

[image: DevOps Katas]

 DevOps Katas

 Hands-On DevOps

 Dave Swersky

 This book is for sale at http://leanpub.com/devopskatas

 This version was published on 2018-06-03

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2017 - 2018 Dave Swersky

 For Becky

 Table of Contents

 	
 Docker Katas

 	
 Docker Kata 1: The Basic Commands

 	
 Step 1: Running Your First Container

 	
 Command Summary

 	
 Step 2: Listing Containers

 	
 Command Summary

 	
 Command Summary

 	
 Step 3: Listing Images

 	
 Command Summary

 	
 Step 4: Running a Named Container

 	
 Command Summary

 	
 Command Summary

 	
 Command Summary

 	
 Step 5: Run a Container in Interactive Mode

 	
 Command Summary

 	
 Command Summary

 	
 Command Summary

 	
 Command Summary

 	
 Step 6: Remove all Containers and Images

 	
 Command Summary

 	
 Command Summary

 	
 Command Summary

 	
 Docker Kata 4: Running a Web Server in a Container

 	
 Step 1: Run a Web Server

 	
 Command Summary

 	
 Command Summary

 	
 Command Summary

 	
 Command Summary

 	
 Step 2: Run a Second Webserver on a Different Port

 	
 Command Summary

 	
 Command Summary

 	
 Docker Kata 6: Creating Docker Images

 	
 Step 1: Creating an Image From a Modified Container

 	
 Command Summary

 	
 Command Summary

 	
 Command Summary

 	
 Command Summary

 	
 Command Summary

 	
 Command Summary

 	
 Command Summary

 	
 Command Summary

 	
 Step 2: Create an Image with a Dockerfile

 	
 Command Summary

 	
 Command Summary

 	
 Command Summary

 	
 Command Summary

 	
 Command Summary

 Guide

 	
 Begin Reading

Docker Katas

Docker Kata 1: The Basic Commands

Let’s get started with the first Docker kata. Each kata will be broken into steps. Below each command is a sample of the output that you should see when you execute the command. Each step includes, after the commands, a breakdown of the commands and a summary of what they do.

Docker Kata 1 will introduce you to the basics: working with containers and images.

Open the Ubuntu GNOME Terminal from the launcher:

 [image: GNOME Terminal]
 GNOME Terminal

Step 1: Running Your First Container

RUN:

 docker container run hello-world

 [image: Your first container]
 Your first container

 	Parameter
 	Description

 	docker container
 	The parent command. Parent commands act on Docker objects such as containers, images, networks, etc.

 	run
 	runs an image, creating an instance of a container.

 	hello-world
 	
hello-world is an image. The docker run hello-world command in Step 1 ran the hello-world image, and an instance of a container was created.

Command Summary

This first command runs a container from an image.

A Docker image is a blueprint for a container. Containers are running instances of an image. The difference between an image and a container is the same as the difference between an executable (such as Notepad.exe,) and the running program. Just as multiple instances of Notepad (and most other programs) can run side-by-side, so can multiple containers be run at the same time, from the same image.

Note the first line of the output:

 Unable to find image 'hello-world:latest' locally

Docker will first check the local image repository for the image indicated in the command. If the image is not found, it will then check Docker Hub. Docker Hub is a public repository of images maintained by Docker Inc. The hello-world image is a test image stored on Docker Hub http://hub.docker.com.

Image definitions include a “start” command. The start command runs a process inside the container when an image is run (we’ll work with that in later katas.) The start command of the hello-world image just echoes the text you see in the Output window.

Step 2: Listing Containers

RUN:

 docker container ls

 [image: List Running Containers]
 List Running Containers

 	Parameter
 	Description

 	docker container
 	The parent command.

 	ls
 	Lists running containers.

Command Summary

The docker container ls command lists containers. The first execution, however, returns an empty list. We ran the hello-world container in the first step, so why is the list empty?

The list is empty because docker container ls only lists running containers. Containers run as long as their start process runs. If that process exits, the container exits. The start command for the hello-world image echoes the output from the first step, then exits immediately. The docker container ls command returns an empty list because no containers are running.

RUN:

 docker container ls -a

 [image: List All Containers]
 List All Containers

 	Parameter
 	Description

 	docker container
 	The parent command.

 	ls
 	Lists running containers.

 	-a
 	Lists all containers.

Command Summary

The second command includes the -a parameter, which lists all images, including those that have started and exited.

Step 3: Listing Images

RUN:

 docker image ls

 [image: List Images]
 List Images

 	Parameter
 	Description

 	docker image
 	The parent command.

 	ls
 	Lists all images.

Command Summary

This command lists all images in the local image repository. That will include all images you’ve downloaded from Docker Hub, and any you’ve created yourself (we’ll be doing that!)

Step 4: Running a Named Container

RUN:

 docker container run --name my_container hello-world

 [image: Named Container]
 Named Container

 	Parameter
 	Description

 	docker container
 	The parent command.

 	run
 	Runs a container.

