
compatible.

Craig Buckler, @craigbuckler 3

DockerWebDev.com, v1.1.0 Docker for Web Developers

0.3.2 Docker Hub

Docker Hub is a service for finding and sharing container images. It’s not necessary to create a
DockerHub account, but you will need to sign-up at https://hub.docker.com/ if you want to push
your own images.

0.4 Course website

Course resources, links, announcements, and breaking amendments can be found at
dockerwebdev.com

0.5 Book and/or videos?

This course is provided as a book and a set of videos depending where you purchased it. The
book contains in-depth information but the videos quickly demonstrate concepts, code, and
results. They cover the same topics so use either as you prefer.

You can purchase either, both, or the other option on the dockerwebdev.com website.

0.6 Example code

You may have received the example code in a ZIP archive, but you can also access the GitHub
repository:

https://github.com/craigbuckler/docker-web

Those comfortable with Git can fork the repository and clone their own version. Alternatively,
click the Clone or download button and choose Download ZIP.

4 Craig Buckler, @craigbuckler

https://hub.docker.com/
https://hub.docker.com/
https://dockerwebdev.com/
https://dockerwebdev.com/
https://github.com/craigbuckler/docker-web

Docker for Web Developers DockerWebDev.com, v1.1.0

0.7 Chat room

A course chat room is available at discord.com for registered users to discuss Docker concepts
and problems. Your registration invite link is available in your book/course receipt email.

0.8 Code conventions

Terminal commands are presented in a code block. A backslash denotes a line break for easier
reading, e.g.

docker run -d --rm \
--name mongodb \
-p 27017:27017 \
--mount "src=mongodata,target=/data/db" \
mongo:4

These commands can be copied and pasted as-is on Linux, macOS, and Windows terminals using
the Windows Subsystem for Linux (WSL).

Windows cmd and PowerShell terminal users must remove the \ and line breaks before
pasting.

Code examples such as JavaScript may have additional whitespace in the book. Please refer to
the original source and avoid copying directly from the PDF.

0.9 Further tips

Additional information and asides are shown in a breakout box.

These tips show useful options but are not part of the main tutorial.

Craig Buckler, @craigbuckler 5

https://discord.com/channels/714109256072429630/714109256596455446

DockerWebDev.com, v1.1.0 Docker for Web Developers

0.10 About me

I’m Craig Buckler – a freelance UK web developer. I’ve been coding web sites and apps since the
mid-1990s (IE2!) and have been fortunate to undertake projects and technologies which interest
me.

You may have encountered my work at SitePoint.com where I’ve written more than 1,200
tutorials and authored several books including Jump Start Web Performance, Browser DevTool
Secrets, and Your First Week With Node.js. I’ve also developed video courses for O’Reilly.

I mainly bang on about web standards, performance, and keeping things simple.

0.10.1 Hire me

I’m available for consultancy, coding, speaking, mentoring, or training. My specialisms include
system design, resilient web development, Progressive Web Apps, performance, accessibility,
and . . . Docker.

More information and contact details:

• craigbuckler.com personal site
• optimalworks.net business site

6 Craig Buckler, @craigbuckler

https://www.sitepoint.com/author/craig-buckler
https://amzn.to/3l1BCNc
https://www.sitepoint.com/premium/books/browser-devtool-secrets
https://www.sitepoint.com/premium/books/browser-devtool-secrets
https://amzn.to/2Ek940G
https://www.oreilly.com/people/craig-buckler/
https://craigbuckler.com/
https://www.optimalworks.net/

Docker for Web Developers DockerWebDev.com, v1.1.0

0.11 Copyright and distribution

Copyright 2020 Craig Buckler. All rights reserved. No part of this book may be reproduced
without the prior written permission of the author.

Kindle editions of the book purchased from Amazon use Digital Rights Management (DRM): you
will only be able to view it on a compatible device.

The book and video files purchased from the dockerwebdev.com website do not use DRM. You
are free to copy and use the files on any of your devices without restriction.

