Agile Software
Development

with Distributed
lTeams

Jutta Ecksteln

Agile Software Development
with Distributed Teams

Staying Agile in a Global World

Jutta Eckstein

This book is for sale at http://leanpub.com/distributed-teams
This version was published on 2022-03-31

ISBN 978-3-947991-30-3

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2010 - 2022. Jutta Eckstein. 38106 Braunschweig, Germany. All
rights reserved. First publication 2010 by Dorset House Publishing,
353 West 12th Street, New York, NY 10014.

http://leanpub.com/distributed-teams
https://leanpub.com/
https://leanpub.com/manifesto

Also By Jutta Eckstein

Diving For Hidden Treasures
Retrospectives for Organizational Change

Company-wide Agility with Beyond Budgeting, Open Space &
Sociocracy

Agile Software Development in the Large
Agiles Projektmanagement Kurz und Biindig

Agilidad empresarial con Beyond Budgeting, Open Space y
Sociocracia.

https://leanpub.com/u/juttaeckstein
https://leanpub.com/divingforhiddentreasures
https://leanpub.com/retrospectivesfororganizationalchange
https://leanpub.com/bossanova
https://leanpub.com/bossanova
https://leanpub.com/agileinthelarge
https://leanpub.com/agilesprojektmanagement
https://leanpub.com/bossanovaenespagnol
https://leanpub.com/bossanovaenespagnol

Contents

1.

Assessing Agility and Distributed Projects 1
1.1 Understanding Distributed Development 1
Working With Several Development Sites 2
Distributed and Dispersed Teams 2
Large Projects 4
Coordinating Companies 4
Different Sites 5
Customers and Distance 7
Centrally Coordinated or Globally Integrated . . 7
Overcoming the Distance 9
1.2 Understanding Agility 10
Core Value Pair Statements 10
Systemic Approach 12
RiskReduction 13
The Productivity Myth 13
More Than Practices 14
Neither Chaotic Nor Undisciplined 14
1.3 Agile Principles Influencing Distributed Projects 15
1.4 Summary 18

1. Assessing Agility and
Distributed Projects

All things are connected.

— Chief Seattle

1.1 Understanding Distributed
Development

My neighborhood grocery store currently displays an advertise-
ment that notes,

Computer specialists can be found in India; a grocery
specialist is just around the corner.

One message to be taken from this ad is that people may need
to go far afield to find experts to build or support technology,
but they easily can find everything they want in the way of non-
technological expertise locally. I don’t want to argue for or against
the cultural bias of this supposition (there undoubtedly are myriad
grocery specialists in India, and I know for certain that there are
IT specialists by the thousands in Germany), but I do want to note
the implied difference in difficulty between seeking experts locally
versus abroad. That’s not to imply that the difficulty in looking for
talented people in more than one place argues against globalization,
merely that global project success involves more than just hiring

Assessing Agility and Distributed Projects 2

top performers from around the world. Of course, there are those
cynics who say that going global just means that the project will
fail cheaper, so if cheap labor is the main goal, then just looking for
any kind of cheap help will be enough.

As when shopping for groceries, software customers require at a
minimum a local contact from whom to receive the actual prod-
uct. Globalization does not change this. Although global software
development may encompass multiple locations, distributed and
dispersed teams, numerous companies, and off-site customers, a
“local” coordinator only becomes more important as project scope,
distance, and dispersion increase. Simulating proximity is one key
to the success of distributed projects, as will be seen in the following
sections.

Working With Several Development Sites

As indicated previously, a typical setting in a distributed software
development effort involves multiple development sites. Project
experts should not all be physically clustered at one site, but instead
can communicate their knowledge virtually, across even several
countries. In this way, each expert is the local link to the dispersed
project effort.

Obvious difficulties accompany the geographical distribution of
project experts. Experts must collaborate despite being located at
different sites, but different cultures, time zones, languages, dis-
tance, and so on, make collaboration difficult. The goal is for experts
to communicate with each other, then translate their specific duties
to the local audience.

Distributed and Dispersed Teams

At the core of distributed development are teams at multiple sites.
A distributed project may be staffed by one or both of the following
kinds of teams:

Assessing Agility and Distributed Projects 3

« Distributed teams might be made up of one group of people
located in, say, Bangalore, India, and another group in the
United States. This work unit is distributed between two sites,
and the project is made up of two teams situated at different
sites. Staff may work on different aspects of a project, but
they form a single work unit (like an offensive and defensive
squad on the same sports team).