 	--name
 	Assigns a name to a container.

 	my_container
 	The name assigned to the container.

 	hello-world
 	The name of the image to run.

Command Summary

When running a container, you do not have to specify a name. The Docker Engine will assign a random one. However, naming containers makes them easier to keep track of when running many at one time. The name assigned with the --name parameter will appear in the container list. That name can then be used to refer to the container in other commands, such as inspect.

RUN:

 docker container ls -a

 [image: List All Containers]
 List All Containers

 	Parameter
 	Description

 	docker container
 	The parent command.

 	ls
 	Lists containers.

 	-a
 	Lists all containers, both running and exited.

Command Summary

Lists all containers, including running and exited containers.

RUN:

 docker container inspect my_container

 [image: Inspect a Container]
 Inspect a Container

 	Parameter
 	Description

 	docker container
 	The parent command.

 	inspect
 	Returns detailed information about an object.

 	my_container
 	The name of the container to inspect.

Command Summary

The inspect command works on several object types, including containers. When executed on a container object, inspect returns JSON-formatted data that describes the container.

You can also use a container ID to refer to a container when executing a command. The ID is a long string of characters. The first twelve of those characters is listed in the ID column:

devops@DevOpsKatas:~$ docker container ls -a
CONTAINER ID IMAGE COMMAND CREATED
c91a3a7c8134 hello-world "/hello" 39 seconds ago
42eddbc93b81 hello-world "/hello" 37 minutes ago

You can use the first three or more characters to refer to a container (and other objects with IDs):

devops@DevOpsKatas:~$ docker inspect 42e
[
 {
 "Id": "42eddbc93b81ca7c61c9abb385451d673e4e08293086966fa836cfd6e048a145",
 "Created": "2017-03-09T02:02:48.196355507Z",
 "Path": "/hello",
 "Args": [],
 ...

Step 5: Run a Container in Interactive Mode

RUN:

 docker container run -it ubuntu bash

 [image: Run Container Interactively]
 Run Container Interactively

 	Parameter
 	Description

 	docker container
 	The parent command.

 	run
 	Runs a container.

 	-it
 	represents two separate parameters:

 	
 	
-i runs the container interactively.

 	
 	
-t allocates a “psuedo-tty.” This is a terminal-like interface between two processes.

 	
 	Single-character parameters can be combined, prepended by a single dash. Together, the -it parameters allow interactive connection to a container.

 	ubuntu
 	An image based on the Ubuntu operating system.

 	bash
 	The parameter after the image name (ubuntu) is a command to run within the container. In this case, the command is bash.

Command Summary

Running a container interactively allows a user to connect to the container in a “live” fashion, using a text console interface. This is similar to using SSH (a secure terminal interface) to connect to a remote server. A container that is run interactively behaves much like any other remote server. Administrators can view files in the filesystem, run programs, and install components to the container. This mechanism is useful for debugging, testing, and defining new images.

If you look closely at the prompt in the bash shell console, you’ll see this:

root@e8fedb60e8e6:/#

This is similar to the prompt you see in the DevOps Katas Learning VM terminal window:

devops@DevOpsKatas:~$

The first part before the @ sign is the logged-on user. You connect as the root user to the container, which is the administrative ‘SuperUser’ of a Unix OS. The second part after the @ sign is the computer name. The name of the container is its Container ID:

devops@DevOpsKatas:~$ docker container ls -a
CONTAINER ID IMAGE COMMAND CREATED \
STATUS
e8fedb60e8e6 ubuntu "bash" 2 days ago \
Exited (130) 21 minutes ago

RUN:

 ls

 [image: List Container Files]
 List Container Files

 	Command
 	Description

 	ls
 	Lists the files and directories in the container.

Command Summary

The ls command Lists the files in the container filesystem.

RUN:

 ls /bin

 [image: List Bin Directory]
 List Bin Directory

 	Command
 	Description

 	ls /bin
 	Lists the files and directories in /bin directory of the container. The files displayed here are Linux commands and programs.

Command Summary

The ls /bin command Lists the files in the bin folder.

RUN:

 exit

 	Command
 	Description

 	exit
 	Closes the psuedo-tty connection. This also terminates the bash process started when the container was run, so the container exits as well.

Command Summary

The exit command exits the Bash shell running in the container.

Step 6: Remove all Containers and Images

RUN:

 docker container rm $(docker container ls -a -q)

 [image: Remove All Containers]
 Remove All Containers

 	Parameter
 	Description

 	docker container
 	The parent command.

 	rm
 	Removes an object type- in this case a docker container.

 	$(docker container ls -a -q)
 	This is a Unix shell command substitution. The output of this “subcommand” will be “fed” to the docker container rm

 	
 	command.

 	
 	

 	
 	
ls lists containers.

 	
 	
-a lists all containers.

 	
 	
-q is “quiet mode,” which returns only container IDs.

