DOCKER

For PHP Developers

BY PAUL REDMOND

A Guide to Using Docker for PHP Development

Docker for PHP Developers
A guide to using Docker for PHP development

Paul Redmond

This book is for sale at http://leanpub.com/docker-for-php-developers

This version was published on 2020-01-08

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2013 - 2020 Paul Redmond

http://leanpub.com/docker-for-php-developers
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!

Please help Paul Redmond by spreading the word about this book on Twitter!
The suggested tweet for this book is:
https://twitter.com/paulredmond/status/955815200166326272

The suggested hashtag for this book is #dockerphp.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#dockerphp

http://twitter.com
https://twitter.com/intent/tweet?text=https://twitter.com/paulredmond/status/955815200166326272
https://twitter.com/search?q=%23dockerphp
https://twitter.com/search?q=%23dockerphp

Contents

Introduction i
WhoisthisBook for e ii
Conventions Used in thisBook ii
Tools . .. e iv
About the Authors e v

Chapter 2: PHP Container Basics 1
Creatinga New Project 1
Running the PHP Container 2
Running Containers with Docker Compose 4
Basic PHP INI Changes e 6

Composed and Ready for Adventure 8

Introduction

Docker is a software container platform that allows you to run isolated applications that are highly
repeatable between different environments. It’s different from virtual machines in the fact that it’s
not a full operating system. Docker provides the essential libraries needed to run software that will
run the same on Windows, Mac OS X, and Linux operating systems.

Docker’s adoption and growth over the last couple of years is staggering, along with a booming
ecosystem surrounding everything from container management, build pipelines, and developer tools
for every major platform.

I believe now is the perfect time to pick up Docker and see for yourself how it can improve your
PHP development environment.

Why is that?

Docker is Lighter than Virtual Machines

Software tools like Vagrant make it easier to produce repeatable development environments through
a virtualized image. Vagrant is still very much a tool with valid uses, don’t fall into the trap of pitting
them against each other. The Vagrant website' has a concise write-up that compares Vagrant. Both
solutions aim to provide repeatable, consistent environments, and both have a large community
ecosystem.

One thing I like about Docker is how quickly you can start and stop containers. I like fast and
local development environments, and Docker feels more natural in that way. Building Docker
environments are faster than provisioning a Vagrant box, and I also like that production images
will be identical to my local images.

In my opinion, Docker encourages developers to play with software on their machine without the
fear of installing it locally. You will be more confident in your platform and thus will feel encouraged
to improve upon it. Upgrading to new versions of PHP will be more reliable because you will
eventually ship the same image to production without surprises.

Docker is Maturing

In the early days of Docker support was limited on Mac OS X and Windows platforms. On OS X,
tools like “boot2docker” provided Docker support through a virtual OS image. An official Docker
toolbox® package for Mac still provided Docker through a virtual Linux server, but Docker for Mac
now gives you a truly native Docker experience.

'https://www.vagrantup.com/intro/vs/docker.html
*https://www.docker.com/products/docker-toolbox

https://www.vagrantup.com/intro/vs/docker.html
https://www.docker.com/products/docker-toolbox
https://www.docker.com/products/docker-toolbox
https://www.vagrantup.com/intro/vs/docker.html
https://www.docker.com/products/docker-toolbox

Introduction ii

In July 2016, Docker announced stable versions®> of Docker for Mac and Docker for Windows to
provide native virtualization experiences to match Linux.

Considering that all three major software platforms can natively run Docker, using it as a
development tool is vastly easier. Removing the virtual machine aspect of Windows Pro and Mac
makes running Docker as fast as running it on a Linux OS.

At the same time that the Docker platform has been maturing, automation tools for orchestrating
containers have evolved too. Initially, a project called fig* made it easier to run and link containers
you were running locally. Fig evolved into the officially supported Docker compose® tool distributed
with Docker on all platforms.

