

DevOps Katas
Hands-On DevOps

Dave Swersky

This book is for sale at http://leanpub.com/devopskatas

This version was published on 2018-06-03

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process.
Lean Publishing is the act of publishing an in-progress ebook using lightweight tools andmany
iterations to get reader feedback, pivot until you have the right book and build traction once you do.

© 2017 - 2018 Dave Swersky

http://leanpub.com/devopskatas
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Dave Swersky by spreading the word about this book on Twitter!

The suggested tweet for this book is:

Checking out DevOps Katas, the practice-based book on Docker, Git and Jenkins!

The suggested hashtag for this book is #devopskatas.

Find out what other people are saying about the book by clicking on this link to search for this hashtag
on Twitter:

#devopskatas

http://twitter.com
https://twitter.com/intent/tweet?text=Checking%20out%20DevOps%20Katas,%20the%20practice-based%20book%20on%20Docker,%20Git%20and%20Jenkins!
https://twitter.com/search?q=%23devopskatas
https://twitter.com/search?q=%23devopskatas

For Becky

Contents

Docker Katas . 1
Docker Kata 1: The Basic Commands . 1

Step 1: Running Your First Container . 1
Command Summary . 2
Step 2: Listing Containers . 3
Command Summary . 3
Command Summary . 4
Step 3: Listing Images . 4
Command Summary . 4
Step 4: Running a Named Container . 5
Command Summary . 5
Command Summary . 6
Command Summary . 7
Step 5: Run a Container in Interactive Mode . 7
Command Summary . 8
Command Summary . 9
Command Summary . 9
Command Summary . 10
Step 6: Remove all Containers and Images . 10
Command Summary . 11
Command Summary . 11
Command Summary . 12

Docker Kata 4: Running a Web Server in a Container . 12
Step 1: Run a Web Server . 12
Command Summary . 13
Command Summary . 14
Command Summary . 14
Command Summary . 15
Step 2: Run a SecondWebserver on a Different Port . 15
Command Summary . 16
Command Summary . 17

Docker Kata 6: Creating Docker Images . 17
Step 1: Creating an Image From a Modified Container . 17
Command Summary . 18
Command Summary . 18
Command Summary . 19

CONTENTS

Command Summary . 20
Command Summary . 21
Command Summary . 22
Command Summary . 22
Command Summary . 23
Step 2: Create an Image with a Dockerfile . 24
Command Summary . 25
Command Summary . 28
Command Summary . 28
Command Summary . 29
Command Summary . 29

Docker Katas

Docker Kata 1: The Basic Commands

Let’s get started with the first Docker kata. Each kata will be broken into steps. Below each command is a
sample of the output that you should see when you execute the command. Each step includes, after the
commands, a breakdown of the commands and a summary of what they do.

Docker Kata 1 will introduce you to the basics: working with containers and images.

Open the Ubuntu GNOME Terminal from the launcher:

GNOME Terminal

Step 1: Running Your First Container

RUN:

docker container run hello-world

Docker Katas 2

Your first container

Parameter Description

docker container The parent command. Parent commands act on Docker objects such as containers,
images, networks, etc.

run runs an image, creating an instance of a container.

hello-world hello-world is an image. The docker run hello-world command in Step 1 ran the
hello-world image, and an instance of a container was created.

Command Summary

This first command runs a container from an image.

ADocker image is a blueprint for a container.Containers are running instancesof an image. Thedifference
between an image and a container is the same as the difference between an executable (such as
Notepad.exe,) and the runningprogram.Justasmultiple instancesofNotepad (andmostotherprograms)
can run side-by-side, so canmultiple containers be run at the same time, from the same image.

Note the first line of the output:

Unable to find image 'hello-world:latest' locally

Docker Katas 3

Docker will first check the local image repository for the image indicated in the command. If the image
is not found, it will then check Docker Hub. Docker Hub is a public repository of images maintained by
Docker Inc. The hello-world image is a test image stored on Docker Hub http://hub.docker.com.

Image definitions include a “start” command. The start command runs a process inside the container
when an image is run (we’ll work with that in later katas.) The start command of the hello-world image
just echoes the text you see in the Output window.

Step 2: Listing Containers

RUN:

docker container ls

List Running Containers

Parameter Description

docker container The parent command.

ls Lists running containers.

Command Summary

The docker container ls command lists containers. The first execution, however, returns an empty
list. We ran the hello-world container in the first step, so why is the list empty?

