Managing Digital
Table of Contents
	1. Front matter
		Praise for this book
	Copyright
	Dedication
	Preface
	Introduction for Instructors and Trainers
		The IT industry and the rise of digital
	A process of emergence
	Labs

	Introduction for the Student
		This book’s structure
	Emergence means formalization
	Assumptions about the reader

	2. Founder
	3. Team
		Special section: Systems thinking and feedback
		A brief introduction to feedback
	What does systems thinking have to do with IT?
	The DevOps consensus as systems thinking

	Product Management
		Introduction
	Why product management?
	Designing for scale

	4. Team of Teams
		Special section: Scaling the organization and its work
		The two dimensions of demand management
	Adding a third dimension with Cynefin
	The Betz organizational scaling cube
	Demand, supply, and execution
	Part III chapter structure
	The delivery models

	5. Enterprise
		Agile and architecture
		The hubris of architecture
	The hubris of Agile
	Towards reconciliation

	References

Managing Digital

Concepts and Practices (Instructor’s Edition)

Charles T. Betz

Chapter 1. Front matter

Praise for this book

Managing Digital is a perfect fit for my Management Information Systems class to introduce students to the fast-paced world of IT Infrastructure that they will be dealing with shortly upon graduation. This book uses multiple perspectives (Founder, Team Leader, VP, C-level executive) to demonstrate to the student not only how a business grows, but how they need to continually grow their skill set. The use of hands-on exercises encouraged by the format of this book complements my teaching style that allows students to learn by doing, failing and doing again. An additional benefit is that this book begins with a focus on the startup mentality which I will use in my Business Innovation class.

Prof. Pat Paulson, Winona State University

Copyright

Digital delivery: concepts and practices

Published by Digital Management Academy, LLC
14 Sidney Place
Minneapolis, MN 55414

Copyright © 2016 by Charles T. Betz

All rights reserved, for information about permission to reproduce selections from this book, write to Permissions, Digital Management Academy LLC,
14 Sidney Place, Minneapolis, MN 55414

First Edition

Produced in the United States of America

Cover illustration by Go To Media, LLC

ISBN: 978-0-9981346-0-4

Publisher’s note to readers:
Although the author and publisher have made every effort to ensure that the information in this book was correct at press time, the author and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause.

For information about special discounts for bulk purchases or for information on booking authors for an event, please visit www.dm-academy.com.

Dedication

To my students, past, present, and future

Preface

I wrote my first book, Architecture and Patterns for IT Service Management, Resource Planning and Governance: Making Shoes for the Cobbler’s Children in 2006, with a second edition in 2011. I presented the second edition at the national SEI Saturn conference in Minneapolis in 2013, where I was approached by Dr. Bhabani Misra, the head of the Graduate Programs in Software at the University of St. Thomas in St. Paul. Dr. Misra asked me to teach a class called IT Infrastructure Management (SEIS660), which was to cover not just technical topics but also process and governance.

The course (which has run every semester since January 2013) has been developed during an extraordinary period for IT and digital management. Even in 2013, the trend towards a new style of IT delivery, based on Agile and DevOps practices was notable and accelerating. At this writing, these approaches seem to have “crossed the chasm” in the words of Geoffrey Moore, and are becoming the dominant models for delivering information technology value. As this book describes, there are good reasons for this historical shift, and yet its speed and reach are still disorienting.

For three semesters I assigned my first book (Architecture and Patterns for IT: Service Management, Resource Planning, and Governance) as a required text for the class. However, I did not write this as a textbook, and its limitations became clear. While I gave considerable attention to Lean and Agile in writing the book, it has a strongly architectural approach, coming at the IT management problem as a series of views on a model. I do not recommend this as a pedagogical approach for a survey class. It also had a thoroughly enterprise perspective, and I began to question whether this was ideal for new students. Further thought led to the idea of the emergence model (detailed in the Introduction).

I proposed the idea of a third edition to my publisher — one that would pivot the existing material towards something more useful in class. They agreed to this and I started the rewrite. However, by the time I was halfway done with the first draft, I had a completely new book. Material from the previous work was more technical, and this book was more of a business analysis.

A number of factors converged:

	
My view that the “medium is the message,” which extends to the choice of authoring approach, toolchain, and publisher

	
A desire to freely share at least a rough version of the book, both for marketing purposes and in the interests of giving back to the global IT community

	
A desire to be able to rapidly update the book with as little friction as possible

	
A practical realization that the book might get more uptake globally if it were available, at least in some form, as free and open source intellectual property

	
The fact that I had already started to publish my labs on GitHub and had, in fact, developed a workable continuous delivery (“DevOps”) toolchain (the Calavera project, which has attracted collaborators from the U.S., Spain, and Israel)

Ultimately, the idea of starting my own publishing company, and managing my own product, appeared both desirable and practical. The journey has been long and intense, taking easily twice as long as either of my first two books.

I have had several working titles, and am still debating the best. Comments appreciated.

	
Agile IT Management: From Startup to Enterprise

	
Digital

	
The Digital Professional: From Startup to Enterprise

	
Digital Delivery: Concepts and Practices

Many have assisted with this work:

Thanks to Dr. Bhabani Misra for asking me to teach at the University of St. Thomas and providing direction at key points.

Thanks to Stephen Fralippolippi and Roger K. Williams for being the first GitHub contributors.

Thanks to Jason Baker for text and technical collaboration.

Thanks to Mark Kennaley for guidance on open versus closed loop thinking.

Thanks to Glen Alleman for guidance on modern project management practices.

Thanks to Jeff Sussna for ongoing inspiration, Twitter feedback, discussion question ideas, and sourced quotes.

Thanks to Nicole Forsgren for links to articles on performance management.

Thanks to Richard Barton for guidance on IT financial management.

Thanks to Evan Leybourn for detailed commentary on project management in chapter eight.

Thanks to Chris Little and Jabe Bloom for quote provenance.

Thanks to Lorin Hochstein for references.

Thanks to Gene Kim for ongoing mentoring and advice on writing and publishing and unwavering support and confidence in my efforts.

Thanks to Murray Cantor for key insights and graphic for Chapter 7.

Thanks to Rob England for ongoing discussion, significant input on the change/stability systems thinking, and inspiration and his work on Standard + Case.

Thanks to the faculty I have met and worked with on the Digital Curricula initiative for the Minnesota State System, including Firasat Khan, Mary Mosman, David Bahn, Amos Olagunju, Svetlana Gluhova, Mary Lebens, Justin Opatrny, Grant Spencer, Halbana Tarmizi.

Thanks to Go To Marketing Team (Will Goddard, Terry Brown, Francisco Piniero) for design assistance and invaluable partnership.

Thanks to Professor Pat Paulson for being the first adopter of the textbook, and thanks to his students for invaluable criticism and feedback.

Thanks to Majid Iqbal for significant input on change/stability systems thinking.

Introduction for Instructors and Trainers

Welcome to Digital Delivery: Concepts and Practices. So, what exactly IS this book?

	
It is the first general, survey-level text on IT management with a specific Agile, Lean IT, and DevOps orientation.

	
It has a unique and innovative learning progression based on the concept of organizational evolution and scaling.

	
Because it is written with continuous integration and print-on-demand techniques, it can be continually updated to reflect current industry trends.

The book is intended for both the academic and industry training communities. There has been too much of a gap between academic theory and the day to day practices of managing digital products. Industry guidance has over the years become fragmented into many overlapping and sometimes conflicting bodies of knowledge, frameworks, and so forth. The emergence of Agile and DevOps as dominant delivery forms have thrown this already fractured ecosystem of industry guidance into chaos. Organizations and individuals with longstanding investments in guidance such as the IT Infrastructure Library (ITIL) [1] and the Project Management Body of Knowledge (PMBOK) are re-assessing these commitments. This book seeks to provide guidance for both new entrants into the digital workforce, as well as experienced practitioners seeking to update their understanding on how all the various themes and components of IT management fit together in the new world.

Digital investments are critical for modern organizations and the economy as a whole. Delivering them (defined as both creating and managing for value) can provide prosperity for both individuals and communities. Now is an ideal time to re-assess and synthesize the bodies of knowledge and developing industry consensus on how digital and IT professionals can and should approach their responsibilities.

The IT industry and the rise of digital

	 	Now agile methodologies — which involve new values, principles, practices, and benefits and are a radical alternative to command-and-control-style management — are spreading across a broad range of industries and functions and even into the C-suite. [39]
	
	 	--
Darrell Rigby et al.
Harvard Business Review

As an instructor, I ask you to consider the following two industry reports.

In September 2015, Minneapolis-based Target Corporation laid off 275 workers with IT skillsets such as business analysis and project management, while simultaneously hiring workers with newer “Agile” skills. As quoted by a local news site, Target stated:

“As a part of our transition to an Agile technology development and support model, we conducted a comprehensive review of our current structure and capabilities… we are eliminating approximately 275 positions and closing an additional 35 open positions. The majority of the impact was across our technology teams and was primarily focused on areas such business analysis and project management." [26]

Jim Fowler, Chief Information Officer at General Electric, says:

“When I am in business meetings, I hear people talk about digital as a function or a role. It is not. Digital is a capability that needs to exist in every job. Twenty years ago, we broke ecommerce out into its own organization, and today ecommerce is just a part of the way we work. That’s where digital and IT are headed; IT will be no longer be a distinct function, it will just be the way we work. … [W]e’ve moved to a flatter organizational model with “teams of teams” who are focused on outcomes. These are co-located groups of people who own a small, minimal viable product deliverable that they can produce in 90 days. The team focuses on one piece of work that they will own through its complete lifecycle…in [the “back office”] model, the CIO controls infrastructure, the network, storage, and makes the PCs run. The CIOs who choose to play that role will not be relevant for long.” [24]

Modern management information systems (MIS) courses and textbooks, especially at the undergraduate, survey level, take an “outside-in” approach to the course material, seeking to orient all students (whether IT/MIS specialists or not) to the role and function of information systems and their possibilities and value in the modern enterprise. This book, by contrast, is an “inside-out” book intended to prepare the student for a career in digital industry. Industry is broadly defined as both those industries that offer digital products per se as well as industries that rely on digital technology instrumentally for delivering all kinds of products. A central theme of the book is that IT, considered as a component, represents an increasing proportion of all industrial products (both consumer and business-facing). This trend towards IT’s increase is known as digital transformation.

Current MIS survey texts have some common characteristics:

	
They tend to focus on the largest organizations and their applications of computing. This can lead to puzzling topic choices; for example, in one MIS text I reviewed, one of the first sections is dedicated to the problem of enterprise IT asset management — a narrow topic for the earlier sections of a survey course and increasingly irrelevant in the age of the cloud.

	
Their learning progression (structure and narrative) is often arbitrary; for example, covering databases, networking, ERP systems, security, and so forth in various orderings.

	
They do not (and this is a primary failing) cover Agile and its associated digital ecosystem at all well. Brief mentions of Agile may appear in sections on project management, but in general there is a lack of awareness of the essential role of Agile and related methods in accelerating digital transformation.

	
Their coverage of cloud infrastructure can also be limited, even with new editions coming out every year. Topics like infrastructure as code go unaddressed.

	
Finally, current texts often uncritically accept and cite “best practice” IT frameworks such as CMMI, ITIL, PMBOK, and COBIT. New digital organizations do not, in general, use such guidance, and there is much controversy in the industry as to the value and future of these frameworks. This book strives to provide a clear, detailed, and well-supported overview of these issues.

IT, or the digital function, has had a history of being under-managed and poorly understood relative to peer functions in the enterprise. It struggles with a reputation for expensive inflexibility and Dilbert-esque dysfunction. The DevOps and Agile movements promise transformation but are encountering an entrenched legacy of

	
enterprise architecture;

	
program and project management;

	
business process management;

	
IT service management practices; and

	
IT governance concerns.

Understanding and engaging with the challenges of this legacy are an ongoing theme throughout this introductory text. Some of the more radical voices in the Agile movement sometimes give the impression that the legacy can be simply swept away. The following cautionary message from Mike Burrows shows that, in terms of the systems thinking at the core of Agile philosophy, this would be ill-advised:

“Some will tell you that when things are this bad, you throw it all away and start again. It’s ironic: The same people who would champion incremental and evolutionary approaches to product development seem only too eager to recommend disruptive and revolutionary changes in people-based systems — in which the outcomes are so much less certain” ([11], loc. 827–829).

IT management at scale within an organization is a complex system. The IT workforce, its collective experience, and its ongoing development (through education and training) is another complex system orders of magnitude larger. Complex systems do not respond well to dramatic perturbations. They are best changed incrementally, with careful monitoring of the consequences of each small change. (This is part of the systems theory foundation underlying the Agile movement.) This is why the book covers topics such as:

	
Investment, sourcing, and people

	
Project and process management

	
Governance, risk, security, and compliance

	
Enterprise information management

	
Enterprise architecture and portfolio management

While these practices, and their associated approaches and policies, have caused friction with digital and Agile practitioners, they all have their reasons for existing. The goal of this book is to understand their interaction with the new digital approaches, but in order to do this we must first understand them on their own terms. It does no good to develop a critique based on misconceptions or exaggerations about what (for example) process management or governance is all about. Instead, we try to break these large and sometimes controversial topics into smaller, more specific topics — lowest common denominators, perhaps as follows:

	
Work and effort

	
Ordering of tasks

	
Task dependencies

	
Coordination

	
Investment

	
Cost of delay

	
Planned versus unplanned work

	
Estimation versus commitment

	
Value stream versus skill alignment

	
Repeatability

	
Defined versus empirical process control

	
Synchronization and cadence

	
Resource demand

	
Shared mental models

	
Technical debt

	
Risk

And so forth. By examining IT management in these more clinical terms , we can develop a responsible critique of current industry best practices in content and form that will benefit students as they go out on their careers.

Note

A key choice in the book’s evolution was to NOT include dedicated chapters on “Project Management” and “Process Management.” Instead, more general chapter titles of “Coordination” and “Investment and Planning” were chosen. Rationale for the decision is given in those chapters and in Part III generally. Similarly, there is little coverage of “IT Service Management” per se; its significant concerns are seen throughout chapters 4-10.

A process of emergence

	 	Joseph Campbell popularized the notion of an archetypal journey that recurs in the mythologies and religions of cultures around the world. From Moses and the burning bush to Luke Skywalker meeting Obi wan Kenobi, the journey always begins with a hero who hears a calling to a quest…​.

The hero’s journey is an apt way to think of startups. All new companies and new products begin with an almost mythological vision — a hope of what could be, with a goal few others can see…​.

Most entrepreneurs feel their journey is unique. Yet what Campbell perceived about the mythological hero’s journey is true of startups as well: However dissimilar the stories may be in detail, their outline is always the same. [6]
	
	 	--
Steve Blank
The Four Steps to Epiphany

One of the most important and distinguishing features of this book is its emergence model. In keeping with the entrepreneurial spirit of works like Ries’ The Lean Startup, the book adopts a progressive, evolutionary approach. The student’s journey through it reflects a process of emergence. Such processes are often associated with founding and scaling a startup. There are many helpful books on this topic, such as the following:

	
Nail It Then Scale It by Furr and Ahlstrom [19]

	
Scaling Up by Harnish [23]

	
Startup CEO by Blumberg [8]

	
The Lean Startup by Ries [38]

	
Hello, Startup by Brikman [9]

The emergence model and overall book structure is discussed in depth in the main introduction. Here, for the instructor, are some notes on the thought process.