« A dispersed team is one unit that is made up of people
working at numerous locations. One team member may be
located in India, another one in Northern Ireland, a third
in the United States, and a fourth in Russia, with all four
working as one development team.

Dispersed Teams

Most often, large global software-development projects include a
mix of distributed teams as well as dispersed teams. Some groups
within such a project may be collocated while others communicate
from outposts. Keep in mind that a dispersed team requires a high

Assessing Agility and Distributed Projects 4

coordination effort, even if the team is small, in order to ensure
effective communication among all team members. Commit to
building team identity early on in order to ensure that all members
work toward the same goal.

Large Projects

Developing a project globally usually increases its size. As explored
in [Eckstein04], factors that determine a project’s size include scope,
time, budget, people, and risk. For example, factors other than
budget certainly contribute to a project’s complexity and stature.
The relationship between such factors as people and time also
affect the size and nature of projects—few distributed projects are
scheduled to last only three months, as it is just not worth the effort
to set up a heavily dispersed environment with every team member
in a different part of the world. Large projects, whether distributed
or not, always garner their own risks. One risk is attendant with the
coordination of diverse people and teams. Another is ensuring that
a large project remains flexible and efficient, despite the overhead
required, for example, to ensure that all project members have the
same goals in mind.

Coordinating Companies

Often, the expertise of more than one company can provide better
value for software customers than can be provided by a single
entity. Some companies deem appropriate the strategy either of
buying a company in order to work with teams at different sites
or of founding a subsidiary at a different location, thereby ensur-
ing an enduring cooperation and committing long-term to global
development. Other companies regard distributed development as
a chance to focus on their own core competency, and they prefer,
therefore, to outsource peripheral tasks to other companies. Others
use distributed development as an opportunity to better recruit
talent.

Assessing Agility and Distributed Projects 5

No matter the group’s formal organization, the effort to bring
together different companies for a project requires a considerable
amount of work to establish cordial, and essentially trusting, re-
lationships between parties. A lack of mutual respect may cause
difficulty between different subsidiaries, but it spells disaster when
between different companies.

The kind of relationship coordinating companies seek can be de-
fined in a contract, which clarifies in detail what two or more
parties expect and how they will resolve conflict. By spelling out
penalties, contracts provide a formal means to protect involved
parties. Although a contract may serve as a means to establish
a successful and trusting relationship, it does not actually create
and preserve a trustworthy relationship that enables successful
cooperation. Establishing a complete and successful relationship
requires more than just words in a contract. It requires trust and
partnership.

The concept of lean development, which is the root of agile de-
velopment, favors partnerships.! Carsten Ruseng Jakobsen, Project
Manager at the Danish firm Systematic Software Engineering,
notes the use and role of contracts in building trusting relationships:

“Toyota has proven that treating sub-contractors as partners instead
of continuously seeking [whoever offers] the lowest possible price
is more profitable in the long term. . . . Even though you have
a contract between different parts of the project, you want the
complete project to collaborate toward the same vision.”

Different Sites

Distributed projects can encompass any of the following intra-
and inter-corporate relationships, each of which engenders unique

'For more information on lean development, see J.K. Liker’s The Toyota Way: 14 Manage-
ment Principles from the World’s Greatest Manufacturer and Mary and Tom Poppendieck’s Lean
Software Development. An Agile Toolkit. Addison-Wesley, 2003.

C.R. Jakobsen, personal communication.

Assessing Agility and Distributed Projects 6

challenges to the goal of ensuring close collaboration and, thus,
success.

« Offshore outsourcing occurs when the domestic company
outsources all or part of its software development to vendors
offshore. Thus, the onshore and offshore companies are dif-
ferent companies, a situation that requires close attention to
legal negotiation.’

« Offshore insourcing occurs when a company founds a sub-
sidiary or buys a separate company located offshore. In such
a case, only one company is involved but is itself distributed
across the globe. Large multinational organizations, such as
General Electric, Schlumberger, International Business Ma-
chines, or SAP (spell out??), typically pursue this strategy,
primarily to gain market presence offshore.