The list is empty because docker container ls only lists running containers. Containers run as long
as their start process runs. If that process exits, the container exits. The start command for the hello-
world image echoes the output from the first step, then exits immediately. The docker container ls
command returns an empty list because no containers are running.

RUN:

docker container ls -a

Docker Katas 4

List All Containers

Parameter Description

docker container The parent command.

ls Lists running containers.

-a Lists all containers.

Command Summary

The second command includes the -aparameter,which listsall images, including those that have started
and exited.

Step 3: Listing Images

RUN:

docker image ls

List Images

Parameter Description

docker image The parent command.

ls Lists all images.

Command Summary

This command lists all images in the local image repository. That will include all images you’ve down-
loaded from Docker Hub, and any you’ve created yourself (we’ll be doing that!)

Docker Katas 5

Step 4: Running a Named Container

RUN:

docker container run --name my_container hello-world

Named Container

Parameter Description

docker container The parent command.

run Runs a container.

--name Assigns a name to a container.

my_container The name assigned to the container.

hello-world The name of the image to run.

Command Summary

When running a container, you do not have to specify a name. The Docker Engine will assign a random
one. However, naming containers makes them easier to keep track of when running many at one time.
The name assigned with the --name parameter will appear in the container list. That name can then be
used to refer to the container in other commands, such as inspect.

RUN:

docker container ls -a

List All Containers

Docker Katas 6

Parameter Description

docker container The parent command.

ls Lists containers.

-a Lists all containers, both running and exited.

Command Summary

Lists all containers, including running and exited containers.

RUN:

docker container inspect my_container

Inspect a Container

Parameter Description

docker container The parent command.

inspect Returns detailed information about an object.

my_container The name of the container to inspect.

Docker Katas 7

Command Summary

The inspect command works on several object types, including containers. When executed on a con-
tainer object, inspect returns JSON-formatted data that describes the container.

You can also use a container ID to refer to a container when executing a command. The ID is a long string
of characters. The first twelve of those characters is listed in the ID column:

devops@DevOpsKatas:~$ docker container ls -a
CONTAINER ID IMAGE COMMAND CREATED
c91a3a7c8134 hello-world "/hello" 39 seconds ago
42eddbc93b81 hello-world "/hello" 37 minutes ago

You can use the first three or more characters to refer to a container (and other objects with IDs):

devops@DevOpsKatas:~$ docker inspect 42e
[
{

"Id": "42eddbc93b81ca7c61c9abb385451d673e4e08293086966fa836cfd6e048a145",
"Created": "2017-03-09T02:02:48.196355507Z",
"Path": "/hello",
"Args": [],
...

Step 5: Run a Container in Interactive Mode

RUN:

docker container run -it ubuntu bash

Run Container Interactively

Docker Katas 8

Parameter Description

docker container The parent command.

run Runs a container.

-it represents two separate parameters:
-i runs the container interactively.
-t allocates a “psuedo-tty.” This is a terminal-like interface between two processes.
Single-character parameters can be combined, prepended by a single dash. Together,
the -it parameters allow interactive connection to a container.

ubuntu An image based on the Ubuntu operating system.

bash The parameter after the image name (ubuntu) is a command to run within the
container. In this case, the command is bash.

Command Summary

Running a container interactively allows a user to connect to the container in a “live” fashion, using a text
console interface. This is similar to using SSH (a secure terminal interface) to connect to a remote server.
A container that is run interactively behaves much like any other remote server. Administrators can view
files in the filesystem, run programs, and install components to the container. This mechanism is useful
for debugging, testing, and defining new images.

If you look closely at the prompt in the bash shell console, you’ll see this:

root@e8fedb60e8e6:/#

This is similar to the prompt you see in the DevOps Katas Learning VM terminal window:

devops@DevOpsKatas:~$

The first part before the @ sign is the logged-on user. You connect as the root user to the container, which
is the administrative ‘SuperUser’ of a Unix OS. The secondpart after the @ sign is the computer name. The
name of the container is its Container ID:

devops@DevOpsKatas:~$ docker container ls -a
CONTAINER ID IMAGE COMMAND CREATED \
STATUS
e8fedb60e8e6 ubuntu "bash" 2 days ago \
Exited (130) 21 minutes ago

Docker Katas 9

RUN:

ls

List Container Files

Command Description

ls Lists the files and directories in the container.

Command Summary

The ls command Lists the files in the container filesystem.