The problem I set out to solve when I was first conceiving the book was the question of overall learning progression, or narrative.

I teach a required semester-long survey class on IT management at the University of St. Thomas-Minnesota, in the largest software engineering program in the country. I had been trying to teach college students by walking them through architectural perspectives on the problem of IT management: the business, data, applications, and technical views many of us use regularly. Without going into detail, it wasn’t working well and I started thinking about the problem. I noticed that there were two primary narratives or learning progressions being used to teach in computing:

	
The “stack”

	
The “lifecycle”

The stack is how the most rigorous topics are taught. Algebra is the foundation for trignometry, is the foundation for calculus, for example. Logic is needed for discrete math, required for automata and compilers and so forth. The stack is also how technology is described: physical, logical, and conceptual layers, for example. Architecture concepts are often stacks (conceptual/logical/physical, or business/application/data/technology, or the well known OSI network model.)

The systems lifecycle on the other hand, is how we tend to structure industry guidance. We plan and design, we build, we run. Guidance such as COBIT and ITIL show lifecycle influences, as do software engineering programs in colleges.

Figure 1.1. Systems evolve iteratively

[image: Kniberg vehicles]

However, both the stack and the lifecycle have limitations. The stack can fall into what venture capitalist Anshu Sharma calls the “stack fallacy,” the “mistaken belief that it is trivial to build the layer above yours” [40]. It’s also sometimes hard to know when you have covered the precursor material sufficiently. Finally, more foundational and theoretical topics can seem irrelevant to the student. (“In the beginning, the universe was created.”) The lifecycle narrative is far too prone to promoting waterfall thinking, anathema to the current Agile and Lean Product Development approaches redefining digital industry.

Instead, the book’s emergence narrative draws on systems theory, in particular John Gall’s idea that “A complex system that works is invariably found to have evolved from a simple system that worked. A complex system designed from scratch never works and cannot be patched up to make it work. You have to start over, beginning with a working simple system” [20]. Henrik Kniberg created a compelling related visual image (Figure 1.1, “Systems evolve iteratively” [2]).

What if we treated the student’s understanding as such a systems problem? What would be the simplest possible thing that could work? How would we iteratively evolve their understanding, based on practical topics? Scaling seemed to be orthogonal to the other narratives (Figure 1.2, “3 narrative dimensions”).

As we’ll cover in the main introduction, reading books on organizational scaling inspired the idea that growth does not happen smoothly; instead organizations tend to cluster at certain scales and struggle to grow to the next scale. Hence the overall structure of the book:

	
Founder

	
Team

	
Team of Teams

	
Enterprise

Figure 1.2. 3 narrative dimensions

[image: narratives cube]

A key focus of the book is explaining what practices are formalized at which level of growth. The thought experiment is, “what would I turn my attention to next as my IT-based concerns scale up?” For example, I think work management (implying rudimentary workflow, e.g., Kanban) correctly comes before formalized project and/or process management, which in turn tend to emergence before enterprise governance practices (e.g., formalized risk management).

Note that this would be a testable and falsifiable hypothesis if empirical research were done to inventory and characterize organization scaling patterns. If we found, for example, that a majority of organizations formalize governance, risk, security, and compliance practices before formalizing product management, that would indicate that those chapters should be re-ordered. In my experience, small/medium businesses may have formal product management but governance, risk, and compliance (GRC) are still tacit, not formalized. This does not mean that GRC is not a concern, but they have not yet instituted formal policy management, internal audit, or controls.

The presence of product management at an early stage in the book (Chapter 4) is intended to provoke thought and debate. Product management is poorly addressed in most current college computing curricula as well as the reigning industry standards (e.g. TOGAF, PMBOK and ITIL). Yet formalizing it is one of the earliest concerns for a startup, and the imperatives of the product vision drive all that comes after. Evidence to this effect is seen (as of 2015) at the University of California at Berkeley I-School, which has replaced its Project Management course with Lean/Agile Product Management, taught currently by the esteemed Jez Humble, author of Continuous Delivery, Lean Enterprise, and co-author of The DevOps Handbook.

The book however is not a complete dismissal of older models of IT delivery. Wherever possible, new approaches are presented relative to what has gone before. The specifics of “what’s different” are identified, in the interest of de-mystifying what can be fraught and quasi-religious topics. (Why is a Scrum standup or a Kanban board effective, in terms of human factors?)

The emergence model can also be understood as an individual’s progression within a larger enterprise. Even if one starts from day one at a Fortune 100 corporation, I believe the progression of one’s understanding still progresses from individual, to team, to “team of teams,” to enterprise. Of course, one may cease evolving one’s understanding at any of these stages, with corresponding implications for one’s career.

Some of you may be familiar with the idea of a minimum viable product (MVP), minimum marketable release, or similar. In these terms, it is important to understand that each section of the book represents an MVP but not each chapter. One can’t begin to deliver IT value without the components discussed in each of chapters one through three. The chapters of each section tend to be interdependent in other words.

This book does not cover specific technologies in any depth. Many examples are used, but they are carefully framed to not require previous expertise. This is about broader, longer lifecycle trends.

There is benefit to restricting the chapters to twelve, as a typical semester runs fourteen weeks, and the book then fits well, with one chapter per class and allowing for an introductory session and final exam. Of course, a two-semester series, with two weeks per chapter, would also work well. Each half of the book is also a logical unit. I have spent considerable time thinking (agonizing) about the correct ordering of the chapters within these sections. This is possibly the tenth or twelfth version of the chapter ordering. This is an area where I want critical review but also have strong opinions.

Labs

With three chapters in each section, the book can be covered in one intense semester at a chapter a week, although expanding it to a two-semester treatment would allow for more in-depth coverage and increased lab exposure. I give great credit to both my first cohort of students and Dr. Bhabani Misra for challenging me to add a practical component to the course. This required new thinking on my part. How to demonstrate IT management at scale in a lab setting? I have learned that a hands-on component is essential, as IT management discussions can be abstract and meaningless to many students. (“Incidents are different from problems!”)

Ten years ago, the best that would have been possible would be paper case studies, perhaps augmented with spreadsheets. But new options are now available. The power of modern computers (even lightweight laptops) coupled with the widespread availability of open source software makes it is now possible to expose students to industrial computing in a meaningful, experiential way. I have found great utility in the use of lightweight virtualization technologies such as Vagrant, VirtualBox, and Docker. I recommend this approach wholeheartedly. I am always interested in hearing from other instructors who are working from the same approach. At the time of this writing, I maintain my labs publicly on GitHub. My syllabus and lab structure are under continual improvement.

I use a central server in teaching my classes, but even that is not necessary. The class can be taught with a zero computing budget, assuming that each team of students at least has access to a modern laptop (recommend 8 gigabytes of RAM and 1 terabyte drive) and a fast Internet connection. As of this writing, I am using free and open source versions of Chef, Jenkins, iTOP, jUnit, Ant, and other tools (see the dm-academy resources on GitHub for the current approach).

Some may question the inclusion of command-line experience, but without some common technical platform, it is hard to provide a meaningful, hands-on experience in the first half of the course. I structure my class on the assumption that the students are at least willing to learn computing techniques, with no prerequisites beyond that. Not even a programming language is required; the Java currently used as a sample is minimal.

Truly beginning students will have to work at the Linux tutorials, but all they need master is basic command line navigation, and I have found this possible with a diverse student body, some with no previous direct experience. The labs for the second half of the course use games, experiential paper-based classroom exercises, GUI-based software, databases, and office productivity tools.

[1] Technically, ITIL is now just the abbreviation, but we spell it out here for reference.

[2] Image credit Henrik Kniberg http://blog.crisp.se/author/henrikkniberg, used by permission

Introduction for the Student

This is a survey text, intended for the advanced undergraduate or graduate student interested in the general field of applied IT management. It is also intended for the mid-career professional seeking to update their understanding of IT management’s evolution, especially in light of the impact of Agile and DevOps.

The book is grounded in basic computing fundamentals but does not require any particular technical skills to understand. You do not need to have taken any courses in networking, security, or specific programming languages to understand this book. However, you occasionally will be presented with light material on such topics, including fragments of programming languages and pseudocode, and you will need to be willing to invest the time and effort to understand.

This book makes frequent reference to digital startups — early stage companies bringing new products to market that are primarily delivered as some form of computer-based service. Whether or not you intend to pursue such endeavors, the startup journey is a powerful frame for your learning. Large information technology organizations in enterprises sometimes gain a reputation for losing sight of business value. IT seems to be acquired and operated for its own sake. Statements like “we need to align IT with the business!” are too often heard.

A digital startup exposes with great clarity the linkage between IT and “the business.” The success or failure of the company itself depends on the adept and responsive creation and deployment of the software-based systems. Market revenues arrive, or do not, based on digital product strategy and the priorities chosen. Features the market doesn’t need? You won’t have the money to stay in business. Great features, but your product is unstable and unreliable? Your customers will go to the competition.

The lessons that digital entrepreneurs have learned through this trial by fire shed great light on IT’s value to the business. Thinking about a startup allows us to consider the most fundamental principles as a sort of microcosm, a small laboratory model of the same problems that the largest enterprises face.

Verne Harnish, in the book Scaling Up ([23], pp. 25-26), describes how companies tend to cluster at certain levels of scale. (See Figure 1.3, “Organizations cluster at certain sizes” [3] (p. 25).)] The majority of firms never grow beyond a founder; a small percentage emerge as a viable team of 8-12, and even smaller numbers make it to the stable plateaus of 40-70 and 350-500. The “scaling crisis” is the challenge of moving from one major level to the next. (Harnish uses the more poetic term “Valley of Death.") This scaling model, and the needs that emerge as companies grow through these different stages, is the basis for this book’s learning progression.

Figure 1.3. Organizations cluster at certain sizes

[image: scaling]

However, this is not a textbook (or course) on entrepreneurship. It remains IT-centric. And, the book is also intended to be relevant to students entering directly into large, established enterprises. In fact, it prepares the student for working in all stages of growth because it progresses through these four contexts:

	
Individual (founder)

	
Team

	
Small company (team of teams)

	
Enterprise

Whether in a startup or on a journey within a larger, established organization, you will (hopefully) become aware as you progress through a broadening context:

	
Other team members

	
Customers

	
Suppliers

	
Sponsors

	
Necessary non-IT capabilities (finance, legal, HR, sales, marketing, etc.)

	
Channel partners

	
Senior executives and funders

	
Auditors and regulators

Part of maturing in one’s career is understanding how all these relationships figure into your own overall system of value delivery. This will be a lifelong journey for the student; the author’s intent is to provide some useful tools.

This book’s structure

Figure 1.4. IT management evolutionary model (read bottom to top)

[image: emergence]

In Figure 1.4, “IT management evolutionary model (read bottom to top)” is a conceptual illustration of an IT management progression (read the figure bottom to top). Elaborating the outline into chapters, we have:

	
Founder

	
IT value. Why do we need computers? What can they do for us?

	
IT infrastructure. We want to build something. We have to choose a platform first.

	
IT applications. Let’s start building something of use to someone.

	
Team

	
Product management. What exactly is it that we are building? What is the process of discovering our customer’s needs and quickly testing how to meet them? How do we better define the product vision, and the way of working towards it, for a bigger team?

	
Work management. How do we keep track of what we are doing and communicate our progress and needs at the simplest level?

	
Operations management. How do we sustain this surprisingly fragile digital service in its ongoing delivery of value?

	
Team of Teams

	
Coordination. When we have more than one team, they need to coordinate, which we define as “the process of managing dependencies among activities.” There are many techniques to help us coordinate, including project and process management and Agile concepts. What is the future of process management as a delivery model?

	
Investment and planning. We make investments in various products, programs, and/or projects, and we are now big enough that we have portfolios of them. How do we decide? How do we choose and work with our suppliers? How do we manage the finances of complex digital organizations? What is the future of project management as a delivery model?

	
Organization and culture. We’re getting big. How do we deal with this? How are we structured, and why that way? How can we benefit from increasing maturity and specialization while still maintaining a responsive digital product? How do we hire great people and get the most out of them? What are the unwritten values and norms in our company and how can we change them?

	
Enterprise

	
Governance, risk, security, and compliance. We need to cope with structural and external forces such as investors, directors, regulators, vendor partners , security adversaries, and auditors, to whom we are accountable or who are otherwise constraining our options. What are the motivations for governance? How do we understand and control risk? How are we assured that our strategy, tactics, and operations are reasonable, sound, and thorough? And how do we protect ourselves from malicious adversaries?

	
Enterprise information management. We’ve been concerned with data, information, and knowledge since the earliest days of our journey. But at this scale, we have to formalize our approaches and understandings; without that, we will never capture the full value available with modern analytics and big data. Compliance issues are also compelling us to formalize here.

	
Architecture and portfolio. We need to understand the big picture of interacting lifecycles, reduce technical debt and redundancy, accelerate development through establishing platforms, and obtain better economies of scale. We do so in part through applying techniques such as visualization, standardization, and portfolio management. However, some of the suggested practices can degrade our teams' performance.

	
Appendices

	
The major frameworks

	
Project management

	
Process modeling

	
References

	
Glossary

	
Backlog

	
Colophon

	
Author biography

Warning

The boundary between the “Team” and the “Team of Teams” is a challenging area, and industry responses remain incomplete and evolving.

Emergence means formalization

The emergence model seeks to define a likely order in which concerns are formalized. Any concern may of course arise at any time—the startup founder certainly is concerned with security! Formalization means at least one or more of the following:

	
Dedicated resources

	
Dedicated organization

	
Defined policies and processes

	
Automated tooling

In my experience, for example, startups avoid formalized process and project management. To the extent the concerns exist, they are tacit (understood or implied; suggested; implicit). Certainly, a small startup does not invest in an enterprise-class service desk tool supporting a full array of IT management processes or a full-blown project management office with its own vice president and associated portfolio automation. Simple work management, with a manual or automated Kanban board, is likely their choice for work management.

But by the time they are a team of teams, specialization has emerged and more robust processes and tools are required. Finally, the more complex, enterprise-scale concerns at the end of the book are presented as part of a logical progression.

The danger of course is that the formalization effort may be driven by its own logic and start to lose track of the all-critical business context. By carefully examining these stages of maturation, and the industry responses to them, it is the author’s hope that the student will have effective tools to critically engage with the problem of scaling the digital organization.

Finally, the scaling model also emphasizes the critical importance for the reader of the high-performing, multi-skilled, collaborative team. Coordination and enterprise problems must be given their due, but too often the proposed solutions destroy the all important team value. As stated elsewhere in this book, it is possible that there is no higher unit of value in the modern economy than the high-performing team. Maintaining the cohesion and value of this critical asset is presented as a clear priority throughout the subsequent chapters.

Assumptions about the reader

	
This book is written at the advanced undergraduate/graduate student level. It is also intended for mid-career and senior IT practitioners seeking to update their knowledge.

	
It is currently available only in English.

	
There is no assumption of deep IT experience, but it is assumed that the person will interact with computers in some capacity and has basic technical literacy. They should, for example, understand the concept of an operating system. An A+ certification, or an intro to networking or programming class for example, would more than adequately prepare someone for this book.

	
A person completely unfamiliar with computing will need to supplement their reading as suggested throughout the text. There is a wealth of free and accurate information on IT fundamentals (e.g., computing, storage, networking, programming, etc.), and this book seeks more to curate than replicate.

[3] similar to [23

Chapter 2. Founder

This is the introduction to part I. In this section, we explore the fundamentals of information technology delivery.