« Onshore outsourcing occurs when one company carries out
part of another company’s development project. Both com-
panies operate on the same shore, frequently in the same
country or at least close by. Onshore outsourcing is not
always considered to be global unless it shares many of the
challenges of global development, such as cultural differences,
which may interrupt communication, especially when due
to discrepancies between corporate cultures. Perhaps the
most significant challenge occurs when programmers, testers,
database administrators, and other team members are not
collocated.*

+ Nearshoring can be combined with both insourcing as well as
outsourcing. The major difference to the preceding settings is
while both companies are located on the same shore they are
not situated in the same country. For example a Californian

*According to B.B.M. Shao and J Smith-David, despite the logistical difficulties, offshore
outsourcing is becoming increasingly popular. See “The Impact of Offshore Outsourcing on
IT Workers in Developed Countries: Examining the Global Implications of Outsourcing for IT
Workers,” Communications of the ACM, Vol. 50, No. 2 (February 2007), pp. 89-94.

“Ibid. According to Shao and Smith-David, many outsourcing contracts are based on the
strategy of onshore outsourcing.

Assessing Agility and Distributed Projects 7

based firm sourcing parts of the development activities out to
Mexico.

Customers and Distance

Communication between customers and developers is similarly
important and challenging, as it is among developers. Customers
must communicate requirements to developers, who, in turn, must
fully understand the customers’ needs in order to translate them
into product functionality. Doing so is difficult even when cus-
tomers and developers are collocated. It grows more difficult when
physical distance and cultural and linguistic differences exist.

When requirements are unclear, developers can gain a better under-
standing by means of short feedback loops to clarify requirements
verbally or to present an early version of the desired product or
system. How successful the feedback loops are can depend on the
physical distance between customers and developers—particularly
when software must work on various platforms and systems, or
display in different languages.’

Effective, accurate communication among customers and develop-
ers plays a major role in a project’s success not only during develop-
ment but also during planning, taking into account different legal
requirements and diverse cultural backgrounds.

Centrally Coordinated or Globally
Integrated

In his book Global Software Teams, Erran Carmel of American
University identifies three evolutionary stages of the global de-
velopment process. As Carmel sees it, at Stage I, the entire de-
velopment process takes place at one location, and thus is not
a global effort. At Stage II, development takes place at multiple

>Thanks to Rachel Davies for pointing this out.

Assessing Agility and Distributed Projects 8

sites, all of which are centrally coordinated and controlled by
one headquarters. At Stage III, remote sites are self-directed, with
coordination between sites operating like a network. Carmel posits
that most software development companies function at Stage I1, and
only a few companies ever prepare to move to Stage III, in which ...
various remote development sites assume greater responsibility for
a range of tasks and coordinate some activities among themselves
without funneling all decisions through headquarters.”

Many development efforts even run aground due to company
policies that prevent them from advancing to Stage I1I. These efforts
are limited to always assembling the higher management of a
product at one location, typically at corporate headquarters.

°E. Carmel, Global Software Teams: Collaborating Across Borders and Time Zones (Engle-
wood Cliffs, N.J.: Prentice Hall, 1999), p. 138.

Assessing Agility and Distributed Projects 9

Global Integration

Overcoming the Distance

As now should be evident, distributed development involves much
more than just finding (low-cost) experts somewhere. Rather, in
order to successfully implement distributed development, the fac-
tors discussed above—multiple work sites, large projects, different
companies drawn together, and distant customers, must all be
addressed. The key to successful distributed development is estab-
lishing proximity despite all forms of distance.

Assessing Agility and Distributed Projects 10

1.2 Understanding Agility

A historic marker indicating that agile methods no longer would
be considered mere hype or a fringe movement was Scott Adams’
Dilbert comic strip on agility. With every passing year, agile
concepts have become more firmly entrenched in mainstream
business and, today, are largely accepted in the modern market.
Of course, while noting the movement of agile methods from the
realm of fringe, Adams also exposes typical misunderstandings, ill-
formed expectations, and downright strange interpretations that
some think still pervade the agile approach.”

Agility has come into its own as a value system defined by the
Agile Manifesto.® Based on twelve principles created to ensure the
value system,” the Agile Manifesto demonstrates that there is more
to agile development than just one specific methodology, such as
Extreme Programming® or Scrum.'* The first value stated in the
manifesto favors “individuals and interactions over processes and
tools” The processes referenced in this first value statement include
also agile development processes, which means teams must ensure
that their development process supports their needs in the best
way possible. Using the principles in the manifesto, teams can find
guidance on how to modify and adjust their development processes
to best support their needs.