 	
 	

 	
 	The entire command runs docker container rm once for each output of docker container ls -a -q. The effect is that all

 	
 	containers on the system are removed.

Command Summary

This is a cleanup step that will be executed between some katas and steps to clear all images and containers. These would not be a commonly run in a real production environment, given the potential to destroy work.

RUN:

 docker container ls -a

 [image: List All Containers]
 List All Containers

 	Parameter
 	Description

 	docker container
 	The parent command.

 	ls
 	Lists containers.

 	-a
 	Lists all containers.

Command Summary

The listing is empty because all containers, running and exited, have been removed.

RUN:

 docker image rm $(docker image ls -aq)

 [image: Remove All Images]
 Remove All Images

 	Parameter
 	Description

 	image
 	The parent command.

 	ls
 	Lists images.

 	$(docker image ls -aq)
 	A command substitution that outputs the IDs of every image in the local image repository. Note that the -aq paramters can be combined, similar to -it.

Command Summary

This command removes all images from the local computer.

Docker Kata 4: Running a Web Server in a Container

Containers are useful as components of complex information systems. Web servers are, of course, an important component of any web-based application. This kata will demonstrate how containers can be used to run a web server.

Step 1: Run a Web Server

RUN:

 docker container stop $(docker container ls -q)

docker container rm $(docker container ls -aq)

 [image: Stop and Remove Containers]
 Stop and Remove Containers

 	Parameter
 	Description

 	docker container stop $(docker container ls -q)
 	Stop and remove all containers.

 	docker container rm $(docker container ls -aq)
 	

Command Summary

These commands stop and remove all containers.

RUN:

 docker container run -d -p 80:80 --name webserver nginx

 [image: Run Web Server]
 Run Web Server

 	Parameter
 	Description

 	docker container
 	The parent command.

 	run
 	Runs a container.

 	-d
 	Runs a container in disconnected mode.

 	-p
 	Maps a TCP port from the host to the container.

 	80:80
 	“Publishes” a port from the container to the host. The format is host port:container port. Requests sent to the specified host port are forwarded to the container port.

 	--name
 	Assigns a name to a container.

 	webserver
 	The name assigned to the container.

 	nginx
 	The name of the image to run.

Command Summary

Previous katas have used the NGINX container as a demonstration of a container that runs in disconnected mode. This kata shows an NGINX container doing what it is designed to do: run an HTTP server. The -p parameter “publishes” a container port to a host port.

RUN:

 curl localhost

 [image: NGINX Welcome Page]
 NGINX Welcome Page

 	Parameter/Command
 	Description

 	curl localhost
 	
curl is a command-line program that sends HTTP requests.

 	
 	
localhost is an alias for the local network adapter. This command sends a request to the local machine on port 80, which is the default HTTP port.

Command Summary

The curl program is a simple command-line HTTP client. This command uses curl to issue a request to the NGINX server from the command line. The final step shows that Firefox can be used to view the page in a web browser.

RUN:

 Open Firefox and go to http://localhost

 [image: Firefox]
 Firefox

Command Summary

The last step demonstrates that the NGINX server can also be accessed by a web browser.

Step 2: Run a Second Webserver on a Different Port

RUN:

 docker container run -d -p 81:80 --name webserver2 nginx

 [image: HTTTP Server on A Different Host Port]
 HTTTP Server on A Different Host Port

 	Parameter
 	Description

 	docker container
 	The parent command.

 	run
 	Runs a container.

 	-d
 	Runs a container in disconnected mode.

 	-p
 	Maps a TCP port from the host to the container.

 	81:80
 	“Publishes” a port from the container to the host. The format is host port:container port. Requests sent to the specified host port are forwarded to the container port.

 	--name
 	Assigns a name to a container.

 	webserver2
 	The name assigned to the container.

 	nginx
 	The name of the image to run.

Command Summary

This command is identical to command in the first step, with one exception. This command uses host port 81 instead of 80. Both NGINX containers are now running, one mapped to host port 80, the other to host port 81. You should be able to use curl, alternating between ports 80 and 81, to view either web server. Port publishing, or mapping, can be used for a variety of use cases. Running web servers side-by-side can support load balancing, service versioning, and testing.

RUN:

 curl localhost:81

 [image: Second Server Welcome Page]
 Second Server Welcome Page

 	Parameter/Command
 	Description

 	curl localhost:81
 	
curl is a command-line program that sends HTTP requests to an endpoint.

 	
 	
localhost is an alias for the local network adapter. This command specifies port 81 (instead of the default port 80.)

Command Summary

This command demonstrates that the second NGINX container is indeed running and mapped to host port 81. You can also use Firefox to view the page by visiting localhost:81.

Docker Kata 6: Creating Docker Images

The previous katas have used images provided on Docker Hub. Most of those images are created and managed by software vendors.

This kata will demonstrate how you can define and build your own images, for your own use or to distribute to others. There are two ways to create an image:

 	Commit changes to a modified container

 	Build an image from a Dockerfile

Step 1: Creating an Image From a Modified Container

First, stop and remove all containers.