Of course, that means you could distribute, re-brand, or sell this to others. Please don’t! This
course is the culmination of many months e�ort. It’s self-published – I don’t receive income or
commission from a publishing company.

Benefits to those buying the course:

1. You’ll receive updates and amendments as necessary.
2. You can access the chat room for further support.
3. You can become an a�iliate and receive income from your sales.
4. You’re enabling the production of further courses.
5. You’ll receive my eternal gratitude and can sleep well at night.

Many thanks for buying this course. I hope you find it useful and it changes the way you
approach web development. I look forward to receiving your comments and feedback on Twitter
@craigbuckler or the course chat room.

Craig Buckler, @craigbuckler 7

https://dockerwebdev.com/
https://discord.com/channels/714109256072429630/714109256596455446
https://dockerwebdev.com/
https://twitter.com/craigbuckler
https://discord.com/channels/714109256072429630/714109256596455446

DockerWebDev.com, v1.1.0 Docker for Web Developers

8 Craig Buckler, @craigbuckler

1 Introduction

Does our web development stack really need another technology?

Modern web development involves a deluge of files, systems, and components:

• HTML content and templates
• CSS stylesheets and preprocessors such as Sass
• client-side JavaScript including frameworks such as React, Vue.js, and Svelte
• build tools such as bundlers, minifiers, etc.
• web servers such as NGINX or Apache
• server-side runtimes and frameworks including Node.js, PHP, Python, Ruby, .NET etc.
• databases such as MySQL, MariaDB, SQL Server, or MongoDB
• other services for caching, message queues, email, process monitoring, etc.
• Git and Github for source control

Managing this stack can be a challenge.

How many hours do you spend installing, configuring, updating, and managing so�ware
dependencies on your development PC?

1.1 “It works on my machine, buddy”

Imagine your latest application has become successful. You’ve had to hire another developer to
give you more time to rake in money. They turn up at work on day one, clone your repository,
launch the code, and – BANG – it fails with an obscure error message.

9

DockerWebDev.com, v1.1.0 Docker for Web Developers

Debugging may help, but your environments are not the same. . .

• you use a Mac, they use Windows
• you developed the app using Node.js v10, they have v14 installed
• you used MongoDB v3.6, they’re on v4.2

The di�erences mount up.

You may be able to solve these issues within a few hours, but. . .

• Can you keep every dependency synchronized?
• Is that practical as the team and number of devices grow?
• Are those dependencies available on all development OSes and the production servers?

Some companies would implement a locked-down device policy, where you’re prevented from
using the latest or most appropriate tools. (Please don’t be that boss!)

1.2 Virtual machining

Rather than restricting devices and so�ware, the application could be run within a Virtual
Machine (VM). A VM allows an operating system to be installed in an emulated hardware
environment; in essence, it’s a PC running on your PC.

Cross-platform VM options include VMware and VirtualBox. You could create a Linux (or other)
VM with your application and all its dependencies. The VM is just data: it can be copied and run
on any real Windows, macOS, or Linux device. Every developer – and the live server – could run
the same environment.

Unfortunately, VMs quickly become impractical:

• VM disk images are large and di�icult to clone
• an individual VM could be updated automatically or by a single developer so it’s out of sync

with others
• a VM requires considerable computing resources: it’s a full OS running on emulated

hardware within another OS.

10 Craig Buckler, @craigbuckler

https://www.vmware.com/
https://www.virtualbox.org/

Docker for Web Developers DockerWebDev.com, v1.1.0

1.3 Docker delivers

Docker solves all these problems and more. Rather than installing dependencies on your PC, you
run them in lightweight isolated VM-like environments known as containers.

In a single command, you can download, configure, and run whatever combination of services or
platforms you require. Yes, a single command. (Admittedly, it can be quite a complicated
command, but that’s where this book comes in!)