Who is this Book for

This book is for PHP developers that haven’t had exposure to Docker yet or current Docker users
that want an opinionated text on how to develop applications locally with PHP and Docker.

A working understanding of PHP, experience running commands from a command line interface
(CLI), and a basic understanding of setting up a PHP project are assumed. Even if you haven’t set
up a complete PHP environment, the examples in the book should be complete enough that you can
follow along.

This book’s primary focus is on using Docker as a PHP development environment. I cannot deny
that deployment is an important part of learning Docker, but this text cannot accomplish the goal
of focusing on development and give deployment justice. We do, however, cover deployment of
Docker to Digital Ocean using Rancher to get you started. We will provide plenty of “where to go
next” references to explore at the conclusion of this book too, but consider this book’s focus on
getting you comfortable and confident using Docker for development.

Conventions Used in this Book

This book is a hands-on guide to using Docker as a PHP developer, and thus it’s important to
understand the conventions used to display the source code, command line examples, and how
to submit code errata.

Code Examples

A typical PHP code snippet looks like this:

*https://blog.docker.com/2016/07/docker-for-mac-and-windows-production-ready/
“http://www.fig.sh/
*https://docs.docker.com/compose/

https://blog.docker.com/2016/07/docker-for-mac-and-windows-production-ready/
http://www.fig.sh/
https://docs.docker.com/compose/
https://blog.docker.com/2016/07/docker-for-mac-and-windows-production-ready/
http://www.fig.sh/
https://docs.docker.com/compose/

oo b~ W N

Introduction iii

Example PHP Code Snippet

[**

* A Hello World Example

*/

$app->get('/', function () {
return 'Hello World';

1)

To guide readers, new code added to an existing file will be bold:

Example PHP Code Snippet

[**

* A Foobar Example

*/

Sapp->get('/foo', function () {
return 'bar';

1)

Longer lines end in a backslash (\) and continue to the next line:

Example of Long Line in PHP

$thisIsAlLonglLine = 'Lorem ipsum dolor sit amet, consectetur adipisicing elit. Quos u\
nde deserunt eos?'

When you need to run terminal commands to execute the test suite or create files, the snippet appears
as plain text without line numbers. Lines starting with $ which represents the terminal prompt.

Example Console Command

$ touch the/file.php

Console commands are sometimes executed locally on your development machine and other times
within a Docker container. The text tries to emphasize both cases so you are aware of where you
should be running a given command.

Introduction iv

Console Command in a Docker container

$ docker exec -it c@eel4f0c047 bash
Inside the container, run php --ini
root@cOeel4foOcO47:/var/www/html# php --ini

Code Errata and Feedback

Submit errata to errata@bitpress.io. Feel free to send typos, inaccurate descriptions, code issues,
praise, feedback, and code suggestions on better ways of doing something. Please don’t be shy,
these things make the book better!

Tools

We will cover installing Docker and other tools needed to work with Docker. There are other
recommended tools not included in the text that will help you along the way to learning Docker.

Command Line

I can only make a few recommendations here. If you are on Linux, you already have an excellent
shell. On Mac OS X, I prefer to use Iterm2°. Hyper’ is another terminal that works on Mac, Linux,
and Windows.

Version Control

If you want to work along in the book and commit your code as you go (recommended) you need
to install a version control system. I recommend git?®, but anything you want will do.

Editor / IDE

Most readers will already have a go-to editor. I highly recommend PhpStorm®—which is not free—
but it pays for itself. Other common IDE options are Eclipse PDT’ and NetBeans'".

If you don’t like IDE’s, I recommend Sublime Text'? or Atom*® or Visual Studio Code'“. They are all
great editors and have Docker support.