RUN:

 mkdir dockerimage

cd dockerimage

cp ../index.html .

ls

 [image: Create Image Directory]
 Create Image Directory

 	Parameter/Command
 	Description

 	mkdir dockerimage
 	Creates, and then changes to, a new directory called dockerimage.

 	cd dockerimage
 	

 	cp ../index.html .
 	Copies the index.html file from the parent directory to the dockerimage directory.

 	ls
 	Lists the files in the dockerimage directory. The index.html file should be listed.

Command Summary

These commands create a new directory called dockerimage and copy a sample index.html file into that directory.

RUN:

 docker container run --name web -d -p 80:80 nginx

 [image: Run NGINX Container]
 Run NGINX Container

 	Parameter
 	Description

 	docker container
 	The parent command.

 	run
 	Runs a container.

 	--name
 	Assigns a name to a container.

 	web
 	The name to assign to the container.

 	-d
 	Runs a container in disconnected mode.

 	-p
 	Publishes a port from the container to the host.

 	80:80
 	Publishes port 80 on the container to port 80 on the host.

 	nginx
 	The name of the image to run.

Command Summary

This command starts an NGNIX container, using the same command from Kata 4.

RUN:

 docker container cp index.html web:/usr/share/nginx/html/index.html

 [image: Copy File Into Container]
 Copy File Into Container

 	Parameter
 	Description

 	docker container
 	The parent command.

 	cp
 	The cp command copies a file to a container from the host, or vice versa.

 	index.html
 	The name of the file to copy into the container.

 	web:/usr/share/nginx/html/index.html
 	This is the image and the path. The name of the container to which the file should be copied is before the colon.

 	
 	

 	
 	The path inside the container, to which the file should be copied, follows the colon. The effect is that the index.html file is copied into the container.

Command Summary

The cp command copies files between containers and their hosts. This step copied the index.html file from the host to the container.

RUN:

 curl localhost

 [image: View Custom Page]
 View Custom Page

The curl command issues a request to the local system via HTTP. You can also use Firefox to view this page. Note that welcome page has been modified. The index.html file copied in the previous step overwrote the default NGINX welcome page.

RUN:

 docker container ls

 [image: List Containers]
 List Containers

 	Parameter
 	Description

 	docker container
 	The parent command.

 	ls
 	Lists running containers when combined with the docker container parent command.

Command Summary

This step listed all running containers. The NGINX container we ran in an earlier step is running.

RUN:

 docker container commit web kataimage_nginx

 [image: List Containers]
 List Containers

 	Parameter
 	Description

 	docker container
 	The parent command.

 	commit
 	The commit command stops a running container, then creates a new image from that container. Changes to the filesystem of the container are persisted in the new image.

 	web
 	The name of the container from which to derive a new image.

 	kataimage_nginx
 	The name assigned to the new image.

Command Summary

The commit command is used to commit the changes to a container, thus creating a new image.

Recall in Kata 3 when we learned about filesystem changes in a container. When we copied the index.html file from the host to the NGINX container, we modified the container, but not the image from which that container was started. The commit command creates a new image, called kataimage_nginx, that includes that change.

RUN:

 docker image ls

 [image: List Images]
 List Images

 	Parameter
 	Description

 	docker image
 	The parent command.

 	ls
 	Lists images when combined with the docker image parent command. Note that the kataimage_nginx image is listed.

Command Summary

This command lists all images. The kataimage_nginx image we created previously should be listed.

RUN:

 docker container run -d -p 81:80 kataimage_nginx

 [image: Run the New Image]
 Run the New Image

 	Parameter
 	Description

 	docker container
 	The parent command.

 	run
 	Runs a new container.

 	-d
 	Runs a container in disconnected mode.

 	-p
 	Publishes a container port to a host port.

 	81:80
 	Publishes container port 80 to host port 81.

 	kataimage_nginx
 	The name of the image to run.

Command Summary

This command runs a second NGINX container, this time using the kataimage_nginx image we created in the previous step.

RUN:

 curl localhost:81

 [image: View Custom Page in New Image]
 View Custom Page in New Image

Open Firefox and go to http://localhost:81 to see this in a web browser.

Command Summary

The curl command issues a request to the local system via HTTP. You can also use Firefox (visit http://localhost:81) to view this page. Note that welcome page is the customized DevOps Katas welcome page. The kataimage_nginx image includes the modified index.html file.

Step 2: Create an Image with a Dockerfile

First, stop and remove all containers.

RUN:

 gedit Dockerfile &

Enter (or copy/paste) the following text into the editor:

 FROM nginx

ADD index.html /usr/share/nginx/html/index.html

RUN chmod 644 /usr/share/nginx/html/index.html

 [image: Dockerfile]
 Dockerfile

 	Parameter/Command
 	Description

 	gedit index.html &
 	
gedit is a text editor. This command opens the index.html file in the editor. The & ampersand starts the editor in a new process (this allows a user to continue using the terminal window.)