Scenario

You are working in a startup, alone or with one or two partners. You are always in the same room, easily able to carry on a running conversation about your efforts and progress. You have no time or resources to spend on anything except keeping your new system alive and running.

Chapter 1: IT Value

Chapter 1 introduces you to the fundamental concepts of IT value that serve as a basis for the rest of the course. Why do people want computing (IT) services? What are the general outlines of their structure? How do they come into being? How are they changed over time?

All of this is essential to understand for your scenario; you need to understand what computers can do and how they are generally used if you are going to create a product based on them.

This chapter also covers the basics of how you’ll approach building a product. It’s assumed you won’t develop an intricate, long-range plan but rather will be experimenting with various ideas and looking for fast feedback on their success or failure.

Chapter 2: IT Infrastructure

In this chapter, you have a general idea for a product and are ready to start building it. But not so fast…​you need to decide some fundamentals first. How will your new product run? What will you use to build it?

It’s not possible to begin construction until you decide on your tools. This chapter will provide you an overview of computing infrastructure including cloud hosting and various approaches to system configuration.

This chapter also presents an overview of source control, as even your infrastructure depends on it in the new world of “infrastructure as code.”

Chapter 3: Application delivery

Finally, you’re ready to start building something. While this is not a book on software development or programming languages, it’s important to understand some basics and at least see them in action.

This is also where we introduce the concept of “DevOps”; it’s not just about writing code but about the entire end-to-end system that gets the code you are writing from your workstation, into collaborative environments, and finally to a state where it can be accessed by end users. From source repository to build manager to package repository to production, we’ll cover a basic toolchain that will help you understand modern industrial practices.

This section’s lab approach

While this is not a book about any particular computing language or platform, we need to describe some technical fundamentals. We’ll do so in as neutral a manner as possible. However, this book’s accompanying labs are based on Ubuntu Linux and git, the distributed version control system created by Linus Torvalds to facilitate Linux development.

Important

Part II, like the other parts, needs to be understood as a unified whole. In reality, digital entrepreneurs struggle with the issues in all three chapters simultaneously.

Chapter 3. Team

Scenario
Your startup has met with some success and you are now a team. (If you are in an enterprise, you’ve been promoted to team lead.) You’ve moved out of the garage into a more professionalized environment. You might not all be in the same room, but you have a single mission and a cohesive identity, and you don’t need a lot of overhead to get the job done.

Even with a few new people comes the need to more clearly establish your product direction, so people are building the right thing. You’re all in the same location, and can still communicate informally, but there is enough going on that you need a more organized approach to getting work done. Finally, this great thing you’re building doesn’t mean much if people cannot understand how best to use it, or if it’s not running and right people can’t get to it.

Things are getting larger and more complex. You have a significant user base, and the founder is increasingly out meeting with users, customers and investors; she isn’t in the room with the product team as much any more… in fact, she just named someone to be “product owner” and what is that all about?

The practices and approaches established at the team level are critical to the higher levels of scale discussed in Sections 3 and 4. In this section, we discuss small, cross-functional, outcome-oriented teams. We discuss product management, work management, shared mental models, visualization, and systems monitoring. We discuss collaboration and customer intimacy, and the need to limit work in process. And we discuss blameless cultures where people are safe to fail and learn. All of these are critical foundations for future growth; scaling success starts with building a strong team level.

Special section: Systems thinking
We talk of information systems, but what are systems? What is feedback? There is a rich body of knowledge describing these topics, which we will touch on in this special section.

Chapter 4: Product Management

You (as the startup leader) are spending more time with investors and customers, and maintaining alignment around your original product vision is becoming more challenging as you are pulled in various directions. You need some means of keeping the momentum here. And the concept of “product management,” you’re finding, represents a rich set of ideas for managing your team’s efforts at this stage of the game.

Chapter 5: Work Management

Even with a small team of 5 people (let alone 8 or 9), it’s too easy for balls to get dropped as work moves between key contributors. You probably don’t need a complex software-based process management tool yet, but you do need some way of managing work in process. And you start to understand that work takes many forms and exists as a concept at different scales.

Chapter 6: Operations Management

Since Chapter 3, your application developers have been running your systems and even answering the occasional phone call from customers. You’re big enough that you need a bit more specialization. You’ve got dedicated support staff answering the phone calls and you are finding that, even if you rotate operational responsibilities across developers, it is still a distinct kind of “interrupt-driven” work that is not compatible with heads-down, focused software development. You’ve probably seen by now that complex systems are fragile and tend to fail; how you learn (or don’t) from those failures is a critical question.

Important

Part II, like the other parts, needs to be understood as a unified whole. In reality, startups struggle with the issues in all three chapters simultaneously.

Special section: Systems thinking and feedback

	 	So, what is a system? A system is a set of things—people, cells, molecules, or whatever—interconnected in such a way that they produce their own pattern of behavior over time. The system may be buffeted, constricted, triggered, or driven by outside forces. But the system’s response to these forces is characteristic of itself, and that response is seldom simple in the real world.
	
	 	--
Donella Meadows
Thinking in Systems

Systems thinking, and systems theory, are broad topics extending far beyond information technology and the digital profession. Donella Meadows defined a system as “an interconnected set of elements that is coherently organized in a way that achieves something” [34]. Systems are more than the sum of their parts; each part contributes something to the greater whole, and often the behavior of the greater whole is not obvious from examining the parts of the system.

Systems thinking is an important influence on digital management. Digital systems are complex, and when the computers and software are considered as a combination with the people using them, we have a sociotechnical system. Digital systems management seeks to create, improve, and sustain these systems.

A digital management capability is itself a complex system. While the term “information systems (IS)” was widely replaced by “information technology (IT)” in the 1990s, do not be fooled. Enterprise IT is a complex sociotechnical system, that delivers the digital services to support a myriad of other complex sociotechnical systems.

Merriam-Webster defines a system as “a regularly interacting or interdependent group of items forming a unified whole." These interactions and relationships quickly take center stage as you move from individual work to team efforts. Consider that while a 2 member team only has 1 relationship to worry about, a 10 member team has 45, and a 100 person team has 4,950!

A thorough discussion of systems theory is beyond the scope of this book. However, many of the ideas that follow are informed by it. Obtaining a working knowledge of systems theory will not only enhance your understanding of this book, it can also be an essential tool for managing uncertainty in your future career, teams, and organizations. If you are interested in this topic, you might start with Thinking in Systems: A Primer by Donella Meadows [34] and then read An Introduction to General Systems Thinking by Gerald Weinberg [42].

A brief introduction to feedback

	 	The harder you push, the harder the system pushes back.
	
	 	--
Peter Senge
The Fifth Discipline

As the Senge quote implies, brute force does not scale well within the context of a system. One of the reasons for systems stability is feedback. Within the bounds of the system, actions lead to outcomes, which in turn affect future actions. This is a positive thing, as it is required to keep a complex operation on course.

Feedback is a loaded term. We hear terms like positive feedback and negative feedback, and associate it quickly with performance coaching and management discipline. That is not the sense of feedback in this book. The definition of feedback as used in this book is based on engineering. There is considerable related theory in general engineering and especially control theory and the reader is encouraged to investigate some of these foundations if unfamiliar.

In Figure 3.1, “Reinforcing feedback loop”) we see the classic illustration of a reinforcing feedback loop:

Figure 3.1. Reinforcing feedback loop

[image: feedback]

For example (as in Figure 3.2, “Reinforcing (positive?) feedback, with rabbits”), we can consider “rabbit reproduction” as a process with a reinforcing feedback loop.

Figure 3.2. Reinforcing (positive?) feedback, with rabbits

[image: rabbits]

The more rabbits, the faster they reproduce, and the more rabbits. This is sometimes called a “positive” feedback loop, although Mr. MacGregor the local gardener may not agree, given that they are eating all his cabbages!! This is why feedback experts (e.g. [41]) prefer to call this “reinforcing” feedback, because there is not necessarily anything “positive” about it.

We can also consider feedback as the relationship between TWO processes (see Figure 3.3, “Feedback between two processes”).

Figure 3.3. Feedback between two processes

[image: feedback between 2 processes]

In our rabbit example, what if Process B is fox reproduction, that is, the birth rate of foxes (who eat rabbits) (Figure 3.4, “Balancing (negative?) feedback, with rabbits and foxes”)?

Figure 3.4. Balancing (negative?) feedback, with rabbits and foxes

[image: rabbits and foxes]

More rabbits equals more foxes (notice the “+” symbol on the line), because there are more rabbits to eat! But what does this do to the rabbits? It means LESS rabbits (the “--” on the line). Which, ultimately, means less foxes… and at some point, the populations balance. This is classic negative feedback. However, the local foxes don’t see it as negative (nor do the local gardeners!) That is why feedback experts prefer to call this “balancing” feedback. Balancing feedback can be an important part of a system’s overall stability.

Wikipedia has good articles on Causal Loop Diagramming and Systems Dynamics (with cool dynamic visuals.) [41] is the definitive text with applications.

Note

Still confused? Think about the last time you saw a “reply-all” email storm. The first accidental mass send generates feedback (emails saying “take me off this list"), which generate more emails ("stop emailing the list") and so on. This does not continue indefinitely; management intervention, common sense and fatigue eventually damp the storm down.

What does systems thinking have to do with IT?

In an engineering sense, positive feedback is often dangerous and a topic of concern. The classic example of bad positive feedback in engineering is the collapse of the Tacoma Narrows bridge, “Galloping Gertie” (see Figure 3.5, “"Galloping Gertie”” [4])

Figure 3.5. "Galloping Gertie”

[image: collapsing bridge]

As with bridges, at a technical level, reinforcing feedback can be a very bad thing in IT systems. In general, any process that is self-amplified without any balancing feedback will eventually consume all available resources, just like rabbits will eat all the food available to them. So, if you create a process (e.g. write and run a computer program) that recursively spawns itself, it will sooner or later crash the computer as it devours memory and CPU. See Runaway processes.

Balancing feedback, on the other hand, is critical to make sure you are “staying on track.” Engineers use concepts of control theory, for example damping, to keep bridges from falling down.

Remember in Chapter 1 we talked of the user’s value experience, and also how services evolve over time in a lifecycle? In terms of the dual-axis value chain, there are two primary digital value experiences:

	
The value the user derives from the service (e.g. account lookups, or a flawless navigational experience)

	
The value the investor derives from monetizing the product, or comparable incentives (e.g. nonprofit missions)

Additionally, the product team derives career value. This becomes more of a factor later in the game. We will discuss this further in chapter 7 on organization, and Part IV on architecture lifecycles & technical debt.

The product team receives feedback from both value experiences. The day to day interactions with the service (e.g. help desk and operations) are understood, and (typically on a more intermittent basis) the portfolio investor also feeds back the information to the product team (the boss’s boss comes for a visit).

Balancing feedback in a business and IT context takes a wide variety of forms:

	
The results of a product test in the marketplace, for example do the users prefer a drop down box or check boxes on a form?

	
The product owner clarifying for developers their user experience vision for the product, based on a demonstration of developer work in process

	
The end users calling to tell you the “system is slow” (or down)

	
The product owner or portfolio sponsor calling to tell you they are not satisfied with the system’s value

In short, we see these two basic kinds of feedback:

	
Positive/Reinforcing, “do more of that”

	
Negative/Balancing, “stop doing that,” “fix that”

You should consider:

	
How you are accepting and executing on feedback signals

	
How the feedback relationship with your investors is evolving, in terms of your product direction

	
How the feedback relationship with your users is evolving, in terms of both operational criteria and product direction

One of the most important concepts related to feedback, one we will keep returning to, is that product value is based on feedback. We’ve discussed Lean Startup, which represents a feedback loop intended to discover product value. Don Reinertsen, whose work we will discuss in this chapter, has written extensively on the importance of fast feedback to the product discovery process.

Reinforcing feedback: the special case investors want

At a business level, there is a special kind of reinforcing feedback that defines the successful business (see Figure 3.6, “The reinforcing feedback businesses want”).

Figure 3.6. The reinforcing feedback businesses want

[image: positive business feedback]

This is reinforcing feedback and positive for most people involved: investors, customers, employees. At some point, if the cycle continues, it will run into balancing feedback:

	
Competition

	
Market saturation

	
Negative externalities (regulation, pollution, etc)

But those are problems the business wants to have.

Open versus closed loop systems

Finally, we should talk briefly about open loop versus closed loop systems.

	
Open loop systems have no regulation, no balancing feedback

	
Closed loop systems have some form of balancing feedback

In navigation terminology, the open-loop attempt to stick to a course without external information (e.g. navigating in the fog, without radar or communications) is known as " dead reckoning,” in part because it can easily get you dead!

A good example of an open loop system is the children’s game “pin the tail on the donkey” (see Figure 3.7, “Pin the tail on the donkey” [5]). In “pin the tail on the donkey,” a person has to execute a process (pinning a paper or cloth “tail” onto a poster of a donkey - no live donkeys are involved!) while blindfolded, based on their memory of their location (and perhaps after being deliberately disoriented by spinning in circles). Since they are blindfolded, they have to move across the room and pin the tail without the ongoing corrective feedback of their eyes. (Perhaps they are getting feedback from their friends, but perhaps their friends are not reliable….)

Figure 3.7. Pin the tail on the donkey

[image: donkey game]

Without the blindfold, it would be a closed loop system. The person would rise from their chair and, through the ongoing feedback of their eyes to their central nervous system, would move towards the donkey and pin the tail in the correct location. In the context of a children’s game, the challenges of open-loop may seem obvious, but an important aspect of IT management over the past decades has been the struggle to overcome open-loop practices. Reliance on open-loop practices is arguably an indication of a dysfunctional culture. An IT team that is designing and delivering without sufficient corrective feedback from its stakeholders is an ineffective, open-loop system. Mark Kennaley [27] applies these principles to software development in much greater depth, and is recommended.

Note

No system can ever be fully “open loop” indefinitely. Sooner or later, you take off the blindfold, or wind up on the rocks.

Engineers of complex systems use feedback techniques extensively. Complex systems do not work without them.

OODA

After the Korean War, the US Air Force wished to clarify why its pilots had performed in a superior manner to the opposing pilots who were flying aircraft viewed as more capable. A colonel named John Boyd was tasked with researching the problem. His conclusions are based in the concept of feedback cycles, and how fast humans can execute them. determined that humans go through a defined process in building their mental model of complex and dynamic situations. This has been formalized in the concept of the OODA loop. Standing for:

	
Observe

	
Orient

	
Decide

	
Act

Because the US fighters were lighter, more maneuverable, and had better visibility, their pilots were able to execute the OODA loop more quickly than their opponents, leading to victory. Boyd and others have extended this concept into various other domains including business strategy. The concept of the OODA feedback loop is frequently mentioned in presentations on Agile methods. Tightening the OODA loop accelerates the discovery of product value and is highly desirable.

The DevOps consensus as systems thinking

We covered continuous delivery and introduced DevOps in the previous chapter. Systems theory provides us with powerful tools to understand these topics more deeply.

Figure 3.8. Change versus stability

[image: change v stability]

One of the assumptions we encounter throughout digital management is the idea that Change and Stability are opposing forces. In systems terms, we might use a diagram like Figure 3.8, “Change versus stability” (see [5] for original exploration.]) As a Causal Loop Diagram (CLD), it is saying that Change and Stability are opposed - the more we have of one, the less we have of the other. This is true, as far as it goes - most systems issues occur as a consequence of change; systems that are not changed in general do not crash as much.