“https://www.iterm2.com/
"https://hyper.is/

*https://git-scm.com/
*https://www.jetbrains.com/phpstorm/
"°https://eclipse.org/pdt/
https://netbeans.org/
?https://www.sublimetext.com/
Phttps://atom.io/
“https://code.visualstudio.com/

mailto:errata@bitpress.io
https://www.iterm2.com/
https://hyper.is/
https://git-scm.com/
https://www.jetbrains.com/phpstorm/
https://eclipse.org/pdt/
https://netbeans.org/
https://www.sublimetext.com/
https://atom.io/
https://code.visualstudio.com/
https://www.iterm2.com/
https://hyper.is/
https://git-scm.com/
https://www.jetbrains.com/phpstorm/
https://eclipse.org/pdt/
https://netbeans.org/
https://www.sublimetext.com/
https://atom.io/
https://code.visualstudio.com/

Introduction \%

About the Authors

Paul Redmond

I am a web developer writing highly available applications powered by PHP,
JavaScript, and RESTful Web Services. I am the author of the self-published
Writing APIs with Lumen® which is now published as Lumen Programming
Guide ** (Apress). I also write for Laravel News'’.

I live in Scottsdale, Arizona with my wife and three boys. I enjoy reading,
writing, movies, golf, and basketball.

I’d love for you to follow me on Twitter @paulredmond'®. Please send me
your feedback (good and bad) about the book so that I can make it better. If
you find this book useful, please recommend it to others!

Salut, Hoi, Hello

BitPress

BitPress provides high-quality screencasts, books, and training materials for

Press PHP, Java, and DevOps. You won’t find boring presentations or hard-to-hear

talks ported to video. Dive into engaging one-on-one coding screencasts and
books.

Visit BitPress.io™ to sign up for our newsletter to receive insider information, tutorials, and new
product launches.

*https://leanpub.com/lumen-apis
*“http://www.apress.com/book/9781484221860
https://laravel-news.com/@paulredmond
®https://twitter.com/paulredmond
http://bitpress.io

https://leanpub.com/lumen-apis
http://www.apress.com/book/9781484221860
http://www.apress.com/book/9781484221860
https://laravel-news.com/@paulredmond
https://twitter.com/paulredmond
http://bitpress.io/
https://leanpub.com/lumen-apis
http://www.apress.com/book/9781484221860
https://laravel-news.com/@paulredmond
https://twitter.com/paulredmond
http://bitpress.io/

Chapter 2: PHP Container Basics

In this chapter we are going to cover the basics of running a PHP container with Docker. Before we
get into the more exciting stuff, we need to learn how to build images, start containers, and copy
files into them. Along the way, you’ll work with basic Docker commands and start to get a feel for
how to work with Docker on the command line.

Using the command line to build images, we’ll extend our images from the official PHP Docker
images®. I find the official image simplifies my setup and I can focus on configuring applications
and not worrying about the low-level details of installing PHP.

Creating a New Project

When creating a new Docker project, the main file used to build images is the Dockerfile. This
file is a set of instructions that define building images, each step creating a new layer on top of the
previous. If this doesn’t make much sense right now, don’t worry, you don’t need to be an expert
to start being productive. I recommend that you keep the Dockerfile reference® handy as you work

through this book.

The first task is creating the necessary files for our first Docker image. In the directory of your
choice, create the following files (Listing 2.1):

Listing 2.1: Creating Docker files

$ mkdir -p ~/Code/docker-phpinfo
$ cd ~/Code/docker-phpinfo

Create the project files
$ touch Dockerfile docker-compose.yml +index.php

The index. php file will be the only source file in this chapter that we’ll use to demonstrate changes
to our builds, and in later chapters we will work with web frameworks.

The docker-compose.yml file is a configuration file that will help you run containers with the
docker-compose CLI tool. If you are not familiar with Docker Compose, don’t worry, we will use
it throughout this book.