 	FROM nginx
 	The first line in the Dockerfile is always FROM. This indicates the base image that will be used to create the image defined by a Dockerfile. This Dockerfile specifies the NGINX image as the base.

 	ADD index.html /usr/share/nginx/html/index.html
 	The ADD directive adds a file to the image when it is built. This can be a local file or a URL. ADD is followed by the path to the source file, then the path to which the file should be copied in the new image.

 	RUN chmod 644 /usr/share/nginx/html/index.html
 	The RUN directive runs a command within the container. This command uses the chmod Linux command to change the permissions of the index.html file copied into the image. This permissions change allows the NGINX server to read the index.html file.

Command Summary

This step demonstrates the second method to create Docker images: a Dockerfile. The result is the same as the previous step, however, the commit method is an imperative method for creating images. That is good for experimentation and testing, however, a declarative method is better for building containers as part of a software delivery process.

A Dockerfile uses a declarative syntax to describe the contents of a container:

The FROM indicates the base image from which to create a new image. Any existing image may be used as the basis for any new image. This step uses the NGINX image as its base image. The build process starts a temporary container from the base image defined in the FROM directive, then executes the following directives, creating the image.

The ADD command adds a file to the image. The source can be a file on the local file system, or a URL to a file on the web. This step adds the custom index.html file (the same file as the one in the previous step) to the image.

RUN entries execute commands within the image as it is built. This command updates the permissions on the index.html file, which allows the NGINX HTTP server to read the file.

This Dockerfile builds a new image from the NGINX image. That image is available on Docker Hub. Here is the Dockerfile for the version of the NGINX image:

FROM debian:jessie

MAINTAINER NGINX Docker Maintainers "docker-maint@nginx.com"

ENV NGINX_VERSION 1.11.10-1~jessie

RUN apt-key adv --keyserver hkp://pgp.mit.edu:80 --recv-keys > 573BFD6B3D8FBC641\
079A6ABABF5BD827BD9BF62 \
	&& echo "deb http://nginx.org/packages/mainline/debian/ jessie nginx" >> > /etc\
/apt/sources.list \
	&& apt-get update \
	&& apt-get install --no-install-recommends --no-install-suggests -y \
						ca-certificates \
						nginx=${NGINX_VERSION} \
						nginx-module-xslt \
						nginx-module-geoip \
						nginx-module-image-filter \
						nginx-module-perl \
						nginx-module-njs \
						gettext-base \
	&& rm -rf /var/lib/apt/lists/*

forward request and error logs to docker log collector
RUN ln -sf /dev/stdout /var/log/nginx/access.log \
	&& ln -sf /dev/stderr /var/log/nginx/error.log

EXPOSE 80 443

CMD ["nginx", "-g", "daemon off;"]

This Dockerfile includes some of the same directives that are in the Dockerfile for kataimage_nginx, and some that are not.

The FROM directive indicates the base image of the official NGINX image. The official NGINX image is based on the jessie version of the official Debian Linux container. Public, official images are typically “layered” in this fashion. Base images start at the “bottom” or “first” layer with official OS distributions. Additional layers add software to the base image, creating a specialized container made for a specific purpose, such as a web server.

The MAINTAINER directive is deprecated in the current version of Docker. It has been replaced by the AUTHOR directive, which

The ENV directive creates environment variables in the target image.

The following RUN command combines mulitple installations and filesystem changes in a single command. The double-ampersand && may be used in Linux to execute multiple commands in one line. This technique is important when defining an image.

Docker uses a specialized layered filesystem to define images [TODO: REF]. When an image is created using FROM, a new layer is added to the filesystem that defines the image. The new “top” layer represents all the differences (installed programs, added files) between the base image and the new image. This layering system keeps images small by, storing only the differences between layers. Keeping images as small as possible makes image deployment faster, and reduces the need for storage.

[TODO: IMAGE]

Each RUN command creates a new file system layer. If each of the commands in the NGINX Dockerfile were run in separate RUN directives, a new layer would be created for each execution. This would create many new layers, resulting in a large image. Running all the commands in a single execution creates just one new layer. This Dockerfile uses the double-ampersand && command concatenation to execute all commands in a single RUN directive.

The EXPOSE directive indicates to Docker that the container will listen on the port numbers specified. This is not the same as publishing the ports. The -p parameter is still necessary when running a container. It is possible to use the -P (capital ‘P’) parameter to publish all ports identified with EXPOSE. The -P parameter will publish all exposed ports to the same port on the host. Given this NGINX Dockerfile, these two commands have the same effect:

 docker container run -d -p 80:80 -p 443:443 nginx

 docker container run -d -P nginx

The last directive in the NGINX Dockerfile is CMD:

 CMD ["nginx", "-g", "daemon off;"]

There can be only one CMD directive in a Dockerfile (if there is more than one, the last one defined is the only one that will run.)