Development benefits include:

• all developers can use the same Docker containers on macOS, Linux, and Windows
• installation, configuration, maintenance, and testing of applications becomes easier
• applications run in virtual environment isolated from your development PC
• multiple versions of the same application or runtime can be used on the same PC at the

same time, e.g. PHP 5.6, 7.0, 7.4 etc.
• developers retain all the benefits of local development and can experiment without risk.

Similar Docker environments can also be deployed in production:

• continuous integration and delivery processes can be simplified for rapid deployment with
zero downtime

• performance can be improved with horizontal scaling. It’s possible to add more
application containers to cope with increased tra�ic.

• services are more robust. If a container fails, it can be automatically restarted with zero
downtime.

• applications can be secured. Containers can be configured to communicate only with each
other and not the outside world. A MySQL database could be made available to a
WordPress container without exposing itself to the host OS and beyond.

1.4 Nah, I’m still not convinced

Neither was I.

Craig Buckler, @craigbuckler 11

https://www.docker.com/

DockerWebDev.com, v1.1.0 Docker for Web Developers

When I first encountered Docker, it seemed like an unnecessary and somewhat daunting hurdle. I
had plenty of experience running VMs and configuring so�ware dependencies – surely I didn’t
need it?

Docker documentation is comprehensive but it has a steep learning curve. Tutorials are o�en
poor and:

1. presume the reader fully understands all the jargon,

2. fail to explain or over-explain esoteric points, and

3. rarely address how Docker can be used during development.

When I started, I presumed Docker couldn’t handle dynamic application restarts or
debugging. Tutorials o�en claimed every code change required a slow and cumbersome
application rebuild.

I gave up.

I was eventually shown the light by another developer (thanks Glynne!) That led to several
months deep-diving into Docker and I realised what I’d been missing.

Example: I’ve created many WordPress-based websites.

I’d usually develop these directly on Windows or an Ubuntu VM, where it’s necessary to
install/update Apache, SSL, PHP, MySQL, and WordPress itself. All before commencing the real
development work.

The equivalent Docker process takes minutes to initialize and can be cloned for every new
project (see WordPress development with Docker). Each installation exists in its own isolated
environment which can be source-controlled and distributed to other developers.

That said, I’ve never deployed WordPress to a production server using Docker. WordPress
hosting is ubiquitous and inexpensive; I’m happy to let someone else manage those
dependencies. However, potential problems are minimized because I replicated the production
server environment on my development PC.

It is considerably easier to build applications with Docker. Without wanting to sound like a
salesperson, Docker will revolutionize your development!

12 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.1.0

1.5 Isn’t {insert-technology-here} where it’s at?

Docker helps regardless of which web development approach and stack you’re using. It provides
a consistent environment at build time and/or closely matches the dependencies on your
production server(s).

Your Docker environment:

1. works without an active/fast internet connection (useful when travelling, during
demonstrations, etc.)

2. permits experimentation without risk. No one will mind if you accidentally wipe your local
MySQL database.

3. is free from cost and usage restrictions.

1.5.1 Monolithic web applications

Monolithic applications contain a mix of front-end and back-end code. Typically, the application
uses a web server, server language runtime, data stores, and client-side HTML, CSS, JavaScript
and frameworks to render pages and provide APIs. WordPress is a typical example.

Docker can be used to replicate that environment so all dependencies are available on your
development PC.

Craig Buckler, @craigbuckler 13

DockerWebDev.com, v1.1.0 Docker for Web Developers

1.5.2 Serverless web applications

Serverless applications implement most functionality in the browser typically with a JavaScript
framework to create a Single Page Application (SPA). The core site/application is downloaded
once.

Additional data and services are provided by small APIs perhaps running as serverless functions.
Despite the name, servers are still used – but you don’t need to worry about managing them. You
create a function which is launched on demand from a JavaScript Ajax request, e.g. code that
emails form data to a sales team.

Docker can be used in development environments to:

1. run build processes such as JavaScript module bundling and Sass preprocessing
2. serve the web application, and
3. emulate infrastructures for serverless function testing.