To start, we will define the Dockerfile to extend the PHP Apache image and copy the index.php
file (Listing 2.2):

**https://hub.docker.com/_/php/
*'https://docs.docker.com/engine/reference/builder/

https://hub.docker.com/_/php/
https://hub.docker.com/_/php/
https://docs.docker.com/engine/reference/builder/
https://hub.docker.com/_/php/
https://docs.docker.com/engine/reference/builder/

A W N R

Chapter 2: PHP Container Basics 2

Listing 2.2: Defining the Dockerfile Instructions
FROM php:7.1.9-apache

LABEL maintainer="Paul Redmond"
COPY -index.php /var/www/html

The FROM instruction means we are extending another image. Think of it like PHP class inheritance.
You inherit the base image which takes care of things like installing Apache and building PHP from
source. The official PHP image is doing most of the work for us!

As outlined in the README found on https://hub.docker.com/_/php/, you copy the source files of
your project to /var/www/html using COPY. In our case we’ll copy the index.php file into the
image at /var/www/html/index.php. Note that the COPY instruction can take an individual file
or a directory.

The LABEL instruction is how you add metadata to an image. In this case, we are following the
recommended guideline for setting a maintainer, which helps others know who is maintaining the
Dockerfile. You can see the metadata for an image by running docker inspect name|id:

docker dinspect <image_name>
$ docker -nspect php:7.1.9-apache

Next, let’s output PHP’s configuration to the browser so we can verify our PHP setup (Listing 2.3):

Listing 2.3: Update the index.php File

<?php phpinfo(); 7>

Running the PHP Container

It’s time to run our first image and inspect the PHP environment. In order to run it, we need to build
it using the docker build command (Listing 2.4):

Listing 2.4: Build the Docker Image

$ docker build -t phpinfo .
$ docker run -p 8080:80 -d --name=my-phpinfo phpinfo

The build command has a -t flag, which tags the image as phpinfo, and the last argument (.) is the
path where Docker will look for our files.

The run command runs a container with the tagged phpinfo image, using the -p flag to map port
8080 on your machine to port 80 in the container, which means that we’ll use port 8080 locally to
access our application.

Chapter 2: PHP Container Basics 3

The --name flag assigns a name to the running container that you can use to issue further commands,
like docker stop my-phpinfo. If you don’t provide a name, Docker creates a random auto-
generated name for you.

The -d flag (detach) is used to run the container in the background. Without the -d flag Docker
runs in the foreground.

Next, point your browser to http://localhost:8080%%, and you should see the output from phpinfo()
(Figure 2.1):

[phpinfo()

< C' @ localhost:8080

System Linux de94fd7c41c6 4.9.49-moby #1 SMP Wed Sep 27 23:17:17 UTC 2017 x86_64

Build Date Sep 15 2017 00:10:35

Configure Command ".Jeconfigure' --build=x86_64-linux-gnu' --with-config-file-path=/usr/local/etc/php' "--with-config-file-scan-
dir=/usr/local/etc/php/conf.d' --disable-cgi' '--enable-ftp' '--enable-mbstring' --enable-mysqlind' --with-curl' --with-
libedit' '--with-openssl' '--with-zlib' --with-pcre-regex=/usr' --with-libdir=lib/x86_64-linux-gnu' "--with-apxs2'
'build_alias=x86_64-linux-gnu'

Server API Apache 2.0 Handler

Virtual Directory Support disabled

Configuration File (php.ini) Path lusr/local/etc/php

Loaded Configuration File lusr/local/etc/php/php.ini

Scan this dir for additional .ini files lusr/localletc/php/conf.d

Additional .ini files parsed (none)

PHP API 20160303

PHP Extension 20160303

Zend Extension 320160303

Zend Extension Build API320160303,NTS

PHP Extension Build API20160303,NTS

Figure 2.1: phpinfo

Our container is running, which means that we can inspect it from the command line by issuing the
docker ps command. Unless you are already running something with Docker, you should see just
one container (Listing 2.5):

Listing 2.5: The docker ps Command (partial output)

$ docker ps
CONTAINER ID IMAGE COMMAND
88c6424ebb5b phpinfo "apache2-foreground"

The ps command outputs the names of the containers, which you can use to issue commands like
docker stop my-phpinfo and docker start my-phpinfo. The my-phpinfo argument is the
name we provided the container in the docker run command.