Figure 3.9. Change vicious cycle

[image: 3 node CLD]

The trouble with viewing change and stability as diametrically opposed is that change is inevitable. If simple delaying tactics are put in, these can have a negative impact on stability, as in Figure 3.9, “Change vicious cycle”. What is this diagram telling us? If the owner of the system tries to prevent change, a larger and larger backlog will accumulate. This usually results in larger and larger scale attempts to clear the backlog (e.g. large releases or major version updates.) These are more risky, and increase the likelihood of change failure. When changes fail, the backlog is not cleared and continues to increase, leading to further temptation for even larger changes.

How do we solve this? Decades of thought and experimentation have resulted in continuous delivery and DevOps, which can be shown in terms of system thinking in Figure 3.10, “The DevOps consensus”.

Figure 3.10. The DevOps consensus

[image: 3 node CLD]

To summarize a complex set of relationships:

	
As change occurs more frequently, it enables smaller change sizes.

	
Smaller change sizes are more likely to succeed (as change size goes up, change success likelihood goes down, hence it is a balancing relationship).

	
As change occurs more frequently, organizational learning happens (change capability). This enables more frequent change to occur, as the organization learns. This has been summarized as, “if it hurts, do it more” (Martin Fowler in [16]).

	
The improved change capability, coupled with the smaller perturbations of smaller changes, together result in improved change success rates.

	
Improved change success in turn results in improved system stability and availability, even with frequent changes. Evidence supporting this de facto theory is emerging across the industry and can be seen in cases presented at the DevOps Enterprise Summit and discussed in The DevOps Handbook [28].

Notice the reinforcing feedback loop (the “R” in the looped arrow) between change frequency and change capability. Like all diagrams, this one is incomplete. Just making changes more frequently will not necessarily improve the change capability; a commitment to improving practices such as monitoring, automation, and so on is required, as the organization seeking to release more quickly will discover.

[4] Image credit https://en.wikipedia.org/w/index.php?curid=23093518, downloaded 2016-10-31, By Barney Elliott; The Camera Shop - Screenshot taken from 16MM Kodachrome motion picture film by Barney Elliott. Fair use. There is debate about whether the collapse of this bridge is a good example of feedback; another case would be appreciated.

[5] Image credit https://www.flickr.com/photos/portland_mike/5445434245/, downloaded 2016-11-13, mike krzeszak, Flickr, Creative Commons

Product Management

Introduction

Product Management?

“Product management?” In a book on IT management? Those of you with industry experience, especially backgrounds in project-based enterprise software development, may be unfamiliar with the term. However, a focus on product development is one of the distinguishing features of Agile development, even if that development is taking place in a larger enterprise context.

As you grow your company, you are bringing more people in. You become concerned that they need to share the same vision that inspired you to create this company. This is the goal of product management as a formalized practice.

Product strategy was largely tacit in Part I. As the founder, you used product management and discovery practices, and may well be familiar with the ideas here, but the assumption is that you did not explicitly formalize your approach to them. Now you need a more prescriptive and consistent approach to discovering, defining, designing, communicating, and executing a product vision across a diverse team.

In this chapter, we will define and discuss product management, and distinguish it from project and process management. We will cover how product teams are formed and what practices and attitudes you should establish quickly.

We will discuss a number of specific schools of thought and practices, including Gothelf’s Lean UX, Scrum, and more specific techniques for product “discovery.” Finally, we will discuss the concepts of design and design thinking.

Chapter 4 outline

	
Why product management?

	
The product vision

	
Defining Product Management

	
Process, project, and product management

	
Productization as a strategy at Amazon

	
Organizing the product team

	
The concept of collaboration

	
Lean UX

	
Scrum

	
More on product team roles

	
Product discovery

	
Formalizing product discovery

	
Product discovery techniques

	
Discovery and design

	
Design

	
Assorted topics in Product Management

Chapter 4 learning objectives

	
Define and distinguish product versus project and process management

	
Identify the key concerns of forming a collaborative product team

	
Describe current product-oriented practices, such as Lean UX and Scrum

	
Describe product design and discovery practices and concerns

Why product management?

The product vision

Note

You should review the digital context material in Chapter 1.

Before work, before operations, there must be a vision of product. You already established a preliminary vision in Chapter 1, but now as your organization grows, you need to consider further how you will sustain that vision and establish an ongoing capability for realizing it. Like many other topics in this book, product management is a significant field in and of itself. Historically, product management has not been a major theme in enterprise IT management. Digital changes this.

IT systems started by serving narrow purposes, often “back office” functions such as accounting or materials planning. Mostly, such systems were managed as projects assembled on a temporary basis, resulting in the creation of a system to be “thrown over the wall” to operations. Product management, on the other hand, is concerned with the entire lifecycle. The product manager (or owner, in Scrum terms) cares about the vision, its execution, the market reaction to the vision (even if an internal market), the health, care and feeding of the product, and the product’s eventual sunset or replacement.

In the enterprise IT world, “third party” vendors (e.g. IBM) providing the back office systems had product management approaches, but these were external to the IT operations. Nor were IT-based product companies as numerous forty years ago as they are today; as noted in chapter 1, with digital transformation, the digital component of modern products continues to increase to the point where it’s often not clear whether a product is “IT” or not.

Figure 3.11. Product design session

[image: team meeting]

Reacting to market feedback and adapting product direction is an essential role of the product owner. In the older model, feedback was often unwelcome, as the project manager typically was committed to the open-loop dead reckoning of the project plan and changing scope or direction was seen as a failure, more often than not.

Now, it’s accepted that systems evolve, perhaps in unexpected directions. Rapidly testing, failing fast, learning, and pivoting direction are all part of the lexicon, at least for market-facing IT-based products. And even back-office IT systems with better understood scope are being managed more as systems (or products) with lifecycles, as opposed to transient projects. (See the Amazon discussion, below.)

So, what is product management and what does it mean for your team? [6]

Defining Product Management

In order to define product management, we first need to define product. In Chapter 1, we established that products are goods, services, or some combination, with some feature that provides value for some consumer. BusinessDictionary.com defines it thus:

	 	[A Product is] A good, idea, method, information, object or service created as a result of a process and serves a need or satisfies a want. It has a combination of tangible and intangible attributes (benefits, features, functions, uses) that a seller offers a buyer for purchase. For example a seller of a toothbrush not only offers the physical product but also the idea that the consumer will be improving the health of their teeth . . . A good or service [must] closely meet the requirements of a particular market and yield enough profit to justify its continued existence.
	
	 	--
BusinessDictionary.com

Product management, according to the same source, is

	 	The organizational structure within a business that manages the development, marketing and sale of a product or set of products throughout the product life cycle. It encompasses the broad set of activities required to get the product to market and to support it thereafter.
	
	 	--
BusinessDictionary.com

Product management in the general sense often reports to the Chief Marketing Officer (CMO). It represents the fundamental strategy of the firm, in terms of its value proposition and viability. The product needs to reflect the enterprise’s strategy for creating and maintaining customers.

Product strategy for internally-facing products is usually not defined by the enterprise CMO. If it is a back-office product, then “business within a business” thinking may be appropriate. (Even the payroll system run by IT for HR is a “product,” in this view.) In such cases, there still is a need for someone to function as an “internal CMO” to the external “customers.”

Note

As a field, product management has a professional association, the Product Development and Marketing Association, which publishes an extensive and continuously-refined handbook, and supports local chapters, training and certification, and other activities typical of a mature professional organization.

With digital transformation, all kinds of industrial products have increasing amounts of “IT” in them. This means that an understanding of IT, and ready access to any needed IT specialty skills, is increasingly important to the general field of product management. Product management includes research and development, which means that there is considerable uncertainty. This is of course also true of IT systems development.

Perhaps the most important aspect of product design is focusing on the user, and what she or he needs. The concept of outcome is key. This is easier said than done. The general problem area is considered Marketing, a core business school topic. Entire books have been written on the various tools and techniques for doing this, from focus groups to ethnographic analysis.

However, Marty Cagan warns against confusing Product Management and Product Marketing. He defines the two as follows:

The product manager is responsible for defining—in detail—the product to be built, and validating that product with real customers and users. The product marketing person is responsible for telling the world about that product, including positioning, messaging and pricing, managing the product launch, providing tools for the sales channel to market and sell the product, and for leading key programs such as online marketing and influencer marketing programs. [12], pp. 10-11.

We discuss some criticisms of overly marketing-driven approaches below.

Process, project, and product management

In the remainder of this book, we will continually encounter three major topics:

	
Product Management (Chapter 4)

	
Project Management (covered in Chapters 8 and 9)

	
Process Management (covered in Chapter 9)

They have an important commonality: all of them are concepts for driving results across organizations.

The Appendices have brief discussions of project management and process modeling. Here are some of the key differences between process, project and product management in the context of digital services and systems:

Table 3.1. Process, project, and product management

	Process	Project	Product
	Task oriented
	Deliverable oriented
	Outcome oriented

	Repeatable with a high degree of certainty
	Executable with a medium degree of certainty
	Significant component of research and development, less certain of outcome - empirical approaches required

	Fixed time duration, relatively brief (weeks/months)
	Limited time duration, often scoped to a year or less
	No specific time duration; lasts as long as there is a need

	Fixed in form, no changes usually tolerated
	Difficult to change scope or direction, unless specifically set up to accommodate
	Must accommodate market feedback and directional change

	Used to deliver service value and operate system (the “Ops” in DevOps)
	Often concerned with system design and construction, but typically not with operation (the “Dev” in DevOps)
	Includes service concept and system design, construction, operations, and retirement (both “Dev” and “Ops")

	Process owners concerned with adherence and continuous improvement of process. Otherwise can be narrow in perspective.
	Project managers are trained in resource and timeline management, dependencies & scheduling. They are not typically incented to adopt a long-term perspective.
	Product managers need to have project management skills as well as understanding market dynamics, feedback, building long-term organizational capability

	Resource availability and fungibility is assumed
	Resources are specifically planned for but their commitment is temporary (team is “brought to the work")
	Resources are assigned long-term to the product (work is “brought to the team")

The above distinctions are deliberately exaggerated and there are of course exceptions (short projects, processes that take years). However, it is in the friction between these perspectives we see some of the major problems in modern IT management. For example, an activity, which may be a one-time task or a repeatable process, results in some work product—​perhaps an artifact (see Figure 3.12, “Activities create work products”).

Figure 3.12. Activities create work products

[image: activities-work products]

The consumer or stakeholder of that work product might be a Project Manager.

Project management includes concern for both the activities, AND the resources (people, assets, software) required to produce some deliverable (see Figure 3.13, “Projects create deliverables with resources and activities”).

Figure 3.13. Projects create deliverables with resources and activities

[image: projects-deliverables]

The consumer of that deliverable might be a Product Manager. Product management includes concern for projects and their deliverables, and their ultimate outcomes, either in the external market or internally (see Figure 3.14, “Product management may use projects”).

Figure 3.14. Product management may use projects

[image: projects-deliverables]

Notice that product management may directly access activities and resources. In fact, earlier-stage companies often do not formalize project management (see Figure 3.15, “Product management sometimes does not use projects”).

Figure 3.15. Product management sometimes does not use projects

[image: Product-outcomes2]

In our scenario, you are now on a tight-knit, collaborative team. You should think in terms of developing and sustaining a product. However, projects still exist, and sometimes you may find yourself on a team that is funded and operated on that basis. You also will encounter the concept of “process” even on a single team; more on that in Chapter 5. We will go further into projects and process management in Part III.

Productization as a strategy at Amazon

Amazon (the online bookseller) is an important influence in the modern trend towards product-centric IT management. First, the founder Jeff Bezos mandated that all software development should be service-oriented. That means that some form of standard API (Application Programming Interface) was required for all application to communicate with each other. By some accounts, Bezos threatened to fire anyone who did not do this. Second, all teams are to assume that the functionality being built might at some point be offered to external customers [30].

Figure 3.16. Two pizzas, one team

[image: pizzas]

Third, a widely reported practice at Amazon.com is the limitation of product teams to between 5-7 people, the number that can be fed by “two pizzas” (depending on how hungry they are) [21] (see Figure 3.16, “Two pizzas, one team” [7]). It has long been recognized in software and IT management that larger teams do not necessarily result in higher productivity. The best known statement of this is "Brooks' Law” from The Mythical Man-Month, that “adding people to a late project will make it later” [10].

Note

Fred Brooks' The Mythical Man-Month, derived in part from his experiences leading the IBM OS-360 project, is one of the timeless classics in software engineering and IT management writing. Serious IT professionals, whether or not they are actually programmers, should have it on their bookshelves.

The reasons for “Brooks' Law” have been studied and analyzed (see e.g. [32], [14]) but in general it is due to the increased communication overhead of expanded teams. Product design work (of which software development is one form) is creative and highly dependent on tacit knowledge, interpersonal interactions, organizational culture, and other “soft” factors. Products, especially those with a significant IT component, can be understood as socio-technical systems, often complex. This means that small changes to their components or interactions can have major effects on their overall behavior and value.

This in turn means that newcomers to a product development organization can have a profound impact on the product. Getting them “up to speed” with the culture, mental models, and tacit assumptions of the existing team can be challenging and rarely is simple. And the bigger the team, the bigger the problem. The net result of these two practices at Amazon (and now General Electric and many other companies) is the creation of multiple nimble services that are decoupled from each other, constructed and supported by teams appropriately sized for optimal high-value interactions.

Designing for scale

	 	Building a scalable system does not happen by accident.
	
	 	--
Limoncelli/Chalup/Hogan

	 	Unfortunately, because of misinformation and hype, many people believe that the cloud provides instant high availability and unlimited scalability for applications.
	
	 	--
Abbott and Fisher
The Art of Scalability

Designing complex systems that can scale effectively and be operated efficiently is a challenging topic. Many insights have been developed by the large-scale public-facing Internet sites, such as Google, Facebook, Netflix, and others. The recommended reading at the end of this chapter provides many references.

A reasonable person might question why systems design questions are appearing here in the chapter on operations. We have discussed certain essential factors for system scalability previously: Cloud, infrastructure as code, version control, and continuous delivery. These are all necessary, but not sufficient to scaling digital systems. Once a system starts to encounter real load, further attention must go to how it runs, as opposed to what it does. It’s not easy to know when to focus on scalability. If product discovery is not on target, the system will never get the level of use that requires scalability. Insisting that the digital product have a state of the art scalable design might be wasteful, if the team is still searching for a Minimum Viable Product (in Lean Startup terms). Of course, if you are doing systems engineering and building a “cog,” not growing a “flower," you may need to be thinking about scalability earlier.

So, what often happens is that the system goes through various prototypes until something with market value is found, and at that point, as use starts to scale up, the team scrambles for a more robust approach. Chapter 2 warned of this, and mentioned the Latency Numbers; now would be a good time to review those.

There are dozens of books and articles discussing many aspects of how to scale systems. In this section, we will discuss two important principles (the CAP Principle and the AKF Scaling Cube). If you are interested in this topic in depth, check out the references in this chapter.

The CAP principle

Figure 3.17. CAP principle

[image: CAP triangle]

Scaling digital systems used to imply acquiring faster and more powerful hardware and software. If a 4-core server with 8 gigabytes of RAM isn’t enough, get a 32-core server with 256 gB of RAM (and upgrade your database software accordingly, for millions of dollars more). This kind of scaling is termed “vertical” scaling. However, web-scale companies such as Facebook and Google determined that this would not work indefinitely. Infinitely scaling vertically is not physically (or financially) possible. Instead, these companies began to experiment aggressively with using large numbers of inexpensive commodity computers.