RUN:

ls /bin

List Bin Directory

Command Description

ls /bin Lists the files and directories in /bin directory of the container. The files displayed here are Linux
commands and programs.

Command Summary

The ls /bin command Lists the files in the bin folder.

Docker Katas 10

RUN:

exit

Command Description

exit Closes the psuedo-tty connection. This also terminates the bash process started when the
container was run, so the container exits as well.

Command Summary

The exit command exits the Bash shell running in the container.

Step 6: Remove all Containers and Images

RUN:

docker container rm $(docker container ls -a -q)

Remove All Containers

Parameter Description

docker container The parent command.

rm Removes an object type- in this case a docker container.

$(docker container ls -a -q) This is a Unix shell command substitution. The output of this
“subcommand” will be “fed” to the docker container rm
command.

ls lists containers.
-a lists all containers.
-q is “quiet mode,” which returns only container IDs.

The entire command runs docker container rm once for each output
of docker container ls -a -q. The effect is that all
containers on the system are removed.

Docker Katas 11

Command Summary

This is a cleanup step that will be executed between some katas and steps to clear all images and
containers. Thesewould not be a commonly run in a real production environment, given the potential to
destroy work.

RUN:

docker container ls -a

List All Containers

Parameter Description

docker container The parent command.

ls Lists containers.

-a Lists all containers.

Command Summary

The listing is empty because all containers, running and exited, have been removed.

RUN:

docker image rm $(docker image ls -aq)

Docker Katas 12

Remove All Images

Parameter Description

image The parent command.

ls Lists images.

$(docker image ls -aq) A command substitution that outputs the IDs of every image in the local image
repository. Note that the -aq paramters can be combined, similar to -it.

Command Summary

This command removes all images from the local computer.

Docker Kata 4: Running a Web Server in a Container

Containers are useful as components of complex information systems. Web servers are, of course, an
important component of any web-based application. This kata will demonstrate how containers can be
used to run a web server.

Step 1: Run a Web Server

RUN:

docker container stop $(docker container ls -q)
docker container rm $(docker container ls -aq)

Docker Katas 13

Stop and Remove Containers

Parameter Description

docker container stop $(docker container ls -q) Stop and remove all containers.
docker container rm $(docker container ls -aq)

Command Summary

These commands stop and remove all containers.

RUN:

docker container run -d -p 80:80 --name webserver nginx

RunWeb Server

Parameter Description

docker container The parent command.

run Runs a container.

-d Runs a container in disconnectedmode.

-p Maps a TCP port from the host to the container.

80:80 “Publishes” a port from the container to the host. The format is host port:container port.
Requests sent to the specified host port are forwarded to the container port.

--name Assigns a name to a container.

webserver The name assigned to the container.

nginx The name of the image to run.

Docker Katas 14

Command Summary

Previous katas have used the NGINX container as a demonstration of a container that runs in discon-
nected mode. This kata shows an NGINX container doing what it is designed to do: run an HTTP server.
The -p parameter “publishes” a container port to a host port.

RUN:

curl localhost

NGINXWelcome Page

Parameter/Command Description

curl localhost curl is a command-line program that sends HTTP requests.

localhost is an alias for the local network adapter. This command sends a request
to the local machine on port 80, which is the default HTTP port.

Command Summary

The curl program is a simple command-line HTTP client. This command uses curl to issue a request to
the NGINX server from the command line. The final step shows that Firefox can be used to view the page
in a web browser.

Docker Katas 15

RUN:

Open Firefox and go to http://localhost

Firefox

Command Summary

The last step demonstrates that the NGINX server can also be accessed by a web browser.

Step 2: Run a Second Webserver on a Different Port

RUN:

docker container run -d -p 81:80 --name webserver2 nginx

Docker Katas 16

HTTTP Server on A Different Host Port

Parameter Description

docker container The parent command.

run Runs a container.

-d Runs a container in disconnectedmode.

-p Maps a TCP port from the host to the container.

81:80 “Publishes” a port from the container to the host. The format is host port:container port.
Requests sent to the specified host port are forwarded to the container port.

--name Assigns a name to a container.

webserver2 The name assigned to the container.

nginx The name of the image to run.

Command Summary

This command is identical to command in the first step,withoneexception. This commanduseshost port
81 instead of 80. Both NGINX containers are now running, one mapped to host port 80, the other to host
port 81. You should be able to use curl, alternating between ports 80 and 81, to view either web server.
Port publishing, ormapping, can be used for a variety of use cases. Runningweb servers side-by-side can
support load balancing, service versioning, and testing.

