

Contents

Preface i

Acknowledgements iii

I Fundamental Concepts 1

1 Introduction 2
What is a distributed system and why we need it 2
The fallacies of distributed computing 5
Why distributed systems are hard 7
Correctness in distributed systems 8
System models . 9
The tale of exactly-once semantics 10
Failure in the world of distributed systems 13
Stateful and Stateless systems . 15

References 17

1

Preface

Distributed systems are becoming ubiquitous in our life nowadays: from how
we communicate with our friends to how we make online shopping and many
more things. It might be transparent to us sometimes, but many companies
are making use of extremely complicated software systems under the hood
to satisfy our needs. By using these kind of systems, companies are capable
of significant achievements, such as sending our message to a friend who is
thousand miles away in a matter of milliseconds, delivering our orders despite
outages of whole datacenters or searching the whole Internet by processing
more than a million terabytes of data in less than a second. Putting all
of this into perspective, it’s easy to understand the value that distributed
systems bring in the current world and why it’s useful for software engineers
to be able to understand and make use of distributed systems.

However, as easy and fascinating as it might seem, the area of distributed
systems is a rather complicated one with many different execution models
and failure modes. As a result, in order for one to simply understand how
to use a 3rd party library or verify the correctness of a distributed system
under construction, one has to digest a vast amount of information first.
Distributed systems have been a really hot academic topic for the last decades
and tremendous progress has been achieved, albeit through a large number
of papers with one building on top of the previous ones usually. This sets
a rather high barrier to entry for newcomers and practitioners that just
want to understand the basic building blocks, so that they can be confident
in the systems they are building without any aspirations of inventing new
algorithms or protocols.

The ultimate goal of this book is to help these people get started with

i

PREFACE ii

distributed systems in an easy and intuitive way. It was born out of my
initiation to the topic, which included a lot of transitions between excitement,
confusion and enlightenment.

Of course, it would be infeasible to tackle all the existing problems in the
space of distributed computing. So, this book will focus on:

• establishing the basic principles around distributed systems
• explaining what is and what is not possible to achieve
• explaining the basic algorithms and protocols, by giving easy-to-follow

examples and diagrams
• explaining the thinking behind some design decisions
• expanding on how these can be used in practice and what are some of

the issues that might arise when doing so
• eliminating confusion around some terms (i.e. consistency) and foster

thinking about trade-offs when designing distributed systems
• providing plenty of additional resources for people that are willing

to invest more time in order to get a deeper understanding of the
theoretical parts

Who is this book for

This book is aimed at software engineers that have some experience in
building software systems and have no or some experience in distributed
systems. We assume no knowledge around concepts and algorithms for
distributed systems. This book attempts to gradually introduce the terms
and explain the basic algorithms in the simplest way possible, providing
many diagrams and examples. As a result, this book can also be useful to
people that don’t develop software, but want to get an introduction to the
field of distributed systems. However, this book does not aim to provide a
full analysis or proof of every single algorithm. Instead, the book aims to
help the reader get the intuition behind a concept or an algorithm, while
also providing the necessary references to the original papers, so that the
reader can study other parts of interest in more depth.

Acknowledgements

As any other book, this book might have been written by a single person,
but that would not have been possible without the contribution of many
others. As a result, credits should be given to all my previous employers
and colleagues that have given me the opportunity to work with large-scale,
distributed systems and appreciate both their capabilities and complexities
and the distributed systems community that was always open to answer any
questions. I would also like to thank Richard Gendal Brown for reviewing
the case study on Corda and giving feedback that was very useful in helping
me to add clarity and remove ambiguity. Of course, this book would not
have been possible without the understanding and support of my partner in
life, Maria.

iii

Part I

Fundamental Concepts

1

Chapter 1

Introduction

What is a distributed system and why we need it

First of all, we need to define what a distributed system is. Multiple, different
definitions can be found, but we will use the following:

"A distributed system is a system whose components are lo-
cated on different networked computers, which communi-
cate and coordinate their actions by passing messages to one
another."[1]

As shown in Figure 1.1, this network can either consist of direct connections
between the components of the distributed system or there could be more
components that form the backbone of the network (if communication is
done through the Internet for example). These components can take many
forms; they could be servers, routers, web browsers or even mobile devices.
In an effort to keep an abstract and generic view, in the context of this book
we’ll refer to them as nodes, being agnostic to their real form. In some cases,
such as when providing a concrete example, it might be useful to escape this
generic view and see how things work in real-life. In these cases, we might
explain in detail the role of each node in the system.