Core Value Pair Statements

The values expressed in the Agile Manifesto apply to all agile
projects, superceding guidelines of any specific agile process. The

"See S. Adams, Dilbert (http://www.dilbert.com/).

3See the Agile Manifesto online: http://agilemanifesto.org.

°For an analysis of the Agile Manifesto, see A. Cockburn’s Agile Software Development:
The Cooperative Game. (Reading, Mass.: Addison-Wesley, 2" edition. 2006). For information on
agile development for large projects, see my book Agile Software Development in the Large.

For XP, see http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap.

"For Scrum, see http://www.controlchaos.com and http://www.scrumalliance.org.

Assessing Agility and Distributed Projects 11

core of the manifesto compares in four statements two values and
argues that although each value provides a value in general, the
first value is more important than the second and that the latter
half of the each statement is only valid if it supports the former.

Value Pair Statement #1,’Individuals and interactions over pro-
cesses and tools,” highlights the idea that it is always the people
involved in a project and how they collaborate that determine
a project’s success or failure. The manifesto does not devalue
processes and tools (otherwise, we wouldn’t talk about processes,
and the agile community wouldn’t have created tools such as unit
testing frameworks, integration and configuration management
tools, and others), but if individuals don’t work together as a team,
the best tools and processes won’t help the project succeed.

Value Pair Statement #2, “Working software over comprehensive
documentation.” is perhaps the most often misunderstood of the
four statements. People unfamiliar with agile development may
mistakenly believe agile projects don’t document, or even disdain
documentation. Not so. In the same way that processes and tools
play a major role in successful development, documentation also
plays a major role. However, this value comparison expresses that
working software is the critical success factor for any development
effort. Documentation might be needed to support or to understand
the working software, but it can’t and shouldn’t be an end in itself

Value Pair Statement #3,‘Customer collaboration over contract
negotiation,” emphasizes that although you need a contract, it can
never be a substitute for a good relationship with your customer. In
order to deliver a satisfactory product, involve customers regularly
throughout the development process.

Value Pair Statement #4, “Responding to change over following a
plan” advocates the importance of reacting to changes (especially
in terms of requirements changes), rather than sticking to an inap-
propriate or obsolete plan. We accept that both the customer and

Assessing Agility and Distributed Projects 12

the project team will learn over time, and we want to acknowledge
this learning and incorporate it into the development effort. If the
finished product delivers what the customer and we planned for
before confronting changes and disregards anything we learned
during development, the product will be a failure, even if it fulfills
a contract.

The agile value system accommodates collocation as well as dis-
tributed software development. Later in this chapter, I examine im-
plications of agile principles regarding globally distributed projects.

Systemic Approach

Agile development promotes a systemic approach that is supported
by a closed-loop routine of planning, doing (or performing), inspect-
ing (or analyzing), and adapting, as follows:

« In Planning, plan immediate activities (having broken down a
development project into deliverable chunks, begin planning
for the first task). This is most often short-term planning,
focusing on the next iteration, but it can also be long term,
such as planning the next release.

+ In Doing, perform activities planned in the first step.

« In Inspecting, analyze the performance of the activities planned
in the planning step. Did all work as planned? Was there a
specific process that worked well and would be appropriate
to repeat in the future? Did a specific process or plan fail or
require adjustments for the future?

+ In Adapting, determine what kinds of adjustments the previ-
ous inspection step revealed are needed in order to improve
development? In this step, decide necessary actions for the
following iteration.

The last step in this closed-loop routine provides input for the first
step in the next round, and so on.

Assessing Agility and Distributed Projects 13

Risk Reduction

The goal of an agile project is not only to deliver a product at
the end of the project’s lifetime (also called a deadline), but as
well to deliver early and regularly. In order to do so, we divide
the project’s lifetime into development cycles. A bigger cycle that
produces much functionality (sometimes called a feature pack) is
called a release. Within that we use a smaller cycle to organize
work in smaller chunks, and to deliver smaller functionalities. This
smaller cycle is called an iteration.'” Both a release and iteration
lead to a delivery or a potentially shippable product.