The advantage to scaling vertically is that all your data can reside on one server, with fast and reliable access. As soon as you start to split your data across servers, you run into the practical implications of the CAP principle (see Figure 3.17, “CAP principle”).

CAP stands for:

	
Consistency

	
Availability

	
Partition-tolerance

and the CAP Principle (or Theorem) states that it is not possible to build a distributed system that guarantees all three [18]. What does this mean? First, let’s define our terms:

Consistency means that all the servers (or “nodes") in the system see the same data at the same time. If an update is being processed, no node will see it before any other. This is often termed a transactional guarantee, and it is the sort of processing relational databases excel at.

For example, if you change your flight, and your seat opens up, a consistent reservation application will show the free seat simultaneously to anyone who inquires, even if the reservation information is replicated across two or more geographically distant nodes. If the seat is reserved, no node will show it available, even if it takes some time for the information to replicate across the nodes. The system will simply not show anyone any data until it can show everyone the correct data.

Availability means what it implies: that the system is available to provide data on request. If we have many nodes with the same data on them, this can improve availability, since if one is down, the user can still reach others.

Partition-tolerance is the ability of the distributed system to handle communications outages. If we have two nodes, both expected to have the same data, and the network stops communicating between them, they will not be able to send updates to each other. In that case, there are two choices: either stop providing services to all users of the system (failure of availability) or accept that the data may not be the same across the nodes (failure of consistency).

In the earlier years of computing, the preference was for strong consistency and vendors such as Oracle profited greatly by building database software that could guarantee it, when properly configured. Such systems could be consistent and available, but could not tolerate network outages - if the network was down, the system, or at least a portion of it, would also be down.

Companies such as Google and Facebook took the alternative approach. They said, “We will accept inconsistency in the data so that our systems are always available.” Clearly, for a social media site such as Facebook, a posting does not need to be everywhere at once before it can be shown at all. To verify this, simply post to a social media site using your computer. Do you see the post on your phone, or your friend’s, as soon as you submit it on your computer? No, although it is fast, you can see some delay. This shows that the site is not strictly consistent; a strictly consistent system would always show the same data across all the accessing devices.

The challenge with accepting inconsistency is how to do so. Eventually, the system needs to become consistent, and if conflicting updates are made they need to be resolved. Scalable systems in general favor availability and partition-tolerance as principles, and therefore must take explicit steps to restore consistency when it fails. The approach taken to partitioning the system into replicas is critical to managing eventual consistency, which brings us to the AKF scaling cube.

For further discussion, see [31], section 1.5.

The AKF scaling cube

Figure 3.18. AKF scaling cube

[image: AKF cube]

Another powerful tool for thinking about scaling systems is the AKF Scaling Cube (see Figure 3.18, “AKF scaling cube” [8], p. 376). AKF stands for Abbott, Keeven, and Fisher, authors of The Art of Scalability [1]. The AKF cube is a visual representation of the three basic options for scaling a system:

	
Replicate the complete system (x-axis)

	
Split the system functionally into smaller layers or components (y-axis)

	
Split the system’s data (z-axis)

Figure 3.19. Point of sale terminals - horizontal scale

[image: POS terminals]

A complete system replica is similar to the Point of Sale terminals in a retailer(see Figure 3.19, “Point of sale terminals - horizontal scale” [9]). Each is a self-contained system with all the data it needs to handle typical transactions. POS terminals do not depend on each other and therefore you can keep increasing the capacity of your store’s checkout lines by simply adding more fo them.

Functional splitting is when you separate out different features or components. To continue the retail analogy, this is like a department store; you view and buy electronics, or clothes, in those specific departments. The store “scales” by adding departments, which are self-contained in general; however, in order to get a complete outfit, you may need to visit several. In terms of systems, separating web and database servers is commonly seen - this is a component separation. E-commerce sites often separate “show” (product search and display) from “buy” (shopping cart and online checkout); this is a feature separation. Complex distributed systems may have large numbers of features and components, all orchestrated together into one common web or smartphone app experience.

Figure 3.20. Partitioning by data range at a conference

[image: conference registrations]

Data splitting (sometimes termed "sharding") is the concept of “partitioning” from the CAP discussion, above. Have you ever checked into a large event, and the first thing you see is check-in stations divided by alphabet range (see Figure 3.20, “Partitioning by data range at a conference” [10])? For example:

	
A-H register here

	
I-Q register here

	
R-Z register here

This is a good example of splitting by data. In terms of digital systems, we might split data by region; customers in Minnesota might go to the Kansas City data center, while customers in New Jersey might go to a North Carolina data center. Obviously, the system needs to handle situations where people are traveling or move.

There are many ways to implement and combine the 3 axes of the AKF scaling cube to meet the CAP constraints (consistency, availability, and partition-tolerance). With further study of scalability, you will encounter discussions of:

	
Load balancing architectures and algorithms

	
Caching

	
Reverse proxies

	
Hardware redundancy

	
Designing systems for continuous availability during upgrades

and much more. For further information, see [1] and [Limoncelli2014].

[6] Image credit https://www.flickr.com/photos/daonb/6223628837, downloaded 2016-09-14, commercial use permitted

[7] Image credit https://www.flickr.com/photos/ramblinbears/7937873272, downloaded 2016-09-20, commercial use permitted

[8] Similar to [1

[9] Image credit https://www.flickr.com/photos/jeepersmedia/14061759587, downloaded 2016-11-21, commercial use permitted

[10] Image credit https://www.flickr.com/photos/abragad/2531511657, downloaded 2016-11-21, commercial use permitted

Chapter 4. Team of Teams

Figure 4.1. All hands meeting at NASA Goddard

[image: Large meeting]

Team of teams

Team of Teams: New Rules of Engagement for a Complex World is the name of a 2015 book by General Stanley McChrystal, describing his experiences as the commander of Joint Special Operations Command in the Iraq conflict. It describes how the U.S. military was being beaten by a foe with inferior resources, and its need to shift from a focus on mechanical efficiency to more adaptable approaches. The title is appropriate for this section, as moving from “team” to “team of teams” is one of the most challenging transitions any organization can make.

Scenario

You are now a “team of teams,” at a size where face to face communication is increasingly supplemented by other forms of communication and coordination. Your teams are all good, and get results, but in different ways. You need some level of coordination and not everyone can talk to everyone; people are no longer co-located and there may be different schedules involved.[11]

You now have multiple products. As you scale up, you now must split your products into features and components (the y-axis of the AKF scaling cube). Then as you move from your first product to adding more, even more organizational evolution is required. You try to keep your products from developing unmanageable interdependencies, but this is an ongoing challenge. Tensions between various teams are starting to emerge. You are seeing more and more specialization in your organization. You see a tendency of specialists to identify more with their field than with the needs of your customers and your business. There is an increasing desire among your stakeholders and executives for control and predictability. Resources are limited and always in contention. You are considering various frameworks for managing your organization. As we scale, however, we need to remember that our highest value is found in fast-moving, committed, multi-skilled teams. Losing sight of that value is a common problem for growing organizations. This is where it gets hard.

As you become a manager of managers, your concerns again shift. In Part II, you had to delegate product management (are they building the right thing?) and take concern for basic work management and digital operations. Now, as your organization grows, you are primarily a manager of managers, concerned with providing the conditions for your people to excel:

	
Defining how work is executed, in terms of decision rights, priorities, and conflicts

	
Setting the organizational mission and goals that provide the framework for making investments in products and projects

	
Instituting labor, financial, supply chain, and customer management processes and systems

	
Providing facilities and equipment to support digital delivery

	
Resolving issues and decisions escalated from lower levels in the organization

(influenced by [35].)

New employees are bringing in their perspectives, and the more experienced ones seem to assume that the company will use “projects” and “processes” to get work done. There are no shortage of contractors and consultants all advocating various flavors of process and project management, some advocating older approaches and “frameworks” and others proposing newer Agile & Lean perspectives. However, the ideas of process and project management are occasionally called into question by both your employees and various “thought leaders,” and it’s all very confusing.

Welcome to the coordination problem. We need to understand where these ideas came from, how they relate to each other, and how they are evolving in a digitally transforming world.

Here is an overview of Part III’s structure:

Special section: Scaling the organization and its work

Digital professionals use a number of approaches to defining and managing work at various scales. Our initial progression from product, to work, to operations management can be seen as one dimension. We consider a couple of other dimensions as a basis for ordering Part III.

Chapter 7: Coordination

Going from one to multiple teams is hard. No matter how you structure things, there are dependencies requiring coordination. How do you ensure that broader goals are met when teams must act jointly? Some suggest project management, while others argue that you don’t need it any more - it’s all about continuous flow through loosely-coupled product organizations. But you’ve seen that your most ambitious ideas require some kind of choreography, and that products and projects need certain resources and services delivered predictably. When is work repeatable? When is it unique? Understanding the difference is essential to your organization’s success. Is variability in the work always bad? These are questions that have preoccupied management thinkers for a long time.

Chapter 8: Planning and investment

Each team also represents an investment decision. You now have a portfolio of features, and/or products. You need a strategy for choosing among your options and planning — at least at a high level — in terms of costs and benefits. Some of you may be using project management to help manage your investments. Your vendor relationships continue to expand; they are another form of strategic investment, and you need to deepen your understanding of matters like Cloud contracts and software licensing. Finally, what is your approach to finance and budgeting?

Note

In terms of classic project methodology, chapter 8 includes project initiating and planning. Execution, monitoring, and control of day to day work are covered in Chapter 7. The seemingly backwards order is deliberate, in keeping with the emergence model.

Chapter 9: Organization and culture

You’re getting big. In order to keep growing, you have had to divide your organization. How are you formally structured? In terms of your market, or your resources? How are people grouped, and to whom do they report, with what kind of expectations? Finally, what is your approach to bringing new people into your organization? What are the unspoken assumptions that underly your daily work — in other words, what is your culture? Does your culture support high performance, or the opposite? How can you measure and know such a thing?

Important

Part III, like the other parts, needs to be understood as a unified whole. In reality, growing companies struggle with the issues in all three chapters simultaneously.

Special section: Scaling the organization and its work

	 	Avoid large projects. Start small and quickly develop a product with the minimum functionality…​ If you have to employ a large project, scale slowly and grow the project organically by adding one team at a time. Starting with too many people causes products to be overly complex, making future product updates time-consuming and expensive.
	
	 	--
Roman Pichler
Agile Product Management with Scrum

As we begin the second half of this book, consider Pichler’s advice above. We have spent chapters 1-6 (the first half of the book) thinking mainly in terms of one product and its dimensions. We are scaling now because we must; we have increasingly diverse product opportunities, or one product that has become so large it must be partitioned in some manner. Or both.

The two dimensions of demand management

To provide a framework for Part III, let’s start with this two-dimensional analysis in (Figure 4.2, “Two dimensions of demand management”)

You should spend some time reviewing the graphic, which provides a unique way of understanding the work you are now experiencing as a "team of teams” or “manager of managers” in an IT-dependent environment of increasing size and complexity. We’ve come a long ways since our discussion of work management. By the time we started to formalize operations, we saw that work was tending to differentiate. Still, regardless of the label we put on a given activity, it represents some set of tasks or objectives that real people are going to take time to perform, and expect to be compensated for. It is all demand, requiring management. Remembering this is essential to digital management.

Figure 4.2. Two dimensions of demand management

[image: complex 2d figure]

Let’s consider the various forms that demand may take. Understanding these demand forms will also help you develop a deeper understanding of an architecture of IT management, a topic I have explored in other works [4]. The diagram has two dimensions:

	
Planning

	
Granularity

Planning. As an organization scales, there is an increasing span in your time horizon and the scope of work you are considering and executing. From the immediate, “hand-to-mouth” days of your startup, you now must take concern for longer and longer time frames: contracts, regulations, and your company’s strategy as it grows all demand this.

Granularity. The terminology you use to describe your work also becomes more diverse, reflecting in some ways the broader time horizons you are concerned with. Requests, changes, incidents, work orders, releases, stories, features, problems, major incidents, epics, refreshes, products, programs, strategies…​ there is a continuum of how you think about your organization’s work efforts. Mostly, the range of work seems tied to how much planning time you have, but there are exceptions: disasters take a lot of work, but you don’t get much advance warning! So size of work is independent of planning horizon.

The bubbles represent a “space” where one is likely to find that kind of work. As indicated by the central diagonal, it reflects an assumption that larger amounts of work are more likely to be planned further in advance. However, this is not always true. A large, unwelcome amount of required work that shows up with no planning is probably a disaster. Desired work (in the form of aggregate transactional demand) may also spike unexpectedly. Transactional demand considered across a long timeframe is capacity management. Table 4.1, “Work items of varying sizes” lists various examples.

Table 4.1. Work items of varying sizes

	Type of work	Description
	Core transactional demand
	This is the demand on the fully automated IT system for a given moment of truth: a banking account lookup, a streaming movie, a Human Resources record update

	Routine service requests and incidents
	Service requests are predefined, process-driven work items, rarely requiring creative thought or analysis. Incidents span a spectrum, but some are simpler and more routine than others, especially those stemming from user misunderstanding or error.

	Changes
	Changes represent modifications of established IT functionality or state. They represent some definite risk to one or more IT services, which is why they are planned on a longer lead time. However, they ideally remain relatively granular, which helps reduce their risk.

	Routine releases, stories, reports
	Releases and (in the Agile world) stories represent larger increments of functionality

	Projects
	A Project is a large, planned amount of work with a defined end date. It might create a Service, which also represents a commitment to a large, ongoing amount of work, perhaps comparable in scope to the Project.

	Major incidents
	Major incidents by definition are not planned. But they represent a significant amount of work to overcome.

Some forms of work may lead to other forms of work. For example, Projects may manifest as Stories, Releases, and Changes. This complicates the diagram a bit; we don’t want to “double-count” work effort. But not all Releases derive from Projects, and not all Project work (especially in complex environments) can be cleanly reduced to a set of smaller tasks.

The final point of this diagram: you only have so much capacity to execute the work it implies. If you have a disaster, or a series of major incidents, this unplanned work may impact your ability to deliver user stories, changes, or even meet transactional demand. Trade-offs must be considered.

Adding a third dimension with Cynefin

Figure 4.3. Cynefin thinking framework

[image: cynefin]

This third dimension of variability is challenging to understand and touches on our earlier discussion of systems thinking. A helpful framework to understand it is the Cynefin framework, by Dave Snowden and Cynthia Kurtz [29] (see Figure 4.3, “Cynefin thinking framework” [12]). Cynefin proposes that there are five major domains useful in understanding situations:

	
Simple/Obvious

	
Complicated

	
Complex

	
Chaotic

	
Disorder

The simple or obvious domain is straightforward, repeatable, and cause and effect are known. The concept of "best practice” applies. The mode of action is to sense, categorize, and respond.

Figure 4.4. Variability as Cynefin domains

[image: variability vector]

The complicated domain requires analysis and expertise; there may be several right or at least serviceable answers. Rational thought is possible and cause and effect relationships may be more challenging to understand, but still are applicable. Mode of action is to sense, analyze, and respond.