RUN:

curl localhost:81

Second Server Welcome Page

Docker Katas 17

Parameter/Command Description

curl localhost:81 curl is a command-line program that sends HTTP requests to an endpoint.
localhost is an alias for the local network adapter. This command specifies port 81
(instead of the default port 80.)

Command Summary

This command demonstrates that the second NGINX container is indeed running and mapped to host
port 81. You can also use Firefox to view the page by visiting localhost:81.

Docker Kata 6: Creating Docker Images

The previous katas have used images provided on Docker Hub. Most of those images are created and
managed by software vendors.

This kata will demonstrate how you can define and build your own images, for your own use or to
distribute to others. There are two ways to create an image:

• Commit changes to a modified container
• Build an image from a Dockerfile

Step 1: Creating an Image From a Modified Container

First, stop and remove all containers.

RUN:

mkdir dockerimage
cd dockerimage
cp ../index.html .
ls

Create Image Directory

Docker Katas 18

Parameter/Command Description

mkdir dockerimage Creates, and then changes to, a new directory called dockerimage.
cd dockerimage

cp ../index.html . Copies the index.html file from the parent directory to the dockerimage directory.
ls Lists the files in the dockerimage directory. The index.html file should be listed.

Command Summary

These commands create a new directory called dockerimage and copy a sample index.html file into
that directory.

RUN:

docker container run --name web -d -p 80:80 nginx

Run NGINX Container

Parameter Description

docker container The parent command.

run Runs a container.

--name Assigns a name to a container.

web The name to assign to the container.

-d Runs a container in disconnectedmode.

-p Publishes a port from the container to the host.

80:80 Publishes port 80 on the container to port 80 on the host.

nginx The name of the image to run.

Command Summary

This command starts an NGNIX container, using the same command from Kata 4.

RUN:

Docker Katas 19

docker container cp index.html web:/usr/share/nginx/html/index.html

Copy File Into Container

Parameter Description

docker container The parent command.

cp The cp command copies a file to a container from the host, or
vice versa.

index.html The name of the file to copy into the container.

web:/usr/share/nginx/html/index.html This is the image and the path. The name of the container to
which the file should be copied is before the colon.

The path inside the container, to which the file should be
copied, follows the colon. The effect is that the index.html file
is copied into the container.

Command Summary

The cp command copies files between containers and their hosts. This step copied the index.html file
from the host to the container.

RUN:

curl localhost

Docker Katas 20

View Custom Page

The curl command issues a request to the local system via HTTP. You can also use Firefox to view
this page. Note that welcome page has been modified. The index.html file copied in the previous step
overwrote the default NGINX welcome page.

RUN:

docker container ls

List Containers

Parameter Description

docker container The parent command.

ls Lists running containers when combined with the docker container parent command.

Command Summary

This step listed all running containers. The NGINX container we ran in an earlier step is running.

RUN:

Docker Katas 21

docker container commit web kataimage_nginx

List Containers

Parameter Description

docker container The parent command.

commit The commit command stops a running container, then creates a new image from that
container. Changes to the filesystem of the container are persisted in the new image.

web The name of the container fromwhich to derive a new image.

kataimage_nginx The name assigned to the new image.

Command Summary

The commit command is used to commit the changes to a container, thus creating a new image.

Recall in Kata 3 when we learned about filesystem changes in a container. When we copied the in-
dex.html file from the host to the NGINX container, we modified the container, but not the image from
which that container was started. The commit command creates a new image, called kataimage_nginx,
that includes that change.

RUN:

docker image ls

List Images

Parameter Description

docker image The parent command.

ls Lists images when combined with the docker image parent command. Note that the
kataimage_nginx image is listed.

Docker Katas 22

Command Summary

This command lists all images. The kataimage_nginx image we created previously should be listed.

RUN:

docker container run -d -p 81:80 kataimage_nginx

Run the New Image

Parameter Description

docker container The parent command.

run Runs a new container.

-d Runs a container in disconnectedmode.

-p Publishes a container port to a host port.

81:80 Publishes container port 80 to host port 81.

kataimage_nginx The name of the image to run.

Command Summary

This command runs a second NGINX container, this time using the kataimage_nginx image we created
in the previous step.

RUN:

curl localhost:81

Docker Katas 23

View Custom Page in New Image

Open Firefox and go to http://localhost:81 to see this in a web browser.