1.5.3 Static sites

A static site is constructed using a build process which places content (markdown files, JSON
data, database fields, etc.) into templates to create folders of static HTML, CSS, JavaScript, and
media files. Those pre-rendered files can be deployed anywhere: no server-side runtime or
database is required.

Static sites are o�en referred to as the JAMstack (JavaScript, APIs, and Markdown). All content is
pre-rendered where possible, but dynamic services such as a site search can adopt server-based
APIs.

Docker can be used to provide a reproducible build environment on any development PC.

14 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.1.0

1.6 Key points

What you’ve learned in this chapter:

1. Docker can launch all your application’s dependencies in individual containers.

This includes servers, databases, language runtimes, etc. In most cases, these will require
little or no configuration.

2. Docker is cross-platform.

It runs on Windows, macOS, and Linux. Your application will work on any PC.

3. Docker can – and should – be used in your development environment.

You can also use it in production systems if it’s practical to do so.

The next chapter describes Docker concepts in more detail.

Craig Buckler, @craigbuckler 15

DockerWebDev.com, v1.1.0 Docker for Web Developers

16 Craig Buckler, @craigbuckler

2 What is Docker?

Most tutorials attempt to explain Docker concepts first. That can be daunting so here’s the TL;DR
alternative. . .

• Docker runs an application such as MySQL in a single container.

It’s a lightweight virtual machine-like package containing an OS, the application files, and
all dependencies.

• Your web application will probably require several containers; your code (and language
runtime), a database, a web server, etc.

• A container is launched from an image.

In essence, it’s a container template which defines the OS, installation processes, settings,
etc. in a Dockerfile configuration. Any number of containers can be started from the same
image.

• Containers start in clean (image) state and data is not permanently stored.

You can mount Docker volumes or bind host folders to retain state between restarts.

• Containers are isolated from the host and other containers.

You can define a network and open TCP/IP ports to permit communication.

• Each container is started with a single Docker command.

Docker Compose is a utility which can launch multiple containers in one step using a
docker-compose.yml configuration file.

• Optionally, orchestration tools such as Docker Swarm and Kubernetes can be used for
container management and replication on production systems.

17

DockerWebDev.com, v1.1.0 Docker for Web Developers

You’re welcome to skip the rest of this chapter and jump straight into the Docker examples. It’s
worth coming back later: the concepts discussed below may change how you approach web
development.

2.1 Containers

Recall how you could use a Virtual Machine (VM) to install a web application and its
dependencies. VM so�ware such as VMware and VirtualBox are known as hypervisors. They allow
you to create a new virtual machine, then install an appropriate operating system with the
required application stack (web server, runtimes, databases, etc.):

Figure 2.1: single Virtual Machine

18 Craig Buckler, @craigbuckler

https://www.vmware.com/
https://www.virtualbox.org/

Docker for Web Developers DockerWebDev.com, v1.1.0

In some cases, it may not be possible to install all applications in a single VM so multiple VMs
become necessary:

Figure 2.2: multiple Virtual Machines

Each VM is a full OS running on emulated hardware in a host OS with access to resources such as
networks via the hypervisor. This is a considerable overhead, especially when a dependency
could be tiny.

Craig Buckler, @craigbuckler 19

DockerWebDev.com, v1.1.0 Docker for Web Developers

Docker launches each dependency in a separate container. It helps to think of a container as a
mini VM with its own operating system, libraries, and application files.

In reality:

• a virtual machine hypervisor emulates hardware so you can run a full Operating System
• Docker emulates an Operating System so you can run isolated applications within their

own file system.

Figure 2.3: multiple Docker containers

A container is e�ectively an isolated wrapper around an executable so Docker requires far fewer
host OS resources than a VM.

It’s technically possible to run all your application’s dependencies in a single container, but
there are no practical benefits for doing so and management becomes more di�icult.

Always use separate containers for your application, the database, and any other
dependencies you require.

