

DevOps: The Ops Perspective
(Spanish)

The DevOps Collective, Inc.

Este libro está a la venta en
http://leanpub.com/devops-the-ops-perspective-spanish

Esta versión se publicó en 2018-10-28

Este es un libro de Leanpub. Leanpub anima a los autores y
publicadoras con el proceso de publicación. Lean Publishing es el
acto de publicar un libro en progreso usando herramientas
sencillas y muchas iteraciones para obtener feedback del lector
hasta conseguir tener el libro adecuado.

© 2018 The DevOps Collective, Inc.

http://leanpub.com/devops-the-ops-perspective-spanish
http://leanpub.com/
http://leanpub.com/manifesto

También por The DevOps
Collective, Inc.
Creating HTML Reports in Windows PowerShell

A Unix Person’s Guide to PowerShell

The Big Book of PowerShell Error Handling

DevOps: The Ops Perspective

Ditch Excel: Making Historical and Trend Reports in PowerShell

Secrets of PowerShell Remoting

The Big Book of PowerShell Gotchas

The Monad Manifesto, Annotated

Why PowerShell?

Windows PowerShell Networking Guide

The PowerShell + DevOps Global Summit Manual for Summiteers

Why PowerShell? (Spanish)

Secrets of PowerShell Remoting (Spanish)

The Monad Manifesto: Annotated (Spanish)

Creating HTML Reports in PowerShell (Spanish)

The Big Book of PowerShell Gotchas (Spanish)

The Big Book of PowerShell Error Handling (Spanish)

DevOps: WTF?

PowerShell.org: History of a Community

http://leanpub.com/u/devopscollective
http://leanpub.com/u/devopscollective
http://leanpub.com/creatinghtmlreportsinwindowspowershell
http://leanpub.com/aunixpersonsguidetopowershell
http://leanpub.com/thebigbookofpowershellerrorhandling
http://leanpub.com/devopstheopsperspective
http://leanpub.com/ditchexcelmakinghistoricalandtrendreportsinpowershell
http://leanpub.com/secretsofpowershellremoting
http://leanpub.com/thebigbookofpowershellgotchas
http://leanpub.com/themonadmanifestoannotated
http://leanpub.com/whypowershell
http://leanpub.com/windowspowershellnetworkingguide
http://leanpub.com/summiteermanual
http://leanpub.com/why-powershell-spanish
http://leanpub.com/secrets-of-powershell-remoting-spanish
http://leanpub.com/monad-manifesto-annotated-spanish
http://leanpub.com/creating-html-reports-in-powershell-spanish
http://leanpub.com/big-book-of-powershell-gotchas-spanish
http://leanpub.com/big-book-of-powershell-error-handling-spanish
http://leanpub.com/devopswtf
http://leanpub.com/powershellorghistoryofacommunity

Índice general

DevOps: La Perspectiva de Operaciones 1

¿Qué es DevOps? . 3
Algunos Antecedentes . 4
DevOps, para Ops . 5
Es una Filosofía . 5
Es un enfoque . 6
No hay tal cosa como un equipo de DevOps 7
Lo que no es DevOps . 8

¿Cómo se ve DevOps? . 10

Capacidades operacionales de un entorno DevOps 15
Creación automatizada del entorno 15
Infraestructura de desarrollo y pruebas 19
Supervisión de la experiencia del usuario final 22

Habilidades IT Ops en un entorno de DevOps 25
Planificar para el fracaso 28

Operaciones como desarrollo 31

DevOps no excluye a nadie 35

Una lista de lectura DevOps 36

DevOps: La Perspectiva
de Operaciones

Por Don Jones

“DevOps” es un término muy popular en estos días - pero ¿qué
significa realmente para una persona Ops? Este libro de alto nivel
intenta poner a DevOps en perspectiva con ejemplos y descripcio-
nes del mundo real.