A tremendous advantage of agile development is risk reduction
through high visibility and transparency. By developing iterations
of a working system, receiving regular feedback from the customer
and from tests, and with tangible progress, you have access to
the actual status of the project. Knowing the actual status of the
project in turn enables you to make decisions regarding further
deliverables and necessary actions. For example, if you encounter
that the system does not fully satisfy the customer and it can’t be
turned in the right direction, you have the advantage of being able
to stop the project early, before all the money has been spent.

The Productivity Myth

Another common, and misguided, argument is that following an
agile approach will greatly increase a development team’s pro-
ductivity compared to other approaches. While this can be true,
it is not always necessarily so. Agile development guides a team
to deliver a working system frequently—“frequently” meaning in
iterations lasting one to four weeks. A “working system,” on the
other hand, is defined by the customer’s evaluation of usability.
Thus, by providing a working, usable system periodically, say,

In Scrum, “an iteration” is called “a sprint” I personally do not like that term because, for
me, it connotes frantic, unreserved effort. Iterations should involve adequate resources so that
teams are not racing to finish.

Assessing Agility and Distributed Projects 14

every two weeks, an agile team ensures maximum business value
for its customer.

Therefore, following this approach your customer might decide to
go into production with the system earlier. This will give your
customer a market advantage. However, it does not necessarily
mean that the project as a whole is finished —meaning all required
features are implemented- earlier.

More Than Practices

Agility is more than a collection of practices. Every so often, I
hear people mixing up specific practices with agility. Practices—
for example, Extreme Programming’s pair programming or test-
driven development—are a great means to preserve the agile value
system; however, these practices are not the value system itself. For
instance, you can successfully apply pair programming and use a
linear (or waterfall) development approach.

Neither Chaotic Nor Undisciplined

Many people consider the agile approach to be an undisciplined
approach. Some regard agile as an ad-hoc approach that doesn’t
require any planning, one in which people act independently
according to whim. Sometimes, the agile label is used as an excuse
for lack of preparation. For example, if a person has to conduct
a workshop or deliver a talk and doesn’t prepare material, his or
her presentation will consequently follow an ad-hoc approach. This
person might argue that the approach used is agile, and therefore
doesn’t require preparation or planning. Instead, absolutely the
opposite is true: Agility requires a lot of planning, even more
planning than a linear approach. As Lise B. Hvatum states, “Agile is
highly disciplined and more difficult, requires more maturity, than

waterfall”*?

31, B. Hvatum, personal communication.

Assessing Agility and Distributed Projects 15

The reality is, agile requires and embraces planning. In agile de-
velopment, the artifact of a plan is not overly important; the
activity of planning, however, is essential. Jakobsen contrasts a
choice between an old management style—for example, Taylorism,
where managers dictate procedure—and an innovative manage-
ment style—such as Lean Jidoka'*, based on trust, respect, empow-
erment, and belief that it is the people who use a process who are
best able to improve it."®

Improving processes means changing your original plan, and prepar-
ing for future re-planning to utilize what you learn as development
occurs.

1.3 Agile Principles Influencing
Distributed Projects

Listed below are twelve principles of the Agile Manifesto, anno-
tated in terms of their impact on distributed development and direct
implementation of an agile approach.

Satisfy the customer through early and continuous delivery of
valuable software: Early and continuous delivery is only feasible
if all distributed project sites work in concert and take into account
customers’ wishes.

Welcome changing requirements, even late in development: Com-
municating requirements changes and their implications requires
considerable coordination effort across different sites, but it is not
more difficult in a global setting than in a local setting if people on
the project are accustomed to pulling together toward a common
goal.

Deliver working software frequently: To deliver working software
at frequent iterations, the work done by all sites must be carefully

“Lean Jidoka requires all team members to be responsible for improving the process
(immediately) as soon as the quality of the outcome decreases.
>C.R. Jakobsen, personal communication.

Assessing Agility and Distributed Projects 16

integrated. The effort required for teams to deliver a smooth build
and integration is considerable even when teams are collocated; it
is all the more so for a distributed project.

Business people and developers work together: Regardless of dis-
tance between sites, language differences, or cultural disparities,
all project members must be fully aware of customer needs, and
must make every effort to incorporate customer feedback in the
development process.