As we will see later, the 2 parts that were highlighted in the definition above
are central to how distributed systems function:

• the various parts that compose a distributed system are located re-
motely, separated by a network.

2

CHAPTER 1. INTRODUCTION 3

Figure 1.1: A distributed system

• the main mechanism of communication between them is by exchanging
messages, using this network that separates them.

Now that we have defined what a distributed system is, let’s explore its
value.

Why do we really need distributed systems ?

Looking at all the complexity that distributed systems introduce, as we will
see during this book, that’s a valid question. The main benefits of distributed
systems come mostly in the following 3 areas:

• performance
• scalability
• availability

Let’s explain each one separately. The performance of a single computer
has certain limits imposed by physical constraints on the hardware. Not
only that, but after a point, improving the hardware of a single computer
in order to achieve better performance becomes extremely expensive. As

CHAPTER 1. INTRODUCTION 4

a result, one can achieve the same performance with 2 or more low-spec
computers as with a single, high-end computer. So, distributed systems
allow us to achieve better performance at a lower cost. Note that
better performance can translate to different things depending on the context,
such as lower latency per request, higher throughput etc.

"Scalability is the capability of a system, network, or process to
handle a growing amount of work, or its potential to be enlarged
to accommodate that growth." [2]

Most of the value derived from software systems in the real world comes from
storing and processing data. As the customer base of a system grows, the
system needs to handle larger amounts of traffic and store larger amounts of
data. However, a system composed of a single computer can only scale up to
a certain point, as explained previously. Building a distributed system
allows us to split and store the data in multiple computers, while
also distributing the processing work amongst them1. As a result of
this, we are capable of scaling our systems to sizes that would not even be
imaginable with a single-computer system.

In the context of software systems, availability is the probability that a
system will work as required when required during the period of a mission.
Note that nowadays most of the online services are required to operate all
the time (known also as 24/7 service), which makes this a huge challenge.
So, when a service states that it has 5 nines of availability, this means that
it operates normally for 99.999% of the time. This implies that it’s allowed
to be down for up to 5 minutes a year, to satisfy this guarantee. Thinking
about how unreliable hardware can be, one can easily understand how big
an undertaking this is. Of course, using a single computer, it would be
infeasible to provide this kind of guarantees. One of the mechanisms
that are widely used to achieve higher availability is redundancy,
which means storing data into multiple, redundant computers. So,
when one of them fails, we can easily and quickly switch to another one,
preventing our customers from experiencing this failure. Given that data are
stored now in multiple computers, we end up with a distributed system!

Leveraging a distributed system we can get all of the above benefits. However,
as we will see later on, there is a tension between them and several other

1The approach of scaling a system by adding resources (memory, CPU, disk) to a single
node is also referred to as vertical scaling, while the approach of scaling by adding more
nodes to the system is referred to as horizontal scaling.

CHAPTER 1. INTRODUCTION 5

properties. So, in most of the cases we have to make a trade-off. To do this,
we need to understand the basic constraints and limitations of distributed
systems, which is the goal of the first part of this book.

The fallacies of distributed computing

Distributed systems are subject to many more constraints, when compared
to software systems that run in a single computer. As a result, developing
software for distributed systems is also very different. However, people that
are new to distributed systems make assumptions, based on their experience
developing software for systems that run on a single computer. Of course,
this creates a lot of problems down the road for the systems they build. In
an effort to eliminate this confusion and help people build better systems, L
Peter Deutsch and others at Sun Microsystems created a collection of these
false assumptions, which is now known as the fallacies of distributed
computing2. These are the following:

1. The network is reliable.[3][4]
2. Latency is zero.
3. Bandwidth is infinite.
4. The network is secure.
5. Topology doesn’t change.
6. There is one administrator.
7. Transport cost is zero.
8. The network is homogeneous.