Command Summary

The curl command issues a request to the local system via HTTP. You can also use Firefox (visit
http://localhost:81) to view this page. Note that welcome page is the customized DevOps Kataswelcome
page. The kataimage_nginx image includes the modified index.html file.

Docker Katas 24

Step 2: Create an Image with a Dockerfile

First, stop and remove all containers.

RUN:

gedit Dockerfile &

Enter (or copy/paste) the following text into the editor:

FROM nginx
ADD index.html /usr/share/nginx/html/index.html
RUN chmod 644 /usr/share/nginx/html/index.html

Dockerfile

Parameter/Command Description

gedit index.html & gedit is a text editor. This command opens the
index.html file in the editor. The & ampersand starts
the editor in a new process (this allows a user to
continue using the terminal window.)

FROM nginx The first line in the Dockerfile is always FROM. This
indicates the base image that will be used to create
the image defined by a Dockerfile. This Dockerfile
specifies the NGINX image as the base.

ADD index.html
/usr/share/nginx/html/index.html

The ADD directive adds a file to the image when it is
built. This can be a local file or a URL. ADD is followed
by the path to the source file, then the path to which
the file should be copied in the new image.

RUN chmod 644
/usr/share/nginx/html/index.html

The RUN directive runs a command within the
container. This command uses the chmod Linux
command to change the permissions of the
index.html file copied into the image. This
permissions change allows the NGINX server to read
the index.html file.

Docker Katas 25

Command Summary

This step demonstrates the secondmethod to create Docker images: a Dockerfile. The result is the same
as the previous step, however, the commitmethod is an imperative method for creating images. That is
good for experimentation and testing, however, a declarativemethod is better for building containers as
part of a software delivery process.

A Dockerfile uses a declarative syntax to describe the contents of a container:

The FROM indicates the base image fromwhich to create a new image. Any existing imagemay be used as
the basis for any new image. This step uses the NGINX image as its base image. The build process starts
a temporary container from the base image defined in the FROM directive, then executes the following
directives, creating the image.

The ADD command adds a file to the image. The source can be a file on the local file system, or a URL to a
file on the web. This step adds the custom index.html file (the same file as the one in the previous step)
to the image.

RUN entries execute commandswithin the image as it is built. This command updates the permissions on
the index.html file, which allows the NGINX HTTP server to read the file.

This Dockerfile builds a new image from the NGINX image. That image is available on Docker Hub. Here
is the Dockerfile for the version of the NGINX image:

FROM debian:jessie

MAINTAINER NGINX Docker Maintainers "docker-maint@nginx.com"

ENV NGINX_VERSION 1.11.10-1~jessie

RUN apt-key adv --keyserver hkp://pgp.mit.edu:80 --recv-keys > 573BFD6B3D8FBC641\
079A6ABABF5BD827BD9BF62 \

&& echo "deb http://nginx.org/packages/mainline/debian/ jessie nginx" >> > /etc\
/apt/sources.list \

&& apt-get update \
&& apt-get install --no-install-recommends --no-install-suggests -y \

ca-certificates \
nginx=${NGINX_VERSION} \
nginx-module-xslt \
nginx-module-geoip \
nginx-module-image-filter \
nginx-module-perl \
nginx-module-njs \
gettext-base \

&& rm -rf /var/lib/apt/lists/*

forward request and error logs to docker log collector

Docker Katas 26

RUN ln -sf /dev/stdout /var/log/nginx/access.log \
&& ln -sf /dev/stderr /var/log/nginx/error.log

EXPOSE 80 443

CMD ["nginx", "-g", "daemon off;"]

This Dockerfile includes someof the samedirectives that are in the Dockerfile for kataimage_nginx, and
some that are not.

The FROMdirective indicates thebase imageof the official NGINX image. Theofficial NGINX image is based
on the jessie version of the official Debian Linux container. Public, official images are typically “layered”
in this fashion. Base images start at the “bottom” or “first” layer with official OS distributions. Additional
layers add software to the base image, creating a specialized containermade for a specific purpose, such
as a web server.

The MAINTAINER directive is deprecated in the current version of Docker. It has been replaced by the
AUTHOR directive, which

The ENV directive creates environment variables in the target image.

The following RUN command combines mulitple installations and filesystem changes in a single com-
mand. The double-ampersand &&may be used in Linux to execute multiple commands in one line. This
technique is important when defining an image.