Esta guía se publica bajo la licencia Creative CommonsAttribution-
NoDerivs 3.0 Unported. Los autores le animan a redistribuir este
archivo lo más ampliamente posible, pero le solicitan que no
modifique el documento original.

Descargar el código El módulo EnhancedHTML2 mencionado en
este libro puede encontrarse en PowerShell Gallery¹. Esa página
incluye instrucciones de descarga. PowerShellGet es necesario, y
se puede obtener de PowerShellGallery.com

¿Ha sido útil este libro? El (los) autor (es) le pide (n) que haga
una donación deducible de impuestos (en los EE.UU., consulte sus
leyes si vive en otro lugar) de cualquier cantidad a The DevOps
Collective² para apoyar su trabajo.

¹https://www.powershellgallery.com/packages/EnhancedHTML2/
²https://devopscollective.org/donate/

https://www.powershellgallery.com/packages/EnhancedHTML2/
https://devopscollective.org/donate/
https://devopscollective.org/donate/
https://www.powershellgallery.com/packages/EnhancedHTML2/
https://devopscollective.org/donate/

DevOps: La Perspectiva de Operaciones 2

Revise las actualizaciones! Nuestros ebooks se actualizan a me-
nudo con contenido nuevo y corregido. Los hacemos disponibles
de tres maneras::

• Nuestra rama principal GitHub organization³, con un re-
positorio para cada libro. Visite https://github.com/devops-
collective-inc/

• Nuestra GitBook page⁴, donde puede navegar por los libros
en línea, o descargarlos en formato PDF, EPUB o MOBI. Uti-
lizando el lector en línea, puede saltar a capítulos específicos.
Visite https://www.gitbook.com/@devopscollective

• En LeanPub⁵, donde se pueden descargar como PDF, EPUB, o
MOBI (login requerido), y “comprar” los libros haciendo una
donación a DevOps. También puede elegir recibir notificacio-
nes de actualizaciones. Visite https://leanpub.com/u/devopscollective

GitBook y LeanPub generan la salida del formato PDF ligeramente
diferente, por lo que puede elegir el que prefiera. LeanPub también
le puede notificar cada vez que liberamos alguna actualización.
Nuestro repositorio de GitHub es el principal; los repositorios
en otros sitios suelen ser sólo espejos utilizados para el proceso
de publicación. GitBook normalmente contendrá nuestra última
versión, incluyendo algunos bits no terminados; LeanPub siempre
contiene la más reciente “publicación liberada” de cualquier libro.

³https://github.com/devops-collective-inc
⁴https://www.gitbook.com/@devopscollective
⁵https://leanpub.com/u/devopscollective

https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective

¿Qué es DevOps?
“DevOps”, como un término, no tiene una definición realmente
concreta. Es una filosofía, una forma de trabajar, y significa cosas
diferentes para diferentes personas. En su mayor parte, la comu-
nidad DevOps generalmente acepta la definición del artículo de
DevOps en Wikipedia, que en parte dice:

… un método de desarrollo de software que hace hinca-
pié en la comunicación, la colaboración, la integración,
la automatización y la medición de la cooperación entre
los desarrolladores de software y otros profesionales de
las tecnologías de la información (TI).

Personalmente no siento que la definición sea mala. DevOps es
mucho más que un “método de desarrollo de software”. Sin embar-
go, vamos a jugar por un momento, y a reconocer que el software
gobierna el mundo. El presidente de los Estados Unidos no se puso
de pie y dijo, “todos deben aprender de redes”, él dijo, “todo el
mundo debe aprender a programar”. Internet es enorme, es un
conjunto de ingeniería impresionante, de infraestructuras de redes
como nunca se había visto, pero es en su mayor parte una tubería
“tonta” utilizada para entregar software. Software es de lo que
se trata. Pero el software no llega a ninguna parte solo, ni hace
nada, sin una infraestructura que lo soporte. Ambos (software e
infraestructura) trabajan juntos, y son lo que hace que la tecnología
sea útil. Es por eso que DevOps comprende tanto “Desarrollo” como
“Operaciones”. Así que, para este libro, me gustaría tomarme la
libertad de volver a definir ligeramente a DevOps como:

… un enfoque de la gestión de la tecnología que hace
hincapié en la comunicación, la colaboración, la inte-

¿Qué es DevOps? 4

gración, la automatización y la medición de la coopera-
ción entre los desarrolladores de software y el personal
de operaciones de TI con el fin de crear y entregar
aplicaciones de software a sus usuarios.