The CMD directive is one of several methods to define the “start” command of the container. This method defines the program to run and its parameters:

 CMD ["nginx", "-g", "daemon off;"]

 	Parameter/Command
 	Description

 	nginx
 	The NGINX HTTP server program.

 	-g
 	Indicates that the following paramters are global configuration directives. This changes the configuration for this execution of the NGINX server.

 	daemon off
 	Configures the NGINX server process to run in the foreground as the primary proces. This is recommended for running NGINX in a container.

RUN:

 docker image build -t katadockerfile_image .

 [image: Build Image]
 Build Image

 	Parameter
 	Description

 	docker image
 	The parent command.

 	build
 	Builds a new image from a Dockerfile when combined with the docker image parent command.

 	-t
 	Assigns a name, and if desired, a tag to the new image.

 	katadockerfile_image .
 	The name of the new image. The period after the name indicates the path to the Dockerfile. In Linux, a single period indicates the current directory.

Command Summary

The build subcommand creates a new Docker image from a Dockerfile.

 docker image ls

 [image: List Images]
 List Images

 	Parameter
 	Description

 	docker image
 	The parent command.

 	ls
 	Lists images when combined with the docker image parent command.

Command Summary

This command lists all images. The katadockerfile_image image should be listed.

RUN:

 docker container run -d -p 80:80 katadockerfile_image

 [image: Run Built Image]
 Run Built Image

 	Parameter
 	Description

 	docker container
 	The parent command.

 	run
 	Runs a container.

 	-d
 	Runs a container in disconnected mode.

 	-p
 	Publishes a container port to a host port.

 	80:80
 	Publishes container port 80 to host port 80.

 	katadockerfile_image
 	The name of the image to run.

Command Summary

This command runs the image that was created in the previous step using docker image build.

RUN:

 curl localhost

 [image: View Custom Page]
 View Custom Page

Command Summary

This command returns the response from the NGINX container using curl. Open Firefox and go to http://localhost to see the page in a web browser. As expected, the result is the same as the previous kata step. This method, however uses a declarative method. The Dockerfile used to create this image can be added to source control, and used as part of an automated build process.

OEBPS/images/K1_S4_InspectContainer.png
devops@DevOpsKatas:~$ docker container inspect my container
[

{
"Id": "d8e39fe6830dab4d5f4ac35bc78e8869b246705a58dbba2429694f1fd278c30",
2017-03-19T19:17:39.276519532Z",

: false,

0,
"ExitCode

2017-03-19T19:17:39.587859806Z",
"FinishedAt": "2017-63-19T19:17:39.610658653Z"
3.
"Image": "sha256:48b5124b2768d2b917edcb646435044a97967015485e812545546cbed5cf0233",
"ResolvConfPath": "/var/lib/docker/containers/d8e39fe6830dab4d5f4ac35bc78e8869b246
"HostnamePath /var/lib/docker/containers/d8e39fe6830dab4d5f4ac35bc78e8869b24670!
"HostsPath "/var/lib/docker/containers/d8e39fe6830dab4d5f4ac35bc78e8869b246705a58]

"LogPath" /var/lib/docker/containers/d8e39fe6830dab4d5f4ac35bc78e8869b246705a58db
429694f1fd278c30-json.log",

/my_container",
. o

OEBPS/images/K6_S2_BuildImage.png
[devops@DevOpsKatas:~/dockerinages docker image build -t katadockerfile image .
sending build context to Docker daemon 3.672 kB
Step 1/3 : FROM nginx
---> 6bglabbcb8ge
Step 2/3 : ADD index.html /usr/share/nginx/html/index.html
---> ab4laceaefld
Removing intermediate container b344a77f92f3

Step 3/3 : RUN chmod 644 /usr/share/nginx/html/index.html
---> Running in b5f219b22276
---> ec7daf672ddb
Removing intermediate container b5f219b22276
Successfully built ec7daf672ddb
ldevops@DevOpsKatas :~/dockerinages [l

OEBPS/images/K1_S5_Interactive.png
devops@DevOpsKatas:~$ docker container run -it ubuntu bash
Unable to find image 'ubuntu:latest' locally

latest: Pulling from library/ubuntu

[d54efb8db41ld: Pull complete

f8b845f45a87: Pull complete

e8db7bf7c39f: Pull complete

9654c40e9079: Pull complete

6d9ef359eaaa: Pull complete

Digest: sha256:dd7808d8792c9841d0b460122flacfla2dd1f56404f8d1e56298048885e45535
Status: Downloaded newer image for ubuntu:latest

root@b0d82166a618:/# |

OEBPS/images/K1_S5_ListContainerFiles.png
root@b0d82f66a618:/# 1s

root@b0d82f66a618: /#

OEBPS/images/K1_S2_AllContainers.png
:~$ docker container ls -a
[CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