20 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.1.0

2.1.1 Containers are isolated

Each container is available at localhost or 127.0.0.1, but a TCP port must be exposed to
communicate with the application it runs, e.g.

• port 80 or 443 for a HTTP or HTTPS web servers
• 3306 for MySQL
• 27017 for MongoDB

Docker also allows you to access the container shell to enter terminal commands and expose
further ports to attach debuggers and investigate problems.

2.1.2 Containers are stateless and disposable

Data written to the container’s file system is lost the moment it is shuts down!

Any number of containers can be launched from the same base image (see below). This makes
scaling easy because every container instance is identical and disposable.

This may change the way you approach application development if you want to use Docker on
production servers. Presume your application has a variable which counts the number of
logged-in users. If it’s running in two containers, either could handle a login so each would have
a di�erent user count.

Dockerized web applications should therefore avoid retaining state data in variables and local
files. Your application can store data in a database such as redis, MySQL, or MongoDB so state
persists between container instances.

It may be impractical to deploy an existing application using Docker containers if it was
developed in a non-stateless way from the start. However, you can still run the application
in Docker containers during development.

Craig Buckler, @craigbuckler 21

DockerWebDev.com, v1.1.0 Docker for Web Developers

Which begs the question: what if your database is running in a container?

It will also lose data when it restarts, so Docker o�ers volumes and host folder bind mounts.

You may be thinking, “ahh, I can get around the state issue by never stopping a container!”
That’s true. Presuming your application is 100% bug-free. And your runtime is 100% reliable.
And the OS never crashes. And you never need update the host OS or the container itself.

2.1.3 Containers run on Linux

It doesn’t matter what host OS you’re using: Docker containers run natively on Linux. Even
Windows and macOS run Docker containers inside Linux. . .

The macOS edition of Docker requires VirtualBox.

The Windows edition of Docker allows you to switch between either:

1. the Windows Subsystem for Linux (WSL) 2: a highly-integrated seamless VM which is
available on all editions of Windows, or

2. Hyper-V: the Microso� hypervisor provided with Windows 10 Professional and Enterprise.

It is therefore more e�icient to run Docker on Linux but this rarely matters on a development PC.
Use whatever OS and tools you prefer.

However, if you are using Docker to deploy your application, Linux is the best choice for your live
server.

22 Craig Buckler, @craigbuckler

https://www.virtualbox.org/
https://docs.docker.com/docker-for-windows/
https://docs.microsoft.com/windows/wsl/wsl2-index
https://docs.microsoft.com/virtualization/hyper-v-on-windows/

Docker for Web Developers DockerWebDev.com, v1.1.0

2.2 Images

A Docker image is a snapshot of a file and operating system with libraries and application
executables. In essence, an image is a recipe or template for creating a container. (In a similar
way that some computer languages let you define a reusable class template for instantiating
objects of the same type.)

Any number of containers can be started from a single image. This permits scaling on production
servers, although you’re unlikely to launch multiple containers from the same image during
development.

The Docker Hub provides a repository of commonly-used images for:

• dependencies such as NGINX, MySQL, MongoDB, Elasticsearch, redis etc.
• language runtimes or frameworks such as Node.js, PHP, Python, Ruby, Rust, and any other

language you’ve heard of.
• applications such as WordPress, Drupal, Joomla, Nextcloud etc. (These o�en require

additional containers such as databases.)

Reminder: sign-up for Docker Hub account if you’d like to publish your own images.

2.2.1 Dockerfile

An image is configured using a Dockerfile. It typically defines:

1. a starting base image – usually an operating system
2. work directories and user permissions
3. all necessary installation steps, such as defining environment variables, copying files from

the host, running install processes, etc.
4. whether the container should attach one or more volumes for data storage
5. whether the container should join a network to communicate with others
6. which ports (if any) are exposed to localhost on the host
7. the application launch command.

In some cases, you will use an image as-is from Docker Hub, e.g. MySQL. However, your
application will require it’s own custom Dockerfile.