Es importante comprender que DevOps es una cosa tan grande que
es casi imposible verlo todo a la vez. Se trata de numerosas técnicas,
múltiples funciones dentro de una organización (es por eso que la
“cooperación” está en la descripción, junto con “colaboración”), y
un montón de tecnologías que se cruzan. Pero no se preocupe. Este
libro no va a tratar de cubrir todos esos aspectos..

Algunos Antecedentes

El término “DevOps” probablemente fue acuñado por Patrick Du-
bois⁶, inspirado en una presentación de Velocity en 2009 de John
Allspaw⁷. Filosóficamente, está inspirado en gran parte por las
enseñanzas de “Lean Manufacturing” de luminarias como W. E.
Deming, Taiichi Ono, Eli Goldratt y otros. Eso es importante,
porque esos señores basaron sus pensamientos en la premisa de
que la mayoría de los trabajadores quieren hacer un buen trabajo.
Un hilo común en Lean Manufacturing - y de hecho un punto
específico del enfoque de Deming - era poner fin a la confianza en
“QA” como un medio para lograr la calidad. Sí, usted establece las
medidas adecuadas para ayudar a la gente a prevenir sus propios
errores, pero olvida poner las “puertas”, resultará asumiendo que
sus trabajadores son maliciosos o incompetentes. Ese principio a
menudo se convierte en el mayor obstáculo en la adopción de Lean
Manufacturing, DevOps, o cualquier otra cosa que derive de ese
principio.

⁶http://jedi.be/blog
⁷https://www.youtube.com/watch?v=LdOe18KhtT4

http://jedi.be/blog
http://jedi.be/blog
https://www.youtube.com/watch?v=LdOe18KhtT4
https://www.youtube.com/watch?v=LdOe18KhtT4
http://jedi.be/blog
https://www.youtube.com/watch?v=LdOe18KhtT4

¿Qué es DevOps? 5

DevOps, para Ops

En su lugar, este libro examinará el microcosmos de DevOps
relacionado más específicamente con la parte Ops. En cualquier
organización que intente implementar un enfoque de DevOps, el
lado operativo de la casa necesita de ciertas capacidades. Enmuchos
casos, la parte operativa de la organización debe proporcionar un
nivel de automatización y una especie de autoservicio, que le per-
mita al departamento de desarrollo abstraerse de toda intervención
operativa. Las operaciones a este respecto tienen que ver con la
implementación de métodos seguros, manejables y monitorizables
que permitan la liberación de software de manera rápida, sin que
los proyectos se conviertan en una carga operativa importante.
Exactamente cómo se procede, y qué capacidades se proporcionan,
variará grandemente dependiendo de cada organización.

Para proporcionar esas capacidades, Operaciones tendrá que pro-
mover una cierta cantidad de desarrollo de software, de tal manera
que se creen unidades de automatización que hagan que el lado
de Operaciones de la organización funcione de manera más inde-
pendiente. Esos esfuerzos de desarrollo de software pueden llevarse
a cabo de una manera muy centrada en DevOps, y este libro se
centrará en gran medida en esa actividad.