Docker uses a specialized layered filesystem to define images [TODO: REF]. When an image is created
using FROM, a new layer is added to the filesystem that defines the image. The new “top” layer represents
all the differences (installed programs, added files) between the base image and the new image. This
layering system keeps images small by, storing only the differences between layers. Keeping images as
small as possible makes image deployment faster, and reduces the need for storage.

[TODO: IMAGE]

Each RUN command creates a new file system layer. If each of the commands in the NGINX Dockerfile
were run in separate RUN directives, a new layer would be created for each execution. This would create
many new layers, resulting in a large image. Running all the commands in a single execution creates just
one new layer. This Dockerfile uses the double-ampersand && command concatenation to execute all
commands in a single RUN directive.

The EXPOSEdirective indicates toDocker that the containerwill listen on the port numbers specified. This
is not the same as publishing the ports. The -p parameter is still necessary when running a container.
It is possible to use the -P (capital ‘P’) parameter to publish all ports identified with EXPOSE. The -P
parameter will publish all exposed ports to the same port on the host. Given this NGINX Dockerfile, these
two commands have the same effect:

docker container run -d -p 80:80 -p 443:443 nginx
docker container run -d -P nginx

The last directive in the NGINX Dockerfile is CMD:

Docker Katas 27

CMD ["nginx", "-g", "daemon off;"]

There can be only one CMD directive in a Dockerfile (if there is more than one, the last one defined is the
only one that will run.)

The CMD directive is one of several methods to define the “start” command of the container. This method
defines the program to run and its parameters:

CMD ["nginx", "-g", "daemon off;"]

Parameter/Command Description

nginx The NGINX HTTP server program.

-g Indicates that the following paramters are global configuration directives. This
changes the configuration for this execution of the NGINX server.

daemon off Configures the NGINX server process to run in the foreground as the primary proces.
This is recommended for running NGINX in a container.

RUN:

docker image build -t katadockerfile_image .

Build Image

Parameter Description

docker image The parent command.

build Builds a new image from a Dockerfile when combined with the docker image
parent command.

-t Assigns a name, and if desired, a tag to the new image.

Docker Katas 28

Parameter Description

katadockerfile_image . The name of the new image. The period after the name indicates the path to the
Dockerfile. In Linux, a single period indicates the current directory.

Command Summary

The build subcommand creates a new Docker image from a Dockerfile.

docker image ls

List Images

Parameter Description

docker image The parent command.

ls Lists images when combined with the docker image parent command.

Command Summary

This command lists all images. The katadockerfile_image image should be listed.

RUN:

docker container run -d -p 80:80 katadockerfile_image

Run Built Image

Docker Katas 29

Parameter Description

docker container The parent command.

run Runs a container.

-d Runs a container in disconnectedmode.

-p Publishes a container port to a host port.

80:80 Publishes container port 80 to host port 80.

katadockerfile_image The name of the image to run.

Command Summary

This command runs the image that was created in the previous step using docker image build.

RUN:

curl localhost

View Custom Page

Command Summary

This command returns the response from the NGINX container using curl. Open Firefox and go to
http://localhost to see the page in a web browser. As expected, the result is the same as the previous
kata step. Thismethod, however uses a declarativemethod. The Dockerfile used to create this image can
be added to source control, and used as part of an automated build process.

	Table of Contents
	Docker Katas
	Docker Kata 1: The Basic Commands
	Step 1: Running Your First Container
	Command Summary
	Step 2: Listing Containers
	Command Summary
	Command Summary
	Step 3: Listing Images
	Command Summary
	Step 4: Running a Named Container
	Command Summary
	Command Summary
	Command Summary
	Step 5: Run a Container in Interactive Mode
	Command Summary
	Command Summary
	Command Summary
	Command Summary
	Step 6: Remove all Containers and Images
	Command Summary
	Command Summary
	Command Summary

	Docker Kata 4: Running a Web Server in a Container
	Step 1: Run a Web Server
	Command Summary
	Command Summary
	Command Summary
	Command Summary
	Step 2: Run a Second Webserver on a Different Port
	Command Summary
	Command Summary

	Docker Kata 6: Creating Docker Images
	Step 1: Creating an Image From a Modified Container
	Command Summary
	Command Summary
	Command Summary
	Command Summary
	Command Summary
	Command Summary
	Command Summary
	Command Summary
	Step 2: Create an Image with a Dockerfile
	Command Summary
	Command Summary
	Command Summary
	Command Summary
	Command Summary