The complex domain is that of systems thinking. Cause and effect are apparent only in hindsight. Interdependencies complicate action. Reinforcing loops can quickly accelerate, making linear assumptions hazardous, or conversely, counterbalancing loops kick in and prevent desired changes from happening. Mode of action is to probe, sense, and respond ("probe” being to make a small change.) Much of modern product development and DevOps thinking is optimized for this domain, because simple and rational approaches have so frequently failed.

In the chaotic domain, cause and effect are not apparent even in hindsight. The situation is completely unpredictable, and action is essential - better to act in any direction than be paralyzed. The mode of action is to act, sense, and respond.

Finally, disorder is considered to be the domain you’re in when you have not figured out which of the other four applies.

Figure 4.5. Part II: increasing certainty (credit to Cantor)

[image: risk curve]

The two dimensional model above does not describe how uncertain work is, however. The predictability of the work is also independent. You might have two projects, both taking the same effort. One of them you were able to predict easily, while the other one was not predictable - more precisely, your expected time, effort and cost was a long way off from what you wound up spending. (Usually in an unfavorable direction.)

Part II (Chapters 4-6, which we just finished) can be viewed as a logical progression from the uncertainty of developing a novel product, to the day to day work of building its features, to its predictable operation. The “predictability curve” illustrated in Figure 4.5, “Part II: increasing certainty (credit to Cantor)” [13] increases as the digital product stabilizes and moves to a fully operational state.

This question of predictability, of the degree to which actuals track estimates and can be known in advance, will be an ongoing theme throughout Part III. As we scale up, our organization takes on more and more work of all kinds, from highly uncertain to very predictable. Understanding the differences in this “portfolio” of work is essential to managing it correctly. There has always been an element of risk; as a startup, your success was not guaranteed! You now find that you are managing different classes of risk simultaneously, and “one size fits all” approaches do not work.

You might have a program to upgrade the memory on 80,000 identical Point of Sale terminals across 2,000 retail stores. It’s going to take a lot of work; you’ll be “rolling trucks” in all 50 states! But you are sure that you can estimate this work with a high degree of accuracy; it has high predictability. In terms of the Cynefin framework (see sidebar), it’s an obvious (or maybe complicated) problem. On the other hand, creating a completely new Point of Sale system for your stores is an unpredictable effort. Your original estimate for this large program might be off by orders of magnitude. Its predictability is low. It’s a complex problem.

Or perhaps you are writing reports using a well understood database and reporting tool. This work will be likely more predictable work — even if complicated in the Cynefin sense — as compared to developing the first few stories on a completely new architecture. This is true even if the estimated size of the work is the same for both the reports and the new stories. As a dimension, variability is independent of the size of the work (although the two may be correlated).

One of the most challenging open questions as Agile and DevOps continue to increase their influence is organizations with larger portfolios of older, less risky systems, for example systems developed by external vendors but still run in-house. Not everything is available or suitable to be run under a Software as a Service model. The staffing ratios and work models required for such portfolios may not necessarily support the ideal of high-performance, cross-functional teams. Nor will these systems benefit from high performance lean product development techniques; such approaches might be overkill. The industry is just beginning to think about these issues.

The Betz organizational scaling cube

Figure 4.6. Betz organization scaling cube

[image: 3d cube]

When we combine the three dimensions:

	
Size of work;

	
Time horizon; and

	
Predictability

we get the Betz organizational scaling cube (see Figure 4.6, “Betz organization scaling cube” [14]). It shows the three dimensions we’ll consider throughout Part III. The accompanying cube shows these dimensions visually. The three dimensions represent a space to understand work, resource, and planning as we scale the organization.

The z-axis of variability can be seen as a progression along the first four Cynefin domains (see sidebar). At the origin at lower left, we have predictable, small-grained work occurring in short “planning” horizons (e.g. automated transactions running on computers.) As we scale out to larger domains of work, longer time frames, and greater variability in planning, we encounter the problems of growth, coordination, strategy, and the fundamental uncertainties of operating in a chaotic, competitive world.

Demand, supply, and execution

	 	execution (n.) 14c., “a carrying out, a putting into effect; enforcement; performance (of a law, statute, etc.), the carrying out (of a plan, etc.),” from Anglo-French execucioun (late 13c.), Old French execucion “a carrying out” (of an order, etc.), from Latin executionem (nominative executio) “an accomplishing,” noun of action from past participle stem of exequi/exsequi “to follow out” (see execute).
	
	 	--
Online Etymology Dictionary

In order to understand the concept of execution, we need to think about supply versus demand. Think about the kinds of demand described above. Each form of demand implies some kind of supply to meet it. For example, the demand that an automated transaction be executed requires the supply of appropriate computing capacity at the necessary place and time. The demand that a new story be supported as part of a software product feature requires the supply of a software development team’s time and attention. And a major product or project requires the supply perhaps of many teams as well as other resources (hardware and software assets, for example).

In the Betz organization scaling cube, work and execution converges to the origin at front lower left. An alternate view that helps us describe the chapter structure is with the convergence point at the top of a pyramid (see Figure 4.7, “Demand-supply-execute model”). This rotated approach is compatible with the dual-axis value chain.

Bottom to top, this diagram tells a story of demand and supply as they progress through increasingly refined understandings to the specific execution of work and delivery of value. We have markets and regulations, which define and constrain the potential demand for the digital product. Markets are met with capital funding, human resources, strategies and product offerings, which lead to programs of work, projects, and platform decisions. These in turn lead to identifying user stories, writing software, configuring platforms, and executing changes, service requests and work tasks.

That finer and finer grained demand stream converges with a finer and finer grained supply stream. Large blocks of capital are translated into strategic technology choices and vendor relationships, organizational structures and investments in skilled people. More detailed budgets and planning culminate ultimately in the availability of people, hardware, and software for given assignments, e.g, an empty slot on a Kanban board. The journey can start anywhere, with a large block of traditionally managed programmatic capital or a small round of seed funding translated directly into a two-pizza team with maximum autonomy, which then grows and leads to larger investments.

Figure 4.7. Demand-supply-execute model

[image: dse model]

Ultimately the deployed IT service system is available for fulfilling transactional service demand which can be measured in terms of quality, availability and performance. Execution, in this model, is defined as the irrevocable combination of demand with supply. The gap between the legs of the V is filled with the “Fog of Forecasting.” With the lower level, larger grained abstractions it is more difficult to understand demand and supply, especially when product development (e.g. novel software engineering) is involved. (Understanding the opportunities of large grained demand and matching those with significant supply is strategy.) As demand and supply converge to the point of execution, a finer and finer grained awareness is created of the impending work and whether it is likely to be successful - that is, if demand will effectively and efficiently be paired with supply.

Notice how the fog lifts as you get closer to actual execution. The closer we get to the point of execution, the better understanding we have of team and individual level assignments across all queues and Kanban slots or their equivalent (e.g. assigned and accepted work orders). Ultimately the demand represents the usage of the automated digital system’s capacity. Notice that in terms of the Betz cube z-axis, we still can have high variability at the point of execution, if we are considering a system executing many forms of work. In other words, surprises can happen at any time.

Part III chapter structure

The chapter structure of Part III can be visualized as in Figure 4.8, “Part III Chapter structure”.

Figure 4.8. Part III Chapter structure

[image: pyramid]

In thinking about how organizations develop as they scale, it is helpful to consider various time frames:

Ongoing execution is the actual day to day work, however conceived. At this point in our journey, the work includes a significant challenge of coordination (which we define and analyze in Chapter 7). It can include defined process activities, project deliverables, the flow of new product functionality, or ongoing improvement and governance. Ongoing execution is the “moment of truth” where estimate becomes actual and supply meets demand, and in our environment is now a complex matter.

Investment decisions are required to charter programs, products, features, and components, even in those companies that may be moving away from a traditional project cycle. Investments are usually understood in terms of budget planning, which traditionally has driven the project funding cycle. They represent some statement of intent for a larger scope of work to be performed and/or sustained, based on the organizational platform, which should be able to support multiple investments.

Organizational changes may take years, and require considerable effort and thought if they are to succeed. One does not change organizational structures lightly or (hopefully) frequently. Employee tenure is in general even longer.

Culture takes longest and is most difficult to change; it easily outlasts both organizational forms and even individual employees coming and going. Both culture and organization have self-reinforcing feedback loops which add complexity to any deliberate attempts to transform them.

The delivery models

In Chapter 4 we introduced the "3 Ps":

	
Product management

	
Project management

	
Process management

It is important that you review them. Sometimes, the concept of “program” is also used. We will call these delivery models: they are organizing paradigms for getting work done. They may depend on each other, but they each have clear industry identity and bodies of knowledge associated with them:

	
Product management has the Product Development and Marketing association and authors like Steve Blank and Marty Cagan.

	
Program management has the Axelos Managing Successful Programmes guidance

	
Project management has the Project Management Body of Knowledge and the PRINCE2 guidance from Axelos.

	
Process management has the BPMN and BPEL standards and authors like Geary Rummler, Roger Burlton and Paul Harmon.

Product versus program management

Program management is a term seen in government efforts and military contracting to describe major efforts of uncertain duration and (sometimes) uncertain outcome. Product management is also uncertain of duration and outcome, and the industry does not clearly distinguish between the two. Some companies use concepts of both product and program management; others use one or the other. Stanley Portny describes:

Program: This term can describe two different situations. First, a program can be a set of goals that gives rise to specific projects, but, unlike a project, a program can never be completely accomplished. For example, a health-awareness program can never completely achieve its goal (the public will never be totally aware of all health issues as a result of a health-awareness program), but one or more projects may accomplish specific results related to the program’s goal (such as a workshop on minimizing the risk of heart disease). Second, a program sometimes refers to a group of specified projects that achieve a common goal [35].

Where both terms are used, program management may be more about delivery and execution (shading into project management’s domain), while product management is more about vision and outcome.

We order the delivery models by their variability. What does that mean? Products and programs have the highest variability. Their outcome may differ considerably from the initial vision that drove them. Projects, in theory, should be reasonably plannable — their schedule and cost are managed in terms of “plan versus actual” and differences, ideally, should be well controlled and understandable. Finally, process management strives to minimize variation and in its most rigorous form uses statistical control to do so. If we matrix the delivery models with the time frames we get Figure 4.9, “Time frames and delivery models”.

Figure 4.9. Time frames and delivery models

[image: delivery models and time frames]

The relationships between the timeframes and delivery models are complex:

Investments are made in products first, which may or may not need projects and/or processes. Rigorous planned projects or detailed, repeatable processes are not, in fact, optimal for product discovery - a mistake the digital industry has fallen into over and over again. Products are best thought of in terms of discovery and empirical hypothesis-testing. If the hypothesis fails, the investment should be cancelled. So, the “product” concept is both shorter and longer lived than the average project, which is typically understood on an annual cycle.

Project management also may take place without processes, as it may be based on one-time “deliverables” that are not repeatedly produced.

Finally, to support a process requires portfolio investment and organizational structure, but no project may ever be involved. Whether a product is implied by the existence of a process is an interesting question we will think about.

Clearly, we must think carefully about the relationships between these dimensions. That, in a nutshell, is the purpose of part III.

Instructor’s note

We are inverting the usual plan-execute order on purpose, starting with execution and expanding from there. This inversion challenges the too-common assumption of “plan, then execute” (alternatively seen as “plan-build-run".) We discuss longer-horizon planning after we discuss execution, because we must keep execution alive at all costs and cannot afford to shut it down while we go off and make plans for our new larger scale.

The demand-supply-execute model’s origins and thought process can be seen in a series of 4 blog posts starting with http://www.lean4it.com/2014/05/from-planbuildrun-to-demandsupplyexecute.html.

[11] Image credit https://www.flickr.com/photos/gsfc/10026603395, downloaded 2016-11-28, commercial use permitted

[12] similar to [29

[13] Similar to figure from [13

[14] Author’s note: I believe this to be original; it is being published here for the first time.

Chapter 5. Enterprise

Scenario

You are now running one of the larger and more complex IT-based operations on the planet, with an annual IT budget of hundreds of millions or billions of dollars. You have thousands of programmers, systems engineers, and IT managers, with a wide variety of responsibilities. IT is in your market-facing products and in your back-office operations. In fact, it’s sometimes hard to distinguish the boundaries as your company transforms into a digital business.

Agile techniques remain important to you, but things are getting complex and you’re testing the boundaries of what is possible. How can you operate at the scale you’ve achieved and still be Agile? As usual in life, you’re finding that there are always tradeoffs. Decisions you made long ago come back to haunt you, security threats are increasing, and at your scale there’s no escaping the auditors.

You have scaled up in terms of size, what is less often understood that scaling up in size also means scaling up in terms of timeframes: concern for the past and the future extend further and further in each direction. Organizational history is an increasing factor, and the need to manage this knowledge base can’t be ignored.

But you have great resources at your command, and you’re as well positioned as any of your competitors to meet the challenges ahead. And in the end, that’s all you need.

Chapter 10: Governance, Risk, Security, and Compliance

We need to cope with new layers of enterprise organization, and external forces (regulators, vendor partners, security adversaries, auditors) increasingly defining our options. This chapter sets the frame for the section. Chapters 11 and 12 in many ways are further elaborations of two major domains of governance concerns.

Chapter 11: Enterprise Information Management

We’ve been concerned with data, information, and knowledge since the earliest days of our journey. But at this scale, we have to formalize our approaches and understandings; without that, we will never capture the full value available with modern analytics and Big Data.

Looking inward, we need to measure this massive IT estate and understand it as an overall dynamic and complex system.

Chapter 12: Architecture and Portfolio

We need to understand the big picture of interacting lifecycles, reduce technical debt and redundancy, and obtain better economies of scale. We need to define our investment strategy based on a sound understanding of both business needs and technology limitations.

Important

Part IV, like the other parts, needs to be understood as a unified whole. In reality, enterprises struggle with the issues in all three chapters simultaneously.

Agile and architecture

	 	…​we encountered companies that, despite having a fully institutionalized EA in place, were in a state close to paralysis…​Although EA has reached the mainstream, a skeptical undertone with regard to its effectiveness has always existed. (p 12-13)
	
	 	--
Bente et al
Collaborative Enterprise Architecture

The relationship between architecture (both “enterprise” and other forms of architecture) and current Agile, DevOps, and digital product development approaches is too often troubled. However, the hope is that this book has given you a set of tools for resolving these concepts in a productive way.

This chapter will challenge you by presenting the polemical arguments directly and frankly, as two sides to a debate, concluding with thoughts on finding common ground. Note that these points of view are deliberately extreme, to make the point:

Author’s Note

As a practicing architect I can confirm that there is often friction between developers with an Agile perspective and architects, whether “enterprise” or other kinds. This carries through into industry discussions and conference presentations. I think the best approach to resolving this conflict is through careful understanding of the perspective of each “side.” Both have validity. I recommend framing the conversation in terms of architecture’s value impacts and quantifying wherever possible.