Es una Filosofía

DevOps se parece a la contabilidad, en que es un conjunto de
principios abstractos, enfoques y patrones. En la contabilidad, se
tienen prácticas contables generalmente aceptadas, o GAAP. No
son reglas, per se, pero son tan generalmente aceptadas que llevan
el peso de la ley de muchas maneras. DevOps es o puede llegar
a ser así, ya que puede incorporar un conjunto de prácticas y
enfoques que generalmente se reconocen como el mejor camino
a seguir. Contabilidad también tiene herramientas que le ayudan a

¿Qué es DevOps? 6

implementar sus prácticas. QuickBooks, por ejemplo, es un paquete
de software que encarna y hace cumplir una gran cantidad de
prácticas contables, por lo que es más fácil ponerlas en práctica en
su organización. Del mismo modo, el mundo de DevOps tiene una
serie de herramientas - muchas aún por nacer por lo que DevOps
es relativamente nuevo - que le ayudan a implementar prácticas y
enfoques de DevOps. A medida que el mundo de DevOps intenta
cosas, aprende de ellas y perfecciona sus enfoques, así que podrá
encontrar más y más herramientas creadas para ayudar a hacer
esos enfoques más fáciles y más consistentes de aplicar en el
mundo real. En este libro, nos centraremos mucho más en las
prácticas y patrones que en las herramientas, demodo que podamos
permanecer en un nivel superior y no forzarle a comprometerse con
una pila de tecnología en particular.

A diferencia de la contabilidad, y como ya he mencionado, DevOps
es relativamente nuevo. Y, a diferencia de la contabilidad, DevOps
vive en un campo que está en constante evolución y cambio. Así
que no espere cosas como, “aquí está lo que debe hacer” o reglas
y regulaciones. En su lugar, la práctica de DevOps es actualmente
el 80% de la teoría, el 10% lo que la gente ha experimentado hasta
el momento, y el 10% pura conjetura. Hay un montón de empresas
experimentando con los enfoques de DevOps, por lo que es una
industria todavía estamos descubriendo. Gran parte de este libro se
centrará en lo que se ha hecho con éxito en otros lugares, y buscará
concretamente lo que las Operaciones ofrecen en esas situaciones.

Es un enfoque

Entender sobre todo que DevOps es un enfoque de gestión de
la tecnología. Sugiere maneras de gestionar proyectos, maneras
de gestionar el desarrollo de software y maneras de gestionar
las operaciones. Dicho esto, sin la administración de buy-in en
su organización, no se puede hacer DevOps. Así que, si usted

¿Qué es DevOps? 7

está pensando, “bueno, en mi organización nunca vamos a apoyar
la idea de que los desarrolladores “empujen” el código directo a
producción”, entonces puede dejar de leer ahora mismo, a menos
que esté interesado por curiosidad. Este libro, al menos, no va a
intentar convencerlo de las ventajas de DevOps – eso ya se ha hecho
en otros libros. Este libro supone que ya ha aceptado los beneficios
de DevOps y que está interesado en profundizar un poco más en lo
que eso significa para un equipo de operaciones de TI tradicional..

No hay tal cosa como un equipo de
DevOps

Y seamos muy, muy claros: usted no puede tener un “Equipo de
DevOps” en su organización. Eso es absurdo.DevOps es un enfoque
de gestión que abarca el desarrollo de software, administradores
y operaciones como una sola unidad. Todos trabajan juntos para
facilitar la creación y el despliegue de aplicaciones. Es posible que
sólo uno de los muchos proyectos internos se llevará a cabo en una
forma DevOps - pero dado el tipo de cambios que Ops tendrá que
hacer para facilitar el enfoque de DevOps, va a ser difícil de “hacer”
DevOps de forma fragmentada. Sólo tenga en cuenta que - DevOps
trata sobre cómo cambiar la forma de hacer negocios Si no se siente
a gusto con esta idea, entonces siempre va a sentir algo de miedo

Puede tener equipos o proyectos específicos dentro de su organi-
zación que actúen de una manera DevOps, siempre y cuando el
equipo sea lo suficientemente funcional para proporcionar todas las
disciplinas de Dev, Test, Ops, etc., que sean necesarias. Así que la
totalidad de la propiedad de TI no necesita “aplicar DevOps”, pero
un proyecto individual si podría. Dicho esto, tener sólo un proyec-
to ejecutado en una “froma DevOps” puede no ser conveniente,
porque en algún momento va a ir en contra de su “operaciones
normales de TI”, y los dos podrían no llevarse bien.