4cdOfb9acbla hello-world "/hello” About an hour ago Exited (@) About an hour ago silly brattain
= |

OEBPS/images/K6_S1_Commit.png
$ docker container commit web kataimage nginx
Sha256: 94c2d42358395bf0dac3fd4f2d3f99966ca24c8ec4b76512cb00af890c3994d6

s 1

OEBPS/images/K1_S3_ListImages.png
:~$ docker image ls
TAG IMAGE ID CREATED

latest 48b5124b2768 2 months ago
s

OEBPS/images/K6_S1_ImageList.png
: $ docker image ls
TAG IMAGE ID CREATED
latest 94244235839 About a minute ago

latest 6b914bbcb89e 2 weeks ago
latest Oef2e08ed3fa 2 weeks ago

OEBPS/images/K1_S4_NamedContainer.png
$ docker container run --name my container hello-world

Hello from Docker!
This message shows that your installation appears to be working correctly

To generate this message, Docker took the following steps:
1__The Docker client contacted the Docker daemon

OEBPS/images/K6_S1_RunKataImage.png
$ docker container run -d -p 81:80 kataimage nginx
ae9ff22274908e4acaa01bd3909adeffad60d4b96af582e7c22b94dflb43557

s 1

OEBPS/images/K1_S4_ListAllContainers.png
[CONTAINER ID
[d8e39fe6830d

4cdOfb9acbla

$ docker container ls -a
IMAGE COMMAND
hello-world "/hello”
hello-world "/hello”
] |

CREATED
2 minutes ago
About an hour ago

STATUS
Exited (0) 2 minutes ago
Exited (0) About an hour ago

NAMES
my_container
silly brattain

OEBPS/images/K6_S2_Dockerfile.png
$ gedit Dockerfile & @ Dockerfile (~/dockerimage) - gedit

gD Open ¥ M

FROM nginx
ADD index.html /usr/share/nginx/ html/index.html
RUN chmod 644 /usr/share/nginx/html/index.html|

OEBPS/images/K6_S1_RunNGINX.png
$ docker container run --name web -d -p 80:80 nginx
f718e6610ad2d879006452d19a046561003ebe30fc05263d1cd7cec615ebc80c

s 1

OEBPS/images/lvm_terminal.png
Ubuntu Desktop.

]

Terminal

OEBPS/images/K6_S1_CopyFile.png
$ docker container cp index.html web:/usr/share/nginx/html/index

$

OEBPS/images/K1_S1_HelloWorld.png
devops@DevOpsKatas:~$ docker container run hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

78445dd45222: Pull complete

Digest: sha256:c5515758d4c5ele838e9cd307f6c6a0d620b5e07e6F927b07d05f6d12alac8d7
Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working correctly

To generate this message, Docker took the following steps:

1. The Docker client contacted the Docker daemon

2. The Docker daemon pulled the "hello-world" image from the Docker Hub

3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading

. The Docker daemon streamed that output to the Docker client, which sent it

to your terminal.

To try something more ambitious, you can run an Ubuntu container with
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID
https://cloud.docker.com/

For more examples and ideas, visit:
https://docs.docker . con/engine/userguide/

devops@DevOpsKatas:~$ [

OEBPS/images/K6_S1_CurlCustomPage.png
devops@DevOpsKatas :~/dockerimage$ curl localhost

<titlesWelcome to DevOps Katas!</title>
<style>
body {
width: 35em;
margin: © auto;
font-family: Tahoma, Verdana, Arial, sans-serif

<h1>Welcome to DevOpsKatas!</hl>
<p>If you see this page, You have sucessfully executed this part of your Docker Image kata.</p>

<p>Thank you for practicing your DevOps Katas!</p>
</body>

</html>

devops@DevOpsKatas :~/dockerinages [

OEBPS/images/K1_S2_ContainerList.png
$ docker container 1ls
IMAGE COMMAND CREATED STATUS

L |

OEBPS/images/K6_S1_ListContainers.png
B $ docker container 1ls
CONTAINER ID COMMAND CREATED STATUS PORTS NAMES

718e6610ad2 "nginx -g 'daemon ..." 5 minutes ago Up 5 minutes 0.0.0.0:80->80/tcp, 443/tcp web

s 1

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/K6_S1_CreateDirectory.png
$ mkdir dockerimage
$ cd dockerimage
$ cp ../index.html

$ Us
s 1

index.html

OEBPS/images/title_page.png
EVOPS
ATAS

Hands-On DevOps

Practical Exercises in
Containers
Source Control
Continuous Integration

* © git

docker

Includes Free Learning Virtual Machine

' 8)
Dave Swersky

OEBPS/images/K4_S2_SecondServer.png
:~$ docker container run -d -p 81:80 --name webserver2 nginx
972157830467355249cb3e3b5e5984573a8d06604ab787202103baae08ad 27

$

OEBPS/images/K4_S2_CurlSecond.png
[devops@DevOpsKatas:~$ curl localhost:81

<titlesWelcome to nginx!</title>
<style>

body {
width: 35em;
margin: © auto;
font-family: Tahoma, Verdana, Arial, sans-serif

OEBPS/images/K4_S1_StopAndRemove.png
devops@DevOpsKatas:~$ docker container stop $(docker container ls -q)
a6c9adcde33?
9bcaf7e1ba3b
6700445990
devops@DevOpsKatas:~$ docker container rm $(docker container ls -aq)
a6c9adcde33?