The hubris of architecture

The goal of enterprise architecture is to act as a guide, perhaps a pathfinder, who takes the enterprise on a transformational journey—from an incoherent and complex world with line-of-business separation, product-specific stovepipes, legacy systems estate, and costly operation to a more rationally organized and useful state with multiservice, revenue-generating platforms and an efficient operational regime. On the way, radical surgeries may be required to eliminate duplication, reduce costs, improve reliability, and increase agility in the business. EA acts as a strategic foundation for business enablement. [3] p9

Product development organizations often experience architecture and its goals as unwarranted interference, imposing a high cost of delay with little apparent return on investment. Architecture approvals can be required on:

	
application designs

	
database designs

	
selection of technology products

and other such topics. When development cannot proceed without those approvals — or if the approvals come at the cost of expensive re-work — the experience can often be challenging. Bente et al warn: “if enterprise architects claim to be the only decision-making body in technical matters, there is a huge risk that they create a bottleneck…​The practical consequence is that projects deliberately circumvent the enterprise architects…​” [3] p19

And, looking more broadly at the practice and history of IT architecture, the case against it is strong. Enterprise architecture has presented itself as a solution to complexity, long IT time scales, business frustration, and other various IT problems. These issues are at this writing being solved, but not by architecture — at least not visibly. Instead, visible and publicized progress has come through the increasing adoption of Agile and DevOps practices rethinking open-loop, slow feedback, batch-oriented delivery. Architecture has failed in many ways:

	
It failed to realize the emergent issue of too much enterprise work in process, instead championing the proliferation of enterprise processes and their associated queues.

	
Architects' motivation for “efficiency” and interest in capability mapping did not help the cause of cross-functional teams. Instead, functional silos were reinforced as supply-centric “capabilities” and the project-centric anti-pattern of “bringing the team to the work” were promoted as enterprise standard operating procedure - despite the growing evidence of Scrum and Agile success. The iterative, experimental narrative of Lean Startup did not originate from EA.

	
Despite a professed interest in systems theory, architecture has failed to adopt a workable systems perspective on digital delivery. It did not recognize the fundamental problems of stage-gated delivery, big bang releases, queue proliferation, and so forth. Architecture “gap” analysis resulted in project recommendations, again “bringing the team to the work.”

	
Architecture has often deserved the criticism of “top down planning,” which in complex systems domains too often doesn’t work. Architects frequently fall into the trap of the HIPPO (Highest Paid Person’s Opinion). A sense of Lean Startup experimentation, of placing bets on options and testing hypotheses, is not part of the mainstream enterprise architecture culture. Instead, the architecture is presented as an established fact, with “governance” to ensure conformity. Hypothetical “synergies” emerging from “common platforms” are often offered as justification for architecture, with little follow up in measuring actual value delivered.

Justifications for architecture often invoke “complexity” in the portfolio of systems. In response, architecture has often given in to the desire for a complete “radical surgery” systems re-engineering, the temptation of the “clean slate.” But as Jez Humble accurately notes,

A common response to getting stuck in a big ball of mud is to fund a large systems replacement project. Such projects typically take months or years before they deliver any value to users, and the switchover from the old to the new system is often performed in “big bang” fashion. These projects also run an unusually high risk of running late and over budget and being canceled. Systems rearchitecture should not be done as a large program of work funded from the capital budget. It should be a continuous activity that happens as part of the product development process. [25] ch10

Architecture methodology, with its focus on identifying capability gaps for feeding into the project portfolio process, has perhaps been too prone to supporting these large, troubled programs. As we know from our earlier chapters, large system changes are inherently risky and any intervention into a complex system is better undertaken as a series of smaller, incremental changes with frequent monitoring and assessment.

The hubris of Agile

	 	Instead of tapping into the existing knowledge of the organization the autonomous team is prone to reinvent the wheel, and the wheel that they reinvent will not always be superior to the one we are currently using [36], p. 104.
	
	 	--
Donald Reinertsen
Managing the Design Factory

The Agile community has its own blind spots and challenges. Speed is seen as a good in itself, too often without an economic model. Agile teams often clash with enterprise governance processes that have sound compliance and financial benefits. Phrases like “you aren’t gonna need it” are used to justify lapses of due diligence on critical capabilities, and standard platforms and vendors are seen as unreasonable limitations on team autonomy — to the point where it seems some teams' interest is primarily in padding their resumes with as many new technologies as possible, regardless of the long-term consequences for the organization.

The limitations of cost of delay

	 	When it comes to system implementation, the temptation to be fast, often under the nom de guerre of agile, can soften quality controls and threaten product usability, reliability, safety, and lifecycle cost [33].
	
	 	--
Ruth Malan

cost of delay is a real and often overlooked issue, in understanding the net value of architecture. But it is only a factor, and does not eliminate the value proposition of architecture. If the cost of delay is only a few hundred dollars a month, but the risk or technical debt represent millions, then delay may be appropriate. Don Reinertsen, who has done more than anyone to promote the idea of cost of delay, emphasizes that all decision making must take place within an economic framework ([37], chapter 2) and that means that the other architectural impact factors on organization value must also be considered.

Documentation

Documentation has been a core concern of the Agile movement, being mentioned in one of the four core principles of the Agile Manifesto:

"Working software over comprehensive documentation” [2].

When documentation primarily takes the form of secondary artifacts, it is appropriate to question the need for it. “The code is the documentation,” some will argue. While it is true that good coding practices result in easier-to-understand (and maintain) source code, the code cannot be the only documentation. As Ruth Malan notes,

…​for systems of sufficient scope and complexity to warrant teams (of teams) working on (incremental) implementation and evolution, the sheer mass of code can make it hard to discover the essential structure from bottom-up decisions made entirely through the medium of code. [33]

In terms of systems theory, a complex software system has emergent behavior, not obvious from just looking at its components. Because the system’s behavior can’t be reduced to its pieces, “self documenting code” can only go so far. The behavior of the assembled components as a system needs to be represented somehow, in a way that transcends the mere mechanics of the pieces. Abstraction is necessary to understand and communicate emergent behavior, and this leads inevitably to visual representation. Without some attention to documenting overall context and systemic intent and behavior, the effectiveness of the overall human/computer system degrades. For example, Alistair Cockburn reports that the Chrysler Comprehensive Compensation project, one of the first widely-reported Agile projects, was eventually halted, and

…​left no archived documentation …​ other than two sentence user stories, the tests, and the code. Eventually, enough people left that the oral tradition and group memory were lost [15], pp. 41-43

In short, failure to sustain a shared mental model of a complex system is a risk that may result in loss of that system’s value.

Sourcing and technology standards

Agile and DevOps are software-development centric, and have transformed that world. However, digital organizations don’t always build everything. There is a complex web of supplier relationships even for organizations with robust software development capabilities, and many organizations would still prefer to “buy rather than build.” Software may be eating the world, but that doesn’t mean everyone employs - or should employ - software developers. Agile has not had a primary focus on sourcing, and evaluating commercial software is not a common Agile topic.

Suppose you have an idea for a digital product, and you know that you will be (at least in part) assembling complex services/products produced by others? Suppose further that these provided services overlap (the providers compete)? You need to carefully analyze which services you are going to acquire from which provider. You will need a strategy, and who is it that analyzes these services and their capabilities, interfaces, non-functional characteristics, and makes a final recommendation as to how you are going to bring them all into one unified system?

It is easy to say things like, “the teams get to define their own architecture” but at some point the enterprise must reckon with the cost of an overly diverse supplier base. This is a very old topic in business, not restricted to IT. At the end of the day, supplier and sourcing fragmentation costs real money. Open source, Commercial-off-the-shelf, Cloud, in-house…​ the options are bewildering and require experience. In a sense, the supplier base itself is an inventory, subject to aging and spoilage. (We can consider this another way of understanding technical debt.) A consistent evaluation approach is important (preferably under an economic framework; see Reinertsen & Hubbard). And at some point, product development teams should not have to do too much of their own R&D on possible platforms for their work.

Architecture as emergent

	 	“At Netflix, we had no central control [of the architecture] …​ The goal of architecture was to create the right emergent behaviors…​” [7]
	
	 	--
Adrian Cockcroft
former CTO Netflix

The Agile Manifesto is well known for saying “The best architectures, requirements, and designs emerge from self-organizing teams” [2]. This is one of the more frequently discussed Agile statements. Former Netflix CTO Adrian Cockcroft has expressed similar views (quote above).

A key question is whether “architecture” is considered at the single product or multi-product level. At the single product level, collaborative teams routinely develop effective software architectures. However, when multiple products are involved, it is hard to see how all the architectural value scenarios are fulfilled without some investment being directed to the goals of cross-product architectural coordination. It helps when rules of the road are established; both Amazon and Netflix have benefited from having certain widely accepted platform standards, such as “every product communicates through APIs.” Netflix has had a long term commitment to Amazon Cloud services; it is probably not acceptable for teams there to decide on a whim to deploy their services on Google Compute Engine or Microsoft Azure, so at least in that sense Netflix has an architecture. The question gets harder when layered products and services with complex lifecycle interactions are involved.

Microservices can reduce the need for cross-team coordination, but as we previously discussed, coordination needs still do emerge.

Towards reconciliation

So how do we reconcile Agile with architecture practices, especially enterprise architecture and its concerns for longer lifecycles, aggregate technical debt, and governance? We need to understand why we look to architecture, what utilizing it means, and how it ultimately adds value, or doesn’t, in the organization.

Why: Creating the context

One principle throughout this book has been “respect the team,” because true product value originates there. If teams are constantly fragmented and their cohesion degraded by enterprise operating models and governance mandates, their ability to creatively solve business problems is hampered. Command and control replaces emergence, motivation declines, and valuable creativity is lost. Enterprise architecture must first and foremost protect the precious resource that is the high-performing, collaborative, creative team. As we’ve discussed, imposing multiple governance checkpoints itself adds risk. And while it’s inevitable that the team will be subject to organization-wide mandates, they should be given the benefit of the doubt when autonomy collides with standardization.

When enterprise architecture takes on true business architecture questions, including how digital capabilities are to be enabled and enhanced, Agile insights become an input or kind of requirement to business architecture. What capabilities require high-performing, cross-functional teams? What capabilities can be supported with project-based temporary teams? And what capabilities should be outsourced? The more valuable and difficult the work, the more it calls for the careful development of a common mental model among a close-knit team over time. Driving organizational capability investment into long-running team structures becomes a strategy that organizational architects should consider as they develop the overall organizational portfolio.

Architecture adds value through constraining choices. This may seem counterintuitive, but the choice is often between re-using a known existing platform, or engaging in risky research and development of alternatives. R&D costs money, and itself can impose delay on establishing a reliable digital pipeline. But ultimately, the fundamental objective remains customer and product discovery. All other objectives are secondary; without fulfilling customer needs, architectural consistency is meaningless. Optimizing for the fast creation of product information, tested and validated against operational reality, needs to be top of mind for the architect.

What: the architecture of architecture, of the digital pipeline itself

The digital pipeline ultimately is a finely tuned tool for this creation of information. It, itself, has an architecture: business, application, and technical. It operates within an economic framework. To understand the architecture of the digital pipeline is in a sense to understand the “architecture of architecture.”

As we’ve discussed above, architecture, like staff functions generally, is in part a coordination mechanism. It collects and curates knowledge and sustains the organization’s understanding of its complex systems. Architecture also identifies gaps and informs the investment process, in part through collecting feedback from the organization.

If architecture’s fundamental purpose is enabling the right emergent behavior, there are still questions about how it does so. Architecture adds value in assisting when:

	
systems are too big for 1 team

	
features are too complex to be implemented in 1 iteration

	
features require significant organizational change management

As a coordination mechanism, it can operate in various ways including planning, controlling, and collaborating. Each may be appropriate for a given challenge or situation. For example, different approaches are required depending on whether the product challenge is Flower or Cog. A flower is not engineered to fill a gap. A cog is. Market-facing experiments need leeway to pivot, where initiatives intended to fill a gap in a larger system may require more constraints and control. And how do architects know there is a gap? It should be an hypothesis-driven process, that needs to establish that there is a valuable, usable, feasible future state.

How: Execution

	 	Another possible objection against agile methods is that the processes in EA, and in the enterprise generally, are simply not operating with a time window of the typical sprint length of three weeks. This, of course, is true. But it is at closer inspection not a counter-argument against the application of agile principles to EA—just the opposite. The long process cycles add to EA’s lack of transparency and promote a silo mentality. Agile techniques can help here. [3]
	
	 	--
Bente et al
Collaborative Enterprise Architecture

As an executing capability, architecture operates in various ways:

	
Planning and analysis

	
Governance and approvals

	
Collaboration and guidance

Ideally, planning and analysis occurs “upstream” of the creation of a product team. In that guise, architecture functions as a sort of zoning or planning authority — “architecture” is not a process or organization directly experienced by the product team. In this ideal, there is no conflict with product teams because once the team is formed, the architect’s job is done. I However, this assumes that all the planning associated with launching a new product or capability was done correctly, and this itself is a kind of waterfall assumption. Some form of feedback and coordination is required in multi-product environments.

Figure 5.1. What is your cost of delay?

[image: alt text]

It is in the “governance and approval” kind of activity that conflict is most likely to emerge. Cadence and synchronization (e.g. coordination strategies) with the potential to block teams from pursuing their mission should be very carefully considered. If there is a process or a queue of architecture approvals, it at least should be operated on cost of delay of the work it’s blocking. And more generally, across the organization, the process should be tested against an economic model such as establishing a nominal or portfolio-level cost of delay. Like other processes, architecture itself can be assessed against such a baseline.[15]

Queued approvals are only one way of solving issues. A rich and under-utilized approach is using internal market-type mechanisms, where overall rules are set and teams make autonomous decisions based on those rules. Don Reinertsen, in the Principles of Product Development Flow, discusses how Boeing implemented distributed decision-making through setting tradeoff rules for cost and weight. Rather than constantly routing design approvals through a single control point, Boeing instead set the principle that project managers could “purchase” design changes up to $300 per unit, to save a pound of weight. As Reinertsen notes,

The intrinsic elegance of this approach is that the superiors didn’t actually give up control over the decision. Instead, they recognized that they could still control the decision without participating in it. They simply had to control the economic logic of the decision. [37], p 42.

One particular work product that architects often are concerned with is documentation. The desire for useful documentation, as mentioned above, reflects architecture’s goals of curating a common ground for collaboration. As Bente notes, “In an agile project, explicit care must be taken to ensure proper documentation—for example, by stating it as part of the condition of satisfaction of a user story or in the definition of done” [3] p 170

Architecture Kata

	 	…​standardization on a particular toolchain or technology stack is neither necessary nor sufficient for achieving enterprise architecture goals such as enabling teams to respond rapidly to changing requirements, creating high-performance systems at scale, or reducing the risk of intrusion or data theft. Just like we drive product and process innovation through the Improvement Kata, we can drive architectural alignment through it too.

Architectural goals—for example, desired performance, availability, and security—should be approached by iteratively specifying target conditions at the program level. Following the Principle of Mission, set out a clear vision of the goals of your enterprise architecture without specifying how the goals are to be achieved, and create a context in which teams can determine how to achieve them through experimentation and collaboration. [25], chap. 10.
	
	 	--
Jez Humble et al
Lean Enterprise

Toyota Kata was discussed in Chapter 7. In Lean Enterprise, Jez Humble et al argue that it can provide a useful framework for architecture objectives. Toyota Kata emphasizes end-state goals ("target conditions") and calls for hands-on investigation and response by participating workers, not consultants or distant executives. Architecture can benefit by understanding “gaps” in the sense of Toyota’s target conditions, and then supporting teams in their collaborative efforts to understand and achieve the desired state. The architectural impact model can assist in thinking through suitable target conditions for architecture:

	
top-line impact through re-use (lowering cost of delay)

	
bottom-line impact through portfolio rationalization

	
risk impact through minimizing attack surface and re-use of known good patterns and platforms

Figure 5.2. Australian strangler vine surrounding tree

[image: alt text]

Keeping the target operating condition specific is preferable. When architecture scopes problems too broadly, the temptation is to undertake large and risky transformation programs. As an alternative, Humble suggests the "strangler pattern,” proposed by Martin Fowler in 2004 [17]. This pattern uses as a metaphor Australian “strangler” vines that grow around trees until the original tree dies, at which point the strangler vine is now itself a sturdy, rooted structure (see Figure 5.2, “Australian strangler vine surrounding tree” [16]).