¿Qué es DevOps? 8

Por lo tanto, podría tener equipos que se comportan de acuerdo
a los principios de DevOps, y se puede llamar un “equipo de
DevOps” si sólo tiene uno. Pero es incorrecto pensar que DevOps es
implementado por algún equipo dedicado a las “implementaciones
de DevOps”. Es importante distinguir que “el equipo que maneja
DevOps para nosotros”, que no es lo mismo que “un equipo que se
comporta de acuerdo con DevOps”. Esa es una línea super-fina, tal
vez, pero es una distinción importante.

Lo que no es DevOps

Teniendo en cuenta que DevOps es una filosofía … un enfoque de
gestión … y la combinación de múltiples disciplinas de TI … podría
ser más fácil ver rápidamente lo que no es.

• DevOps no es ágil. Dicho esto, sus equipos podrían utili-
zar Agile como una metodología de desarrollo dentro de
un enfoque global de estilo DevOps. Agile es ciertamente
compatible con DevOps, y, al igual que DevOps, valora la
mejora continua.

• DevOps no es Integración Continua. Dicho esto, CI es a
menudo una parte del comportamiento de estilo DevOps.
Los dos pueden estar estrechamente relacionados, de hecho
- tan cerca que es difícil distinguir la diferencia. Supongo
que podría argumentar que es difícil practicar la filosofía de
DevOps sin usar CI, pero definitivamente puede tener CI sin
comportarse como una organización de DevOps, por lo que
los dos no son exactamente lo mismo.

• DevOps no es “los desarrolladores que operan”. En todo caso,
las operaciones están automatizadas hasta el punto en que se
ejecutan en respuesta a las acciones autorizadas tomadas por
otros roles, incluidos los desarrolladores.

• DevOps no es una metodología de desarrollo de software. Vea
la primera viñeta, arriba. DevOps es lo que ocurre mientras

¿Qué es DevOps? 9

el desarrollo del software está sucediendo, y en gran parte
lo que sucede cuando se desarrolla el software (o un ciclo
de él). Usted todavía necesitara administrar su proceso de
desarrollo de software - solo necesita usar una metodología
que sea compatible con DevOps.

• DevOps no es automatización. Sin embargo, no puede tener
DevOps sin automatización. La automatización es quizás el
mayor beneficio que operaciones recibe de DevOps.

Además, parece ser un objetivo no declarado evitar la creación de
cualquier tipo de marca registrada DevOps, o del típico libro de
reglas de “cómo hacer DevOps”, a la ITIL o TQM o algo así. Este
libro ciertamente no intenta proveer “reglas”. El objetivo aquí es
proporcionar una cierta comprensión de lo que son los objetivos
generales de DevOps..

¿Cómo se ve DevOps?
Si vamos a concentrarnos en el rol de Operaciones de TI en una
organización de DevOps, resulta útil pensar en lo que realmente
es un proyecto de DevOps. ¿Qué es exactamente lo que provee
la operación de TI? ¿Qué capacidades necesita la organización?
Vamos a tomar un aspecto de alto nivel en un proyecto al estilo
DevOps, y todo lo que esto implica, y vamos a profundizar en varias
partes de esto en el resto del libro.

SIN EMBARGO, quiero enfatizar que usted no puede lograr De-
vOps completamente dentro del equipo de Operaciones. DevOps
es pensar en todo el sistema (una frase muy Deming), desde las
personas que escriben el código hasta las personas que utilizan
dicho código, y todo lo demás. El equipo de Operaciones tiene una
contribución, al igual que muchos otros equipos y roles.

