

Differential Equations in Action

Mastering Real-World Systems

*“The most incomprehensible thing about the universe is that it
is comprehensible.”*

— Albert Einstein

KISHORE DUTTA

Department of Physics

Handique Girls' College, Guwahati, India

Resonant Horizons Press

Guwahati, India

Preface

“To those who do not know mathematics it is difficult to get across a real feeling as to the beauty, the deepest beauty, of nature ... If you want to learn about nature, to appreciate nature, it is necessary to understand the language that she speaks in.”

—Richard P. Feynman

Differential equations serve as the fundamental language for modeling dynamic systems across the sciences. This book focuses on first- and second-order ordinary differential equations, emphasizing their role as practical tools for understanding change. Rather than presenting abstract theory, we explore how these equations emerge naturally from physical, biological, ecological, and engineering problems, and how their solutions reveal the underlying behavior of systems.

The book begins with first-order equations, where we study growth and decay processes, separation of variables, and applications to population dynamics. These foundational concepts lead naturally to second-

order equations, which describe oscillatory systems from mechanical vibrations to electrical circuits. Throughout, we prioritize the connection between problem formulation and solution methods, showing how to choose appropriate techniques — whether exact solutions, series expansions, or stability analysis — based on the system’s mathematical structure.

Pedagogically, the text follows a consistent progression: first identifying the physical laws that generate differential equations, then developing solution methods with careful attention to their assumptions and limitations, and finally interpreting results to predict system behavior. Computational examples, implemented in Python, complement analytical work by providing visual confirmation of solutions and enabling parameter exploration.

This book is designed for undergraduate students in physics, mathematics, and engineering who seek a practical, application-driven approach to differential equations. It will particularly benefit learners who prefer intuitive understanding over abstract formalism, as well as instructors looking for fresh pedagogical perspectives. The content assumes only basic calculus and Newtonian mechanics, making it accessible to motivated students in interdisciplinary fields like computational biology or economics. Researchers and professionals who use ODEs for modeling will also find the problem-solving framework valuable for their work. The optional computational components cater to those who learn

through visualization and numerical experimentation, though programming experience is not required.

A handwritten signature in black ink, appearing to read "Kishore Dutta".

Kishore Dutta

Guwahati, India

July 2025

Contents

1	First-Order Ordinary Differential Equations	3
1.1	Introduction	3
1.2	First-order ODE	6
1.2.1	Separable differential equations	6
1.2.2	Homogeneous first-order ODE	21
1.2.3	Exact differential equations	30
1.2.4	Integrating factor	44
1.3	Some physical applications	61
1.3.1	Motion through a resistive medium	61
1.3.2	Orthogonal trajectories	66
1.3.3	Atmospheric pressure at any height	70
1.3.4	Autonomous equations and dynamic equilibrium .	72
1.3.5	Stable and unstable equilibrium points . . .	72
1.3.6	System of equations and phase planes	84
1.4	Summary	89
1.5	Exercises	92

2 Second-order Ordinary Differential Equations	97
2.1 Introduction	97
2.2 Second-order ODEs	100
2.2.1 Constant-coefficient homogeneous equations . . .	103
2.3 Applications of 2nd-order homogenous ODEs	108
2.3.1 Spatial Diffusion in Ecology	108
2.3.2 Linearized Predator–Prey Spatial Diffusion	110
2.3.3 Simple Harmonic Motion:	111
2.3.4 Double Spring–Mass Oscillator in Physics	112
2.3.5 Damped Harmonic Motion	113
2.3.6 Series LCR Circuit	116
2.3.7 Neural Pulse Propagation in a Passive Dendritic Cable	119
2.3.8 Beam Vibration in Structural Engineering	120
2.3.9 Economic Inventory Oscillations	122
2.3.10 Thermal Runaway in Exothermic Reactions . . .	124
2.3.11 Runaway Excitation in Neural Membranes	127
2.3.12 Speculative Price Bubbles in Economics	128
2.3.13 Orbital Perturbation in Celestial Mechanics . . .	129
2.3.14 Acoustic Instability in a Resonant Cavity	132
2.3.15 Unstable Capital Oscillations in Economic Dy- namics	134
2.4 Non-homogeneous 2nd-order ODE	136

2.5	Physical applications	140
2.5.1	Forced oscillation	140
2.5.2	Near resonance: Production of beats	145
2.5.3	Neural Signal Propagation with Time-Varying Con- ductance	147
2.5.4	Dispersal with Linearly Varying Growth Rate . .	149
2.5.5	Logistic Growth with Spatial Harvesting	152
2.5.6	Hydrostatic Equilibrium in a Planetary Atmo- sphere	155
2.5.7	Electromagnetic Wave Propagation in a Non-Uniform Medium	157
2.5.8	Modeling Social Influence with Spatial Bias . . .	159
2.6	Summary	161
2.7	Exercises	163
3	Second-Order Homogeneous ODEs with Variable Coef- ficients	167
3.1	Introduction	167
3.2	Classification of Singular Points	169
3.3	Solution Methods and Singular Point Dependence	171
3.3.1	Power Series Method	173
3.4	Bessel equation	186
3.4.1	General solution of Bessel equation	188

3.4.2	Recurrence formulae for Bessel functions	194
3.4.3	Bessel function of order one-half	197
3.4.4	Spherical Bessel functions	201
3.4.5	Orthogonality of Bessel functions	202
3.4.6	Generating function for the Bessel functions . . .	205
3.5	Legendre differential equation	211
3.5.1	Solution of Legendre differential equation	212
3.5.2	Rodrigues formula	217
3.5.3	Generating function of Legendre polynomial . . .	220
3.5.4	Recurrence formula for $P_n(x)$	226
3.5.5	Orthogonality of Legendre Polynomials	231
3.6	Associated LDE (ALDE)	238
3.6.1	Orthogonality of $P_n^m(x)$	240
3.6.2	The spherical harmonics	241
3.7	The Hermite differential equation	246
3.7.1	Hermite polynomials	248
3.7.2	Generating function for Hermite polynomials . .	249
3.7.3	Rodrigues formula for Hermite polynomials . . .	250
3.7.4	Recurrence formulae for Hermite polynomials . .	251
3.7.5	Orthogonality of Hermite polynomials	254
3.8	Physical Examples	258
3.8.1	Spatial Diffusion in Ecology	258
3.8.2	Niche-centred Distribution Model for a Species .	261

3.8.3	Ecological Dispersal in Heterogeneous Landscape	264
3.8.4	Quantum Harmonic Oscillator in Position Space	. 266
3.8.5	Logistic Growth with Delayed Resource Limitation	267
3.8.6	Population Growth under Spatially Varying Habi- tat Quality 268
3.9	Summary 270
3.10	Exercises 272