Craig Buckler, @craigbuckler 23

https://hub.docker.com/
https://hub.docker.com/_/nginx
https://hub.docker.com/_/mysql
https://hub.docker.com/_/mongo
https://hub.docker.com/_/elasticsearch
https://hub.docker.com/_/redis
https://hub.docker.com/_/node
https://hub.docker.com/_/php
https://hub.docker.com/_/python
https://hub.docker.com/_/ruby
https://hub.docker.com/_/rust
https://hub.docker.com/_/wordpress
https://hub.docker.com/_/drupal
https://hub.docker.com/_/joomla
https://hub.docker.com/_/nextcloud
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/_/mysql

DockerWebDev.com, v1.1.0 Docker for Web Developers

2.2.2 Development and production Dockerfiles

It is possible to create two Dockerfile configurations for your application:

1. one for development.

It would typically activate logging, debugging, and remote access. For example, during
Node.js development, you might want to launch your application using Nodemon to
automatically restart it when files are changed.

2. one for production.

This would run in a more e�icient and secure mode. For Node.js deployment, it’s likely to
use the standard node runtime command.

However, a simpler process is described throughout this book.

2.2.3 Image tags

Docker Hub is to Docker images what Github is to Git repositories.

Any image you create can be pushed to Docker Hub. Few developers do this, but it may be
practical for deployment purposes or when you want to share your application with others.

Images are name-spaced with your Docker Hub ID to ensure no one can use the same name.
They also have a tag so you can create multiple versions of the same image, e.g. 1.0, 1.1, 2.0,
latest etc.

<Your-Docker-ID>/<Your-Docker-Hub-Repository>:<tag>

Examples: yourname/yourapp:latest, craigbuckler/myapp:1.0.

O�icial images on Docker Hub don’t require a Docker ID, e.g. mysql (which presumes
mysql:latest), mysql:5, mysql:8.0.20, etc.

24 Craig Buckler, @craigbuckler

https://nodemon.io/

14 Want to read more?.. .

This is an excerpt from the “Docker for Web Developers” book and video course at
DockerWebDev.com.

Docker is the most useful web development tool you’re not using.

Docker web development benefits include:

• quick and easy installation of dependencies such as WordPress or databases
• dependencies are isolated and do not pollute your PC
• simpler local development and risk-free experimentation
• distribute your application to anyone regardless of their OS, editor, or tools
• live server deployments are guaranteed to work and can be scaled

Despite this, Docker is o�en shunned by web developers. It’s considered too technical,
unnecessary, or something for DevOps experts. Terminology and resources can be impenetrable
and tutorials rarely explain how to use Docker during development.

The course concisely explains Docker and how it can be used to create portable web
development environments on Windows, macOS, or Linux. Quick start examples demonstrate
how to:

• install and run a MySQL database on your development PC
• create a full WordPress development environment
• build a simple “Hello World” application using Docker
• create a complex quiz application using NGINX, MongoDB, and Node.js
• make live coding updates and debug with Chrome DevTools and VS Code

195

https://dockerwebdev.com/

DockerWebDev.com, v1.1.0 Docker for Web Developers

The full course provides:

1. a 200-page / 25,000-word ebook in PDF, epub, and Kindle mobi formats
2. more than 90 minutes of demonstration videos
3. all example source code for use in your own projects
4. a private chat room to discuss Docker options and issues with me and others
5. ongoing updates as Docker changes occur.

Purchase the book, the videos, or both at DockerWebDev.com

196 Craig Buckler, @craigbuckler

https://dockerwebdev.com/

	Version history
	Preface
	Prerequisites
	Course website
	Book and/or videos?
	Example code
	Chat room
	Code conventions
	Further tips
	About me
	Copyright and distribution
	Introduction
	``It works on my machine, buddy''
	Virtual machining
	Docker delivers
	Nah, I'm still not convinced
	Isn't {insert-technology-here} where it's at?
	Key points

	What is Docker?
	Containers
	Images

	Want to read more?…