9bcaf7e1ba3b
0700445990
934276720008
499abbg02fc5
devops@DevopsKatas:~$

OEBPS/images/K4_S1_RunWebserver.png
:~$ docker container run -d -p 80:80 --name webserver nginx
89600ae614bd127d526aB6c0e6T9ade2543408d7a329d0716a0e862ebd {075

$

OEBPS/images/K4_S1_CurlLocalhost.png
devops@DevOpsKatas:~$ curl localhost
<!DOCTYPE html>

<titlesWelcome to nginx!</title>
<style>
body {
width: 35em;
margin: © auto;
font-family: Tahoma, Verdana, Arial, sans-serif

<h1>Welcome to nginx!</hl>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

nginx. com.</p>

[<p>Thank you for using nginx.</p>
</body>

</html>

devops@DevOpsKatas:~$ [l

OEBPS/images/NGINX-Firefox.jpg
Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

OEBPS/images/K1_S5_ListBin.png
ro0t@b0d8266a618:/# 1
dd
df
dir
dmesg
dnsdomainname
domainname
echo
eg

To0tab0da2 T66a615: /# []

s /bin
false
fgrep
findmnt
grep
gunzip
gzexe
gzip
hostname

journalctl
kill

n

login
loginctl
1s

lsblk
mkdir

mknod
mktemp
more

mountpoint

mv

networkctl
nisdomainname

readlink
rm

rmdir
run-parts

sed

sh
sh.distrib
sleep

stty

sync
systemctl

systend
systemd-ask-password
systend-escape
systend-inhibit
systemd-machine-id-sej
systend-notify
systemd-tmpfiles
systend-tty-ask-passuj

OEBPS/images/K6_S2_CurlCustomBuilt.png
devops@DevOpsKatas :~/dockerimages curl localhost

<hl>Welcome to DevOpsKatas!</hl>
<p>If you see this page, You have sucessfully executed this part of your Docker Image kata.</p>

<p>Thank you for practicing your DevOps Katas!</p>
</body>

</html>

devops@DevOpsKatas: ~/dockerinages [

OEBPS/images/K1_S6_RemoveContainers.png
$ docker container rm $(docker container ls -a -q)

b0d82f66a618
d8e39fe6830d
4cdOfb9acbla

OEBPS/images/K1_S6_ListContainers.png
:~$ docker container ls -a
CONTAINER ID IMAGE COMMAND CREATED STATUS

$

OEBPS/images/K1_S6_RemoveImages.png
devops@DevOpsKatas:~$ docker image rm $(docker image ls -aq)
Untagged: ubuntu:latest
Untagged: ubuntu@sha256:dd7808d8792c9841d6b460122f1act0a2dd1f5640478d156298048885e45535
: sha256:0ef2e08ed3fabfc44002cchB46C4F2416a2135a fc3ce39538834059606132dd
: sha256:0d58a351620572950273c5b8b7e26124a31588cdadad125f4bce63b638dddbS
: sha256:cb77997e049c07cdd872b8354052c80849993764576164912c4126015dF036CC
: sha256: fcba581c4f016b2e97611869239433ele123d675234cadc30c33ebab98487cc

: sha256:b53cd3273b78779e7059231fe0a7ed52e078e3657363eb015c61b2a6942a 87
: sha256:745f5be9952c1a22dd4225ed6c8d7b760fe0d3583eFd52191992463b537aca3
Untagged: hello-world:latest
Untagged: hello-world@sha256:c5515758d4c5e1e838e9cd3076c6a0d620b5e07e67927b07d05F6d12alac8d7
Deleted: sha256:48b5124b276802b917edch640435044297967015485e812545546¢cbed5c 0233
Deleted: sha256:98c944e98de8d3509710070a31083ec57704bed991a02c51700465e4544408
devops@DevOpsKatas:~$

OEBPS/images/K6_S2_ListImages.png
REPOSITORY
katadockerfile image latest
kataimage nginx latest

latest
latest
:~/dockerimages I

:~/dockerimage$ docker image ls
TAG

IMAGE ID

ec7daf672ddb
94c2d4235839
6b914bbcb89e
Oef2e08ed3fa

CREATED
About a minute ago
17 minutes ago

2 weeks ago

2 weeks ago

OEBPS/images/K6_S2_RunDockerfileImage.png
$ docker container run -d -p 80:80 katadockerfile image
a5fd68f695b0377e3cebd83e72bbc7l404027aef9b12f7lcll740951e64b095d

$