Trust motivated individuals: Trust generally is built by proximity,
a default obstacle in a distributed setting. The sense of closeness,
though, must be fostered so as to bind teammates together despite
physical distance.

Face-to-face conversation: Because direct, face-to-face conversation
is one of the best ways for people to communicate their shared
requirements and goals, periodically set aside a time, place, and
technology to facilitate effective communication.

Working software is the primary measure of progress: In a dis-
tributed setting, making software work over different sites is much
more difficult than when everyone is collocated. The major chal-
lenge is to ensure the joint effort of the different sites in order not
to have several systems but, rather, one coherent, running system
in place.

Promote sustainable development: This principle acknowledges the
fact that people working too much overtime tend to burn out,
adversely affecting the quality of a system. This is true for both
distributed and collocated teams, but there is added difficulty on
distributed, global projects which have people working at odd or
irregular hours in order to communicate and collaborate. The time
and physical effort people spend traveling between different sites
also can negate their effort to build relationships, making people on
distributed projects more susceptible to burn-out than are folks on
collocated teams.

Continuous attention to technical excellence and good design: Some

Assessing Agility and Distributed Projects 17

projects are negligent in establishing quality assurance at all sites.
Assuming that continuous attention to quality is every project’s
goal, ensure that all sites and all project members work toward
attaining it. Additional education may be needed to bring all staff
at all sites up to snuff in such areas as testing, refactoring, quality
metrics, or other skills.

Simplicity is essential: In distributed settings, project members
sometimes develop a general, one-size-fits-all framework for the
system in advance of beginning development work because they
believe it will ease the developing business functionality later.
However, such a framework generally is disconnected from and
irrelevant to the customer’s actual business requirements and thus
doesn’t support the domain. Such a framework introduces more
complexity and compromises developing business functionality.

Self-organizing teams: Physical distance between sites can be par-
ticularly challenging to self-organizing teams because distance
makes it harder for people to know and trust one another.’* So a
smell" for mistrust is if you’re using a more command-and-control
style of “collaboration” instead of enable the teams to self-organize.
Trust is essential on globally dispersed or distributed teams, whose
members may need to be educated about taking responsibility and
self-organizing—especially in regard to concepts that contradict
their culture.

Team reflection and adjustment: Here is a direct connection to
the first value pair of the core of the Agile Manifesto, which
values individuals and interactions over processes and tools. At first
glance, this is not necessarily different in a distributed setting than
it is in a collocated setting: The idea is, allow team members to
reflect on how they’re progressing to enable them to improve over
time. The challenge, however, is to regularly promote reflections
across all sites to improve cooperation and federation.

1For more on the concept “trust needs touch,” see C. Handy, Trust and the Virtual
Organization (Boston: Harvard Business Review, 1995), Vol. 73, No. 3, pp. 40-50.
7 A smell is a sign for or a hint to a problem.

Assessing Agility and Distributed Projects 18

Globally distributed projects face the major challenge of how
to organize iterations and releases across different sites and still
ensure that something functional is delivered at the end of the
development cycle. Moreover, the real challenge is not the organiza-
tion of the work but the integration of the distributed development
effort into one working system. Integration and build across teams
and sites is essential.

1.4 Summary

There are as many assumptions and misconceptions about global
development as there are about agile development. The implica-
tions of global development are that several development sites,
often spread over several countries, are involved; that development
is typically performed by several teams and thus large projects;
that even a single team can be distributed across multiple sites (a
dispersed team); that multiple companies can be involved; and that
customers can be located far away from developers.

Agile development is more than just a specific methodology or
collection of defined practices. Culture, values, and beliefs highly
influence success in creating trust, collaboration, and a shared
vision. One of the significant barriers in distributed projects to
overcome is slow feedback due to all types of distances.

	Table of Contents
	Assessing Agility and Distributed Projects
	Understanding Distributed Development
	Working With Several Development Sites
	Distributed and Dispersed Teams
	Large Projects
	Coordinating Companies
	Different Sites
	Customers and Distance
	Centrally Coordinated or Globally Integrated
	Overcoming the Distance

	Understanding Agility
	Core Value Pair Statements
	Systemic Approach
	Risk Reduction
	The Productivity Myth
	More Than Practices
	Neither Chaotic Nor Undisciplined

	Agile Principles Influencing Distributed Projects
	Summary