Hay un montón de gente hablando de DevOps en estos días, por lo
que también hay un montón de opiniones diferentes sobre cómo
debe funcionar un “proyecto DevOps”. En la búsqueda de una ex-
plicación concisa y de alto nivel, me quedé bastante impresionado
con una descripción de cómo Spotify⁸ organiza sus esfuerzos de
TI. Aunque gran parte de esa descripción se centra en cómo se
organizan los desarrolladores de software, lo interesante para mí
fue que el trabajo principal de sus operaciones de TI era crear
unidades de automatización para que los desarrolladores pudieran
implementar su código directamente en sus ambientes de QA y
producción. Las operaciones, en otras palabras, facilitaron una
conexión segura y administrada entre desarrolladores y usuarios
de aplicaciones (servicios). Ops más o menos arregló las cosas de
modo que el mismo Ops “salió del camino”, dentro del marco de
gestión y control de la actividad.

⁸https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/

https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/

¿Cómo se ve DevOps? 11

Este es el corazón de DevOps, y si esto hace que su corazón lata
más fuerte, entonces tiene que recordar que DevOps es una filosofía
muy diferente de lo que ha hecho antes. En el pasado, los equipos de
QA y de Operaciones eran generalmente equipos separados dentro
de TI. El código pasó de los desarrolladores a QA y viceversa, hasta
que QA verificó y aprobó, para que luego Operaciones lo llevará a
los ambientes de producción. La intención de tener estas “puertas”
entre roles era asegurarse de que nadie hiciera algo que no se
suponía que debía hacer, como desplegar código no aprobado en
los ambientes de producción. Esto creó varios problemas:

• Los desarrolladores se volvieron perezosos. Sabían que QA
estaba revisando su trabajo, por lo que se concentraronmenos
en producir código de calidad. QA, a su vez, tuvo que tomar
su trabajo más en serio, por lo que las organizaciones comen-
zaron a invertir mucho en la automatización de controles de
calidad. Como resultado, la organización gastó una tonelada
de tiempo y dinero permitiendo a los desarrolladores hacer
sus trabajos con menor calidad. Esto no era bueno para
nadie. Es evidente que las pruebas son importantes, pero el
enfoque dev-versus-QA no ha sido masivamente beneficioso
ni eficiente.

• La organización desarrolló una actitud “anti-nosotros”, que es
probablemente como su organización se comporta ahora mis-
mo. Pero eso no es divertido. Después de todo, se supone que
todos tenemos el mismo objetivo: ofrecer software y servicios
a los usuarios, por lo que se supone que debemos estar juntos.
En los peores casos, la rivalidad interdepartamental se vuelve
verdaderamente tóxica, lo que lleva a que el lugar de trabajo
se convierta en algo desagradable e improductivo.

• Operaciones cometió algunos errores simplemente porque
ellos no escribieron el código, y los desarrolladores tenían poco
incentivo para escribir código que fuera fácil de implementar,
administrar o supervisar. Los desarrolladores simplemente
lanzaron el código “al otro lado del muro” y Operaciones

¿Cómo se ve DevOps? 12

tuvo que lidiar con él - aumentando la tensión entre los
departamentos.

Todo esto conspiró para crear algo que es esencialmente la antítesis
de DevOps. Los lanzamientos de software son más lentos, debido
a la marcha implacable del código desde desarrollo hasta QA, para
finalmente llegar a producción. Operaciones, básicamente, vive en
el miedo de nuevo código, porque saben poco sobre él, y este no fue
necesariamente diseñado para facilitar la operación. Lanzamientos
más lentos significaron más presión para empaquetar más funcio-
nes en esos lanzamientos, por lo que cada lanzamiento se convirtió
en un “triunfo”, que simplemente empeoró el proceso.

Por el contrario, DevOps prevé la aplicación y la prestación de
servicios que empujan constantemente pequeñas actualizaciones
incrementales a los usuarios, con un mínimo de sobrecarga opera-
cional. Los lanzamientos más pequeños son más fáciles de codificar
y probar, y con el enfoque correcto, más seguros para empujar
hacia producción de forma continua. Pero para que todo eso suceda,
todos tienen que trabajar juntos. La línea entre desarrollador y
operaciones tiene que ser borrosa.