As you progress through the book, you will get a deeper understanding
of why these statements are fallacies. However, we will try and give you
a sneak preview here by going quickly over them and explain where they
fall short. The first fallacy is sometimes enforced by abstractions provided
to developers from various technologies and protocols. As we will see in a
later chapter networking protocols, such as TCP, can make us believe that
the network is reliable and never fails, but this is just an illusion and can
have significant repercussions. Network connections are also built on top of
hardware that will also fail at some point and we should design our systems

2See: https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

CHAPTER 1. INTRODUCTION 6

accordingly. The second assumption is also enforced nowadays by libraries,
which attempt to model remote procedure calls as local calls, such as gRPC3

or Thrift4. We should always keep in mind that there is a difference of
several orders of magnitude in latency between a call to a remote system and
a local memory access (from milliseconds to nanoseconds). This is getting
even worse, when we are talking about calls between datacenters in different
continents, so this is another thing to keep in mind when deciding about
how we want to geo-distribute our system. The third one is getting weaker
nowadays, since there have been significant improvements in the bandwidth
that can be achieved during the last decades. Still, even though we can
build high-bandwidth connections in our own datacenter, this does not mean
that we will be able to use all of it, if our traffic needs to cross the Internet.
This is an important consideration to keep in mind, when making decisions
about the topology of our distributed system and when requests will have
to travel through the Internet. The fourth fallacy illustrates the fact that
the wider network that is used by two nodes in order to communicate is
not necessarily under their control and thus should be considered insecure.
The book contains a chapter dedicated on security that explains various
techniques that can be used in order to make use of this insecure network
in a secure way. This network is also composed of many different parts
that might be managed by different organisations with potentially different
hardware and failures in some parts of this network might mean its topology
might have to change to remain functional. This is all highlighted by the
fifth, sixth and eighth fallacies. Last but not least, transportation of data
between two points incurs financial costs, which should be factored in when
building a distributed system.

There’s one more fallacy that’s not included in the above set, but it’s still
very common amongst people new to distributed systems and can also create
a lot of confusion. If we were to follow the same style as above, we would
probably phrase it in the following way:

"Distributed systems have a global clock, which can be used to
identify when events happen."

This assumption can be quite deceiving, since it’s somewhat intuitive and
3See: https://grpc.io/
4See: https://thrift.apache.org/

https://grpc.io/
https://thrift.apache.org/

CHAPTER 1. INTRODUCTION 7

holds true when working in systems that are not distributed. For instance,
an application that runs in a single computer can use the computer’s local
clock in order to decide when events happen and what’s the order between
them. Nonetheless, that’s not true in a distributed system, where every node
in the system has its own local clock, which runs at a different rate from the
other ones. There are ways to try and keep the clocks in sync, but some of
them are very expensive and do not eliminate these differences completely.
This limitation is again bound by physical laws5. An example of such an
approach is the TrueTime API that was built by Google [5], which exposes
explicitly the clock uncertainty as a first-class citizen. However, as we will
see in the next chapters of the book, when one is mainly interested in cause
and effects, there are other ways to reason about time using logical clocks
instead.

Why distributed systems are hard

In general, distributed systems are hard to design, build and reason about,
thus increasing the risk of error. This will become more evident later in the
book while exploring some algorithms that solve fundamental problems that
emerge in distributed systems. It’s worth questioning: why are distributed
systems so hard? The answer to this question can help us understand what
are the main properties that make distributed systems challenging, thus
eliminating our blind spots and providing some guidance on what are some
of the aspects we should be paying attention to.

The main properties of distributed systems that make them challenging to
reason about are the following:

• network asynchrony
• partial failures
• concurrency

Network asynchrony is a property of communication networks that cannot
provide strong guarantees around delivery of events, e.g. a maximum amount
of time required for a message to be delivered. This can create a lot of
counter-intuitive behaviours that would not be present in non-distributed
systems. This is in contrast to memory operations that can provide much
stricter guarantees6. For instance, in a distributed system messages might

5See: https://en.wikipedia.org/wiki/Time_dilation
6See: https://en.wikipedia.org/wiki/CAS_latency

https://en.wikipedia.org/wiki/Time_dilation
https://en.wikipedia.org/wiki/CAS_latency

CHAPTER 1. INTRODUCTION 8

take extremely long to be delivered, they might be delivered out of order or
not at all.

Partial failures are cases where only some components of a distributed
system fail. This behaviour can come in contrast to certain kinds of applica-
tions deployed in a single server that work under the assumption that either
the whole server has crashed or everything is working fine. It introduces
significant complexity when there is a requirement for atomicity across com-
ponents in a distributed system, i.e. we need to ensure that an operation is
either applied to all the nodes of a system or to none of them. The chapter
about distributed transactions analyses this problem.