*http://localhost:8080

http://localhost:8080/
http://localhost:8080/

Chapter 2: PHP Container Basics 4

If a container is stopped, running docker ps does not show the container in the list; however, you
can still see all containers by running docker ps -a. To remove a container, you could run docker
rm my-phpinfo.

In practice, running containers with docker run isn’t going to help your productivity. In fact, it will
be kind of clunky when you share the application with others. That’s exactly what Docker Compose
will help us automate, so let’s dive in!

Before we start working with Docker Compose, shut down the container you are running:

Stop the container
$ docker stop my-phpinfo

Remove the container
$ docker rm my-phpinfo

Running Containers with Docker Compose

What is Docker Compose? From the Docker Compose overview page®*:
Compose is a tool for defining and running multi-container Docker applications.

One my biggest breakthroughs when I was learning about Docker was running containers with
Docker Compose?, because it simplifies running your stack over individually running containers
with docker run.

Your applications will need dependencies like MySQL, Redis, etc., and with Docker Compose, we
can automate the orchestration of these services. Can you imagine multiple docker run commands
and networking everything together by hand? Me neither.

In more traditional environments, all dependencies run on the same operating system (or virtual
machine). However, with Docker, you can break up your application into multiple containers. This
separation can simplify your setup and lets you scale parts of your application independently.

Before we start adding services like MySQL in future chapters, let’s just replicate what we were
doing with docker run inside the docker-compose.yml file to get started (Listing 2.6):

*https://docs.docker.com/compose/overview/
**https://docs.docker.com/compose/

https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/
https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/

Chapter 2: PHP Container Basics 5

Listing 2.6: Your First docker-compose.yml File

version: "3"
services:
phpinfo:
build:
ports:
- "8080:80"

The services key defines one service called phpinfo.

Inside the phpinfo service, the build key references a dot (.), which means we expect the
Dockerfile in the current path. Lastly, the ports key contains an array of port maps from
the host server, just like our previous docker run -p 8080:80 flag. The port format is:
<host_port>:<container_port>, which in our case means that port 8080 on the local machine
will map to port 80 inside the container.

We are using version three*, which is the recommended version at the time of writing. I use the
documentation frequently, and I recommend that you bookmark it and use it as a reference.

With our service defined, now anyone that comes along and needs to run this project can simply
run docker-compose up (Listing 2.7):

Listing 2.7: Using Docker Compose

$ docker-compose up --build

Or, if you want to run it in the background
$ docker-compose up -d --build

Now list all the containers running
$ docker-compose ps

After running the command, you should see the output from the phpinfo() function when you
visit http://localhost:8080%°.

If you ran your containers in the background (-d), you can use the stop command to stop everything
(Listing 2.8):

**https://docs.docker.com/compose/compose-file/
*http://localhost:8080

https://docs.docker.com/compose/compose-file/
http://localhost:8080/
https://docs.docker.com/compose/compose-file/
http://localhost:8080/

Chapter 2: PHP Container Basics 6

Listing 2.8: Stopping Containers with Docker Compose

From the root of the project
$ docker-compose stop

Here are commonly used commands that you should become familiar with (Listing 2.9):

Listing 2.9: Additional Docker Compose Commands

List running containers that Docker Compose 1is managing
$ docker-compose ps

Restart the containers
$ docker-compose restart

Restart a specific container
matches the service key in docker-compose.yml
$ docker-compose restart phpinfo

Remove stopped containers
$ docker-compose stop && docker-compose rm

Stop containers and remove containers, networks,
volumes, and images created
$ docker-compose down

Remove named volumes
$ docker-compose down --volumes

Don’t worry about memorizing these commands. You can always run docker-compose --help
to get a list of commands, and run, for example docker-compose up --help to get help on
subcommands. You'll also get plenty of practice setting up Docker Compose and running containers
throughout this book.