En un entorno de DevOps, las cosas funcionan de manera diferente.
Aquí está una mirada súper simplificada:

1. Los desarrolladores codifican y comprueban su código en un
repositorio.

2. En algún momento, el código actual del repositorio se extrae
y se incorpora a una aplicación.

3. Las pruebas, generalmente automatizadas y creadas por los
desarrolladores, se ejecutan, incluidos los modelos indivi-
duales, las pruebas de integración e incluso las pruebas de
aceptación por parte de los usuarios.

4. Si las pruebas tienen éxito, la generación se implementa
automáticamente en producción (o al menos en algún ciclo
de implementación).

¿Cómo se ve DevOps? 13

5. Se recopilan los comentarios de los usuarios, alimentando la
siguiente iteración del ciclo. Vuelva al paso 1

Algunas partes de esto pueden ser extremadamente automatizadas,
y partes - como la aceptación del usuario - todavía puede ser hecha
manualmente por seres humanos. El punto es disminuir las barreras
entre el codificador y el usuario. Eso no significa que no haya
puntos de control a lo largo del camino – para eso son las pruebas,
después de todo - pero no se pone a una parte del equipo de TI
como responsable de “detener” a otra parte del equipo para que no
haga algo estúpido. DevOps, como una filosofía, implica que usted
confía en su equipo. Si no confía en alguien de su equipo, entonces
tiene un problema de recursos humanos, y debe educarlos para
poder confiar en ellos, o despedirlos y reemplazarlos con alguien
de confianza. Si su empresa “nunca permitiría que el código de
un desarrollador llegará a producción sin que otras 30 personas lo
aprobaran primero”, entonces usted no puede hacer DevOps. Eso
es lo que estaba escribiendo anteriormente acerca de la gestión de
buy-in que es el primer paso.

La idea detrás de DevOps es, como he notado, suavizar la trayec-
toria entre el codificador y el usuario, de modo que las pequeñas
actualizaciones incrementales de la aplicación se puedan liberar
más o menos todo el tiempo. Cuando se reciben comentarios
de los usuarios, los codificadores responden y luego liberan más
actualizaciones.

Por cierto, aquí está una gran explicación de lo que es DevOps⁹ - y
lo que no es. Es un artículo largo, pero vale la pena leerlo, y notará
cuánto se necesita la administración de buy-in para que todas esas
cosas funcionen.

Por lo tanto, para los propósitos de este libro, necesitamos ver
algunas de las cosas necesarias para hacer que el paso 4 suceda,
y un poco sobre lo que se necesita en el paso 3 también. Una

⁹http://theagileadmin.com/what-is-devops/

http://theagileadmin.com/what-is-devops/
http://theagileadmin.com/what-is-devops/

¿Cómo se ve DevOps? 14

vez más, nos centraremos principalmente en procesos y prácticas.
Definitivamente necesitará alguna tecnología para implementarlas
en la vida real, pero las tecnologías exactas que elija dependerán de
su entorno específico, por lo que vamos a mantener esto un poco
más abstracto por ahora.

Capacidades
operacionales de un
entorno DevOps

¿Cuáles son algunas de las capacidades que necesita implementar
en un entorno DevOps?

Creación automatizada del entorno

En primer lugar, y posiblemente, antes que cualquier otra cosa,
necesita capacidad de alistar entornos automáticamente y constan-
temente. Es una tarea fundamental pero no es fácil.

• Automáticamente: Significa permitir a una variedad de roles
autorizados dentro de su organización configurar entornos
bajo demanda, sin involucrar a ningún ser humano. Esto po-
dría ser un entorno para desarrollo o un entorno de pruebas,
y probablemente sea algo que necesitan hacer varias veces al
día. También podría ser un proceso automatizado alistando
un entorno en el que ejecutar pruebas de aceptación.