Concurrency is execution of multiple computations happening at the same
time and potentially on the same piece of data interleaved with each other.
This introduces additional complexity, since these different computations can
interfere with each other and create unexpected behaviours. This is again in
contrast to simplistic applications with no concurrency, where the program
is expected to run in the order defined by the sequence of commands in the
source code. The various types of problematic behaviours that can arise from
concurrency are explained in the chapter that talks about isolation later in
the book.

As explained, these 3 properties are the major contributors of complexity in
the field of distributed systems. As a result, it will be useful to keep them in
mind during the rest of the book and when building distributed systems in
real life so that you can anticipate edge cases and handle them appropriately.

Correctness in distributed systems

The correctness of a system can be defined in terms of the properties it must
satisfy. These properties can be of the following types:

• Safety properties
• Liveness properties

A safety property defines something that must never happen in a correct
system, while a liveness property defines something that must eventually
happen in a correct system. As an example, considering the correctness
properties of an oven, we could say that the property of "the oven not
exceeding a maximum temperature threshold" is a safety property. The
property of "the oven eventually reaching the temperature we specified via

CHAPTER 1. INTRODUCTION 9

the button" is a liveness property. Similar to this example, in distributed
systems, it’s usually more important to make sure that the system satisfies the
safety properties than the liveness ones. Throughout this book, it will become
clear that there is an inherent tension between safety and liveness properties.
Actually, as we will see later in the book, there are some problems, where
it’s physically impossible to satisfy both kinds of properties, so compromises
are made for some liveness properties in order to maintain safety.

System models

Real-life distributed systems can differ drastically in many dimensions, de-
pending on the network where they are deployed, the hardware they are
running on etc. Thus, we need a common framework so that we can solve
problems in a generic way without having to repeat the reasoning for all the
different variations of these systems. In order to do this, we can create a
model of a distributed system by defining several properties that it must
satisfy. Then, if we prove an algorithm is correct for this model, we can
be sure that it will also be correct for all the systems that satisfy these
properties.

The main properties that are of interest in a distributed system have to do
with:

• how the various nodes of a distributed system interact with each other
• how a node of a distributed system can fail

Depending on the nature of communication, we have 2 main categories of
systems: synchronous and asynchronous systems. A synchronous system
is one, where each node has an accurate clock and there is a known upper
bound on message transmission delay and processing time. As a result, the
execution is split into rounds so that every node can send a message to
another node, the messages are delivered and every node computes based on
the messages just received, all nodes running in lock-step. An asynchronous
system is one, where there is no fixed upper bound on how long it takes for
a message to be delivered or how much time elapses between consecutive
steps of a node. The nodes of the system do not have a common notion of
time and thus run in independent rates. The challenges arising from network
asynchrony have already been discussed previously. So, it should be clear
by now that the first model is much easier to describe, program and reason
about. However, the second model is closer to real-life distributed systems,

CHAPTER 1. INTRODUCTION 10

such as the Internet, where we cannot have control over all the components
involved and there are very limited guarantees on the time it will take for a
message to be sent between two places. As a result, most of the algorithms
we will be looking at this book assume an asynchronous system model.

There are also several different types of failure. The most basic categories
are:

• Fail-stop: A node halts and remains halted permanently. Other nodes
can detect that the node has failed (i.e. by communicating with it).

• Crash: A node halts and remains halted, but it halts in a silent way.
So, other nodes may not be able to detect this state (i.e. they can only
assume it has failed on the basis of not being able to communicate
with it).

• Omission: A node fails to respond to incoming requests.
• Byzantine: A node exhibits arbitrary behavior: it may transmit

arbitrary messages at arbitrary times, it may stop or take an incorrect
step.

Byzantine failures can be exhibited, when a node does not behave according to
the specified protocol/algorithm, i.e. because the node has been compromised
by a malicious actor or because of a software bug. Coping with these failures
introduces significant complexity to the resulting solutions. At the same
time, most distributed systems in companies are deployed in environments
that are assumed to be private and secure. Fail-stop failures are the simplest
and the most convenient ones from the perspective of someone that builds
distributed systems. However, they are also not very realistic, since there
are cases in real-life systems where it’s not easy to identify whether another
node has crashed or not. As a result, most of the algorithms analysed in this
book work under the assumption of crash failures.