Basic PHP INI Changes

We have the phpinfo() settings handy, so let’s make a few small tweaks to the php.ini file and
validate our changes. We’ll also jump into a running container and peek around, which feels very
much like SSH to me (but it’s nothing like that).

According to the PHP image documentation, the php. in1 file is located at /usr/local/etc/php/php.ini,
however, I want to show you how to find the location on your own. We will then make a few
adjustments, rebuild the image, and verify our INI changes.

Chapter 2: PHP Container Basics 7

First we need to find out the PHP container’s ID, so we can use it to run bash inside the container
(Listing 2.10):

Listing 2.10: Find the Running Container ID

Run the 1image if you are not already doing so
$ docker-compose up -d

Get the 1image ID
$ docker ps
CONTAINER ID
cOeeldfoco47

The container ID that you see will be different. Copy the container ID for your output and use it to
run the following commands (Listing 2.11):

Listing 2.11: Run bash in the container

$ docker exec -it cBeel4fO®cO47 bash

Inside the container, run php --ini
root@ceeldfOcO47: /var /www/html# php --1ini

Configuration File (php.ini) Path: /usr/local/etc/php

Loaded Configuration File: (none)
Scan for additional .ini files 1in: /usr/local/etc/php/conf.d
Additional .ini files parsed: (none)

root@cQeeldf0c047:/var/www/html#

You can exit the container by hitting “Ctrl + D” or typing exit.

Although the image has no INI configuration file defined, we can create our own in the project, and
then copy it into the image (Listing 2.12):

Listing 2.12: Create a php.ini File and Set the Timezone

$ mkdir config/

I am partial to Phoenix, I live here after all...
and we don't observe daylight savings time, win!
$ echo "date.timezone = America/Phoenix" >> config/php.ini

Our php.ini file has one date. timezone setting, which configures the timezone to America/Phoenix.
[prefer UTC, but I want to show you a non-default for demonstration purposes.

We can now copy our php.ini file into the image at the correct path listed in the php --ini command
by adding a COPY instruction in the Dockerfile (Listing 2.13):

a b W N K

Chapter 2: PHP Container Basics 8

Listing 2.13: Copy the php.ini File Into the Container

FROM php:7.1.9-apache

LABEL maintainer="Paul Redmond"
COPY config/php.ini /usr/local/etc/php/
COPY -+index.php /var/www/html

In order to get our php.ini file into the container, we need to build the image again (Listing 2.14):

Listing 2.14: Rebuild the phpinfo image

$ docker-compose stop
$ docker-compose up -d --build

The image should now contain a php.ini config file and you should see the following “datetime”
change Figure 2.2.

date

date/time support enabled
"Olson" Timezone Database Version 2017.2
Timezone Database internal
Default timezone America/Phoenix

Directive Local Value Master Value
date.default_latitude 31.7667 31.7667
date.default_longitude 35.2333 35.2333
date.sunrise_zenith 90.583333 90.583333
date.sunset_zenith 90.583333 90.583333
date.timezone America/Phoenix America/Phoenix

Figure 2.2: phpinfo datetime changes

Composed and Ready for Adventure

We covered a bunch of ground quickly. In a nutshell, you learned the following:

« Extending an existing Docker image

« Building a custom Docker image

« Running custom docker images

« Using Docker Compose to automate running containers
« Executing a bash shell in a running container

« Debugging and adding PHP INI files

Chapter 2: PHP Container Basics 9

Using Docker requires a new way of thinking, and can be quite a transition. If you feel overwhelmed
or confused right now, don’t worry. I've been there too. You’ll get plenty more wrench time running
commands and making changes as you start going over more practical uses of Docker by running
real-world applications in this book!

	Table of Contents
	Introduction
	Who is this Book for
	Conventions Used in this Book
	Tools
	About the Authors

	Chapter 2: PHP Container Basics
	Creating a New Project
	Running the PHP Container
	Running Containers with Docker Compose
	Basic PHP INI Changes
	Composed and Ready for Adventure