To use the strangler pattern is not to replace the system all at once, but rather to do so incrementally, replacing one feature at a time. This may seem more expensive, as it means that both the old and new systems are running (and cost savings through sunsetting the old system will be delayed.) But the risk of replacing complex systems is serious, and needs to be considered along with any hoped-for cost savings through replacement. Humble and Molesky suggest:

	
Start by delivering new functionality—at least at first

	
Do not attempt to port existing functionality unless it is to support a business process change

	
Deliver something fast

	
Design for testability and deployability

The strangler pattern is proven in practice. Paul Hammant provides a large number of strangler pattern case studies, including:

	
Airline booking application

	
Energy trading application

	
Rail booking application

and others [22].

Of course, there are other ways architecture might add value beyond system replacement, in which case the strangler pattern may not be relevant. In particular, architects may be called on to closely collaborate with product teams when certain kinds of issues emerge. This is not a governance or control interaction; it is instead architecture as a form of shared consulting “bench” or coordination mechanism. Not every product team needs a full time architect, the reasoning goes, so architects can be assigned to them on a temporary basis, e.g. for one or a few sprints, perhaps of the technical “spike” (disovery/validation/experimentation) variety.

In order to successfully meet this role, the architect needs to have hands-on technical ability. Many Agile authors are dismissive of “ivory-tower” architects who do not do “hands on” work, and in fact if an architect is going to sit with a technical team as a solutions advisor they clearly need the technical skills to do so. On the other hand, not all architects operate at the solutions level, nor are the problems they face necessarily programming problems. See sidebar, “The challenge of the 'hands-on' architect.”

The challenge of the “hands-on architect”

Architect is a broad category as we have seen. It includes individuals who are talented at single-product designs, as well as those tasked with managing the overall interactions between hundreds of systems.

It is well and good for architects to maintain some technical facility, but in the case of true, portfolio-level enterprise architects, how to do so may not be obvious. What if one’s portfolio includes multiple platforms and languages? It is simply not possible to be hands-on in all of them. Some of the most challenging systems may be a complex mix of commercial product and customization, e.g. ERP or core banking systems. Choosing to be “hands on” may not even be welcomed by a given team, who may see it as meddlesome. And other teams may feel the architect is “playing favorites” in their choice of platform to be “hands-on” with.

Clearly, if the organization is running primarily on (for example) Node.js, having strong JavaScript skills is important for the architect. But in more heterogenous environments the architect may find strong data management skills to be more useful, as often interfaces between systems become their primary concern.

Another form of being “hands on” is maintaining good systems administration skills, so that the architect can easily experiment with new technologies. This is different from being adept in a given programming language. One recent positive trend is lightweight virtualization. In years past, experimenting with new products was difficult on two fronts:

	
First, one had to obtain high performance computing resources capable of running demanding software. Sometimes these resources needed unusual operating systems (e.g. “in order to try our software, you have to run HP-UX version 11” — not a capability most architects had in their back pocket.)

	
Second, one had to obtain demonstration version of software from vendors, who would usually start a sales cycle if you asked for it.

Times have changed. Demonstration versions of software are increasingly available with little overhead or risk of triggering unwanted sales calls. Platform requirements are less diverse. And lightweight virtualization (e.g. the combination of Vagrant and Virtualbox) now makes it possible for architects to be hands-on; modern laptops can run multiple VMs in cluster architectures. Significant experimentation can be carried out in working with systems of various characteristics. Being able to evaluate technologies in such a virtual lab setting is arguably even more useful than being a “coding architect.” Product team developers do the programming; the architect should be more concerned with the suitability and feasibility of the integrated platform.

Evaluating architecture outcomes

Finally, how do we evaluate architecture outcomes? If an organization adopts an experimental, Toyota Kata approach, it may find that architecture experiments run on long time horizons. Maintaining an organizational focus on value may be challenging, as the experiments don’t yield results quickly. Curating a common ground of understanding may sound like a fine ideal, but how do we measure it?

First, the concept of Net Promoter Score is relevant for any service organization, internal or external. Its single question “Based on your experience, on a scale of 1-10 would you recommend this product or service to a friend?” efficiently encapsulates value in a single, easy to respond to query.

As digital pipelines become more automated, it may be possible to evaluate their "digital exhaust" to evaluate the impact of architecture services:

	
are architecture standards evident in the source and package managers?

	
are platform recommendations encountering performance or capacity challenges?

In a world of increasing connectivity and automation, there is no reason for architects in the organization to lack visibility into the consequences of their recommendations. Ultimately, if the cost of operating the coordination mechanism that is architecture exceeds the value it provides, then continuing to operate it is irrational.

[15] Image credit https://www.flickr.com/photos/julianlim/4598412264, downloaded 2016-10-25, commercial use permitted

[16] Image credit https://www.flickr.com/photos/cynren/16011788979, downloaded 2016-10-23, commercial use permitted

References

	
M. L. Abbott and M. T. Fisher, The Art of Scalability: Scalable Web Architecture, Processes, and Organizations for the Modern Enterprise (2nd Edition). Old Tappan, NJ: Pearson Education, Inc., 2015.

	
Agile Alliance, “Agile Manifesto and Principles,” no. 4/13/2011. 2001.

	
S. Bente, U. Bombosch, and S. Langade, Collaborative Enterprise Architecture: Enriching EA with Lean, Agile, and Enterprise 2.0 Practices. Waltham, MA: Morgan Kaufman - Elsevier, 2012.

	
C. T. Betz, Architecture and Patterns for IT: Service and Portfolio Management and Governance (Making Shoes for the Cobbler’s Children), 2nd Edition. Amsterdam: Elsevier/Morgan Kaufman, 2011.

	
C. T. Betz, “A DevOps Causal Loop Diagram parts 1 and 2,” Lean4IT: The architecture of IT value. 2013.

	
S. Blank, The Four Steps to the Epiphany: Successful Strategies for Products That Win, 2nd ed. Steve Blank, 2013.

	
J. Bloomberg, “Agile Enterprise Architecture Finally Crosses the Chasm,” Forbes. Jul-2014.

	
M. Blumberg, Startup CEO: A Field Guide to Scaling Up Your Business, + Website. Wiley, 2013.

	
Y. Brikman, Hello, Startup: A Programmer’s Guide to Building Products, Technologies, and Teams. Sebastopol, CA: O’Reilly Media, Inc., 2016.

	
F. P. Brooks, The mythical man-month : essays on software engineering. Reading, Mass.: Addison-Wesley Pub. Co., 1975, pp. xi, 195 p.

	
M. Burrows, Kanban from the Inside: Understand the Kanban Method, connect it to what you already know, introduce it with impact. Sequim, Washington: Blue Hole Press, 2015.

	
M. Cagan, Inspired: How to Create Products Customers Love. SVPG Press, 2008.

	
M. Cantor, “Agile Management,” Cutter IT Journal, 2016.

	
J. Choi, “The Science Behind Why Jeff Bezos’s Two-Pizza Team Rule Works.” Jan-2014.

	
A. Cockburn, Agile Software Development: The Cooperative Game, 2nd ed. Boston, MA: Pearson Education, Inc., 2007.

	
P. M. Duvall, S. Matyas, and A. Glover, Continuous integration : improving software quality and reducing risk. Upper Saddle River, NJ: Addison-Wesley, 2007, pp. xxxiii, 283 p.

	
M. Fowler, “Is Design Dead?,” martinfowler.com. 2004.

	
A. Fox, E. A. Brewer, and A. Fox, “Harvest, Yield and Scalable Tolerant Systems,” 7th Workshop Hot Topics in Operating Systems (HotOS 99). IEEE CS, 1999.

	
P. Furr and N. Ahlstrom, Nail It then Scale It: The Entrepreneur’s Guide to Creating and Managing Breakthrough Innovation. NISI Publishing., 2013.

	
J. Gall, The Systems Bible: The beginner’s guide to systems large and small. General Systemantics Pr/Liberty, 2012.

	
R. Gillett, “Productivity Hack Of The Week: The Two Pizza Approach To Productive Teamwork | Fast Company | Business + Innovation,” fastcompany.com. 2014.

	
P. Hammant, “Legacy Application Strangulation : Case Studies,” Paul Hammant’s Blog. 2013.

	
V. Harnish, Scaling Up: How a Few Companies Make It…​and Why the Rest Don’t. Gazelles, Inc., 2014.

	
M. Heller, “GE’s Jim Fowler on the CIO role in the digital industrial economy,” CIO Magazine Online. 2016.

	
J. Humble, J. Molesky, and B. O’Reilly, Lean enterprise, First edit. 2013, pp. xxi, 317 pages.

	
KARE 11 Staff, “Target cuts 275 positions, most in technology.” 2015.

	
M. Kennaley, Sdlc 3.0: Beyond a Tacit Understanding of Agile: Towards the Next Generation of Software Engineering. Fourth Medium Consulting, 2010.

	
G. Kim, J. Humble, P. Debois, and J. Willis, The DevOps Handbook. Portland, OR: IT Revolution Press, 2016.

	
C. F. Kurtz and D. J. Snowden, “The new dynamics of strategy: Sense-making in a complex and complicated world,” IBM Systems Journal, vol. 42, no. 3, pp. 462–483, 2003.

	
K. Lane, “The Secret to Amazons Success Internal APIs,” The API Evangelist. 2012.

	
T. A. Limoncelli, S. R. Chalup, and C. J. Hogan, The Practice of Cloud System Administration: Designing and Operating Large Distributed Systems, Volume 2, vol. 2. Addison-Wesley Professional, 2014.

	
R. J. Madachy, Software process dynamics. Hoboken, Piscataway, NJ: Wiley IEEE Press, 2008, pp. xxiii, 601 p.

	
R. Malan and D. Bredemeyer, “The Art of Change: Fractal and Emergent,” Cutter Consortium Enterprise Architecture Advisory Service Executive Report, vol. 13, no. 5, 2010.

	
D. Meadows, Thinking in Systems: A Primer. White River Junction, VT: Chelsea Green Publishing Company, 2008.

	
S. Portny, Project Management for Dummies. Hoboken, New Jersey: John Wiley \& Sons, 2013.

	
D. G. Reinertsen, Managing the design factory: a product developer’s toolkit. New York ; London: Free Press, 1997, pp. xi,269p.

	
D. G. Reinertsen, The principles of product development flow: second generation lean product development. Redondo Beach, Calif.: Celeritas, 2009, pp. ix, 294 p.

	
E. Ries, The lean startup : how today’s entrepreneurs use continuous innovation to create radically successful businesses, 1st ed. New York: Crown Business, 2011, pp. 320 p.

	
D. K. Rigby, J. Sutherland, and H. Takeuchi, “Embracing Agile,” Harvard Business Review, no. May, 2016.

	
A. Sharma, “Why Big Companies Keep Failing: The Stack Fallacy,” TechCrunch. 2015.

	
J. Sterman, Business dynamics : systems thinking and modeling for a complex world. Boston: Irwin/McGraw-Hill, 2000, pp. xxvi, 982 p.

	
G. M. Weinberg, An introduction to general systems thinking / Gerald M. Weinberg, Silver ann. New York: Dorset House, 2001, pp. xxi, 279 p.

Note

This excerpt has incomplete references.

OEBPS/images/2_00-feedback.png

OEBPS/images/4_12-strangler-vine.jpg

OEBPS/images/2_00-balancing.png

OEBPS/images/2_00-rabbits.png
AR DAEARS

SABX AR AR
SARE AR DA
SAEX AR SARX

OEBPS/images/2_04-productNoProject.png
Products

= [

OEBPS/images/2_04-product.png
Products

Projects

Resources

| l | | ! Deliverables I

OEBPS/images/2_00-rabbitfox.png
reproduction

OEBPS/images/2_00-DevOpsConsensus.png
Change
frequency

Change
capability

IT Service
Availability

Change Success

OEBPS/images/2_06-akf.png
Functional partitioning

\m———] ——

7~
~
e
~

Horizontal duplication

v

)
\4
P

¥
o

\

on\(\‘a

OEBPS/images/3_00-cynefin.png
Complex Complicated

Probe Sense
Sense Analyze
Respond Respond
Disorder
Chaotic Obvious
Act Sense
Sense Categorize

Respond Respond

OEBPS/images/3_00-chapStruc.png
Execute

Chapter 7: Coordination

Chapter 8: Planning and investment

Chapter 9: Organization and culture

Supply \ Demand E

OEBPS/images/3_00-variability-cynefin.png
Chaotic
Complex
Complicated

Obvious

OEBPS/images/2_04-process.png
Activities
(including
Processes)

i > | Work products

OEBPS/images/0_20-kniberg-iterative.png
Not like this....

OEBPS/images/2_06-CAP-triangle.png
Consistency

rCHP:Choose any t@

OEBPS/images/3_00-newCube.png
Size of work

Programs/
Disasters

Transactions

-~
r
I’
-~

Seconds Vears

Planning horizon

c\nﬂ"w

NG

A0 Ay
i s \0‘\\
2
v&b

OEBPS/images/2_00-biz-positive.png

OEBPS/images/2_00-bridge.jpg

OEBPS/images/3_00-layers.png
Product & program
management

Project management|

Process management|

Planning and investment
Organizational and culture

Execution

awvipawl)

Delivery models

OEBPS/images/emergence.png
Enterprise

Team of teams

Team

Founder

OEBPS/images/2_00-chgViciousCycle.png
Change
size

Change
backlog

OEBPS/images/2_00-donkey.jpg

OEBPS/images/2_04-pizzas.jpg

OEBPS/images/3_00-2d-demand.png
Size of work

V1

Disasters

Major
incidents

Core transactional
demand

Governance,
Risk & Compliance

Releases, spikes

Large scale
implementation/
hange programs

Large scale asset program:
g tech rz(resh, dm center

Projects, epics

Complex infrastructure provisioning
ontinual improvement initiatives

Technology product
lifecycle management

Capacity planning

Planning horizon

OEBPS/images/2_04-design.jpg

OEBPS/images/0_20-narratives.png
Stack

Lifecycle

OEBPS/images/2_00-naiveChgStablty.png

OEBPS/images/2_06-POS.jpg

OEBPS/images/4_12-stopwatch.jpg

OEBPS/images/0_25-scaling.png
>$50m
350-500 employees
17,000

>$710m
40-70 employees

0-4% Scaling crisis

>$Tm
812 employees
%

Scaling crisis

<S$Tm
-3 employees
96%

Scaling crisis

Scaling crisis

Founder Team Team Enterprise ——

Teams

OEBPS/images/3_00-riskCurve.png
Predictability

New Feature Operations
product development perai
Chapter Chapter Chapter
4 5 6

OEBPS/images/2_06-registration.jpg
Pre -Registered Pre-Registration Pre-Registered
). M-0

OEBPS/images/3_00-team-of-teams.jpg

OEBPS/images/2_04-project.png
Projects

I Activities | | Resources I Q Deliverables

OEBPS/images/3_00-DSE.png
Perormance
Avalabiity
Qualty.

Transoctions;

Shorter

Planning horizon

Ser

Longer

e Offerings

Fnton

Supply

~a——inysqounn

Demand