The tale of exactly-once semantics

As described in the beginning of the book, the various nodes of a distributed
system communicate with each other by exchanging messages. Given that
the network is not reliable, these messages might get lost. Of course, to cope
with this, nodes can retry sending them hoping that the network will recover
at some point and deliver the message. However, this means that messages
might be delivered multiple times, as shown in Figure 1.2, since the sender
can’t know what really happened.

CHAPTER 1. INTRODUCTION 11

Figure 1.2: Intricacies of a non-reliable network in distributed systems

CHAPTER 1. INTRODUCTION 12

This duplicate delivery of a message can create disastrous side-effects. For
instance, think what would happen if that message is supposed to signal
transfer of money between 2 bank accounts as part of a purchase; a customer
might be charged twice for a product. To handle scenarios like this, there
are multiple approaches to ensure that the processing of a message will only
be done once, even though it might be delivered multiple times.

One approach is using idempotent operations. Idempotent is an operation that
can be applied multiple times without changing the result beyond the initial
application. An example of an idempotent operation is adding a value in a set
of values. Even if this operation is applied multiple times, the applications
that follow the first one will have no effect, since the value will already
have been added in the set. Of course, this is under the assumption that
other operations cannot remove values from the set. Otherwise, the retried
operation might add a value that had been removed in the meanwhile. On
the contrary, an example of a non-idempotent operation would be increasing
a counter by one, which has additional side-effects every time it’s applied.
By making use of idempotent operations, we can have a guarantee that even
if a message is delivered multiple times and the operation is repeated, the
end result will be the same.

However, as demonstrated previously idempotent operations commonly im-
pose tight constraints on the system. So, in many cases we cannot build our
system, so that all operations are idempotent by nature. In these cases, we
can use a de-duplication approach, where we give every message a unique
identifier and every retried message contains the same identifier as the orig-
inal. In this way, the recipient can remember the set of identifiers it has
received and executed already and avoid executing operations that have
already been executed. It is important to note that in order to do this, one
must have control on both sides of the system (sender and receiver). This is
due to the fact that the ID generation is done on the sender side, but the
deduplication process is done on the receiver side. As an example, imagine
a scenario where an application is sending emails as part of an operation.
Sending an e-mail is not an idempotent operation, so if the e-mail protocol
does not support de-duplication on the receiver side, then we cannot be
absolutely sure that every e-mail is shown exactly once to the recipient.

When thinking about exactly-once semantics, it’s useful to distinguish be-
tween the notions of delivery and processing. In the context of this discussion,
let’s consider delivery being the arrival of the message at the destination
node at the hardware level. Then, we consider processing being the handling

CHAPTER 1. INTRODUCTION 13

of this message from the software application layer of the node. In most
cases, what we really care about is how many times a message is processed,
not how many times it has been delivered. For instance, in our previous
e-mail example, we are mainly interested in whether the application will
display the same e-mail twice, not whether it will receive it twice. As the
previous examples demonstrated, it’s impossible to have exactly-once
delivery in a distributed system. It’s still sometimes possible though to
have exactly-once processing. With all that said, it’s important to un-
derstand the difference between these 2 notions and make clear what you
are referring to, when you are talking about exactly-once semantics.

Also, as a last note, it’s easy to see that at-most-once delivery semantics and
at-least-once delivery semantics can be trivially implemented. The former can
be achieved by sending every message only one time no matter what happens,
while the latter one can be achieved by sending a message continuously, until
we get an acknowledgement from the recipient.

Failure in the world of distributed systems

It is also useful to understand that it is very difficult to identify failure
because of all the characteristics of a distributed system described so far.
The asynchronous nature of the network in a distributed system can make
it very hard to differentiate between a node that has crashed and a node
that is just really slow to respond to requests. The main mechanism used
to detect failures in a distributed systems are timeouts. Since messages
can get infinitely delayed in an asynchronous network, timeouts impose an
artificial upper bound on these delays. As a result, when a node is slower
than this bound, we can assume that the node has failed. This is useful,
since otherwise the system might be blocked eternally waiting for nodes that
have crashed under the assumption that they might just be extremely slow.

However, this timeout does not represent an actual limit, so it creates the
following trade-off. Selecting a smaller value for this timeout means that
our system will waste less time waiting for nodes that have crashed. At the
same time, the system might be declaring dead some nodes that have not
crashed, but they are just being a bit slower than expected. On the other
hand, selecting a larger value for this timeout means that the system will be
more lenient with slow nodes. However, it also implies that the system will
be slower in identifying crashed nodes, thus wasting time waiting for them

CHAPTER 1. INTRODUCTION 14

in some cases. This is illustrated in Figure 1.3.

Figure 1.3: Trade-offs in failure detection

In fact, this is a very important problem in the field of distributed systems.
The component of a node that is used to identify other nodes that have failed
is called a failure detector. As we explained previously, this component
is very important for various algorithms that need to make progress in the
presence of failures. There has been extensive research about failure detectors
[6]. The different categories of failure detectors are distinguished by 2 basic
properties that reflect the aforementioned trade-off: completeness and accu-
racy. Completeness corresponds to the percentage of crashed nodes a failure
detector succeeded in identifying in a certain period. Accuracy corresponds
to the number of mistakes a failure detector made in a certain period. A
perfect failure detector is one that is characterised by the strongest form of
completeness and accuracy, namely one that can successfully detect every
faulty process without ever thinking a node has crashed before it actually
crashes. As expected, it is impossible to build a perfect failure detector in
purely asynchronous systems. Still, even imperfect failure detectors can be

CHAPTER 1. INTRODUCTION 15

used to solve difficult problems, such as the problem of consensus which is
described later.

Stateful and Stateless systems

We could say that a system can belong in one of the 2 following categories:

• stateless systems
• stateful systems

A stateless system is one that maintains no state of what has happened
in the past and is capable of performing its capabilities, purely based on
the inputs provided to it. For instance, a contrived stateless system is one
that receives a set of numbers as input, calculates the maximum of them
and returns it as the result. Note that these inputs can be direct or indirect.
Direct inputs are those included in the request, while indirect inputs are
those potentially received from other systems to fullfil the request. For
instance, imagine a service that calculates the price for a specific product by
retrieving the initial price for it and any currently available discounts from
some other services and then performing the necessary calculations with this
data. This service would still be stateless. On the other hand, stateful
systems are responsible for maintaining and mutating some state and their
results depend on this state. As an example, imagine a system that stores
the age of all the employees of a company and can be asked for the employee
with the maximum age. This system is stateful, since the result depends on
the employees we’ve registered so far in the system.

There are some interesting observations to be made about these 2 types of
systems:

• Stateful systems can be really useful in real-life, since computers are
much more capable in storing and processing data than humans.

• Maintaining state comes with additional complexity, such as deciding
what’s the most efficient way to store it and process it, how to perform
back-ups etc.

• As a result, it’s usually wise to create an architecture that contains
clear boundaries between stateless components (which are performing
business capabilities) and stateful components (which are responsible
for handling data).

CHAPTER 1. INTRODUCTION 16

• Last and most relevant to this book, it’s much easier to design, build
and scale distributed systems that are stateless when compared to
stateful ones. The main reason for this is that all the nodes (e.g.
servers) of a stateless system are considered to be identical. This makes
it a lot easier to balance traffic between them and scale by adding
or removing servers. However, stateful systems present many more
challenges, since different nodes can hold different pieces of data, thus
requiring additional work to direct traffic to the right place and ensure
each instance is in sync with the other ones.

As a result, some of the book’s examples might include stateless systems,
but the most challenging problems we will cover in this book are present
mostly in stateful systems.

References

[1] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Systems:
Concepts and Design (5th Edition). 2011.

[2] A. B. Bondi, “Characteristics of scalability and their impact on perfor-
mance,” in Proceedings of the second international workshop on Software
and performance – WOSP ’00. p. 195, 2000.

[3] P. Bailis and K. Kingsbury, “The Network is Reliable,” ACM Queue,
Volume 12, Issue 7, July 23, 2014, 2014.

[4] A. Alquraan, H. Takruri, M. Alfatafta, and S. Al-Kiswany, “An Analysis
of Network-Partitioning Failures in Cloud Systems,” Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation, 2018.

[5] J. C. Corbett et al., “Spanner: Google’s Globally-Distributed Database,”
in Proceedings of OSDI 2012, 2012.

[6] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of the ACM. Volume 43 Issue 2, ACM. pp.
225–267, 1996.

17