• De manera consistente: Los entornos que se “crean” deben
reflejar con precisión el entorno de producción final. Hay dos
formas de hacerlo:

– Definir un método de creación de entornos, y utilizarlo
para crear el entorno de producción, así como cualquier
otro entorno cuando sea necesario. De esa manera, sabrá
que todos los entornos coinciden.

Capacidades operacionales de un entorno DevOps 16

– Modelar un entorno a partir del entorno de producción.
A continuación, puede aplicar ese modelo a cualquier
otro entorno que necesite alistar.

Tecnologías de gestión de configuración emergentes, como DSC
de Microsoft, o productos como Chef, Salt, Puppet y Ansible, son
ejemplos de herramientas que ayudan a implementar algunas de
estas capacidades. Cuando puede escribir algún tipo de documento
de configuración que describe el entorno y, a continuación, tiene
una herramienta que puede implementar ese documento donde y
cuando quiera, se estará acercando a la capacidad necesaria. Los
containers son otra tecnología que puede ayudar en este espacio,
ya que le permite abstraerse de una serie de variables, reduciendo
la transformación y complejidad.

Es fácil entender por qué esta es una capacidad tan importante.
Si puede garantizar que todo lo que una aplicación puede ejecutar
(desarrollo, prueba o producción) es exactamente el mismo, todo el
tiempo, entonces es mucho menos probable que tenga problemas
para mover el código de un entorno a otro. Además, al ofrecer a
otros roles, como los desarrolladores, la capacidad de generar estos
entornos bajo demanda, ayuda a facilitar más pruebas en el mundo
real y elimina más problemas durante la fase de desarrollo.

No quiero minimizar la dificultad de crear esta capacidad, ni tam-
poco ocultar los problemas que esto trae a la gestión. Los entornos
requieren de recursos para funcionar, por lo tanto, las organiza-
ciones pueden estar justificadamente preocupadas por permitir a
los desarrolladores “crear” máquinas virtuales a su antojo. Pero no
estamos hablando de capacidades sin gestión alguna. Eso es algo
que me mata cada vez que entro en una discusión sobre DevOps
con ciertos tipos de organizaciones. “¡Bueno, una vez que demos a
los desarrolladores permisos para crear las máquinas virtuales que
quieran, será el fin del mundo!” Y de esta forma presienten una
derrota temprana. Pero eso no es de lo que estamos hablando.

La razón por la que DevOps tiene “Ops” al final, es porque Ope-

Capacidades operacionales de un entorno DevOps 17

raciones no desaparece. Los desarrolladores no “toman el control”.
Nuestro trabajo es proporcionar a los desarrolladores un conjunto
gestionado de capacidades. Así que sí, un desarrollador que trabaja
en un proyecto debe ser capaz de “montar” una máquina virtual sin
la intervención de nadie, también de ser capaz de reciclarla, es decir,
eliminar y volver a crear ese entorno en elmomento que se requiera.
Pero eso no significa que pueda llegar a cambiar la especificación
del entorno por sí mismo, ni tampoco significa que obtendrá un
dominio libre de la infraestructura de virtualización. No.

Permítanme ofrecer un ejemplo realmente simplista, pero increí-
blemente real, de lo que estamos hablando. El servicio Elastic
Beanstalk de Amazon está diseñado para crear nuevos entornos,
es decir, máquinas virtuales, más o menos a la carta, en respuesta
a la carga del cliente. Cada nueva máquina virtual se inicia como
una copia idéntica de una imagen del sistema operativo base y cada
nueva máquina virtual puede cargar contenido, como un sitio web,
desde un repositorio de GitHub. Así que ahí mismo, ha creado algo
de la automatización y la coherencia que necesita. Con un “botón
de inicio”, o en reacción a la carga del usuario, se puede automatizar
la creación de nuevos entornos, y como todos provienen de fuentes
conocidas estándar, este entorno será coherente..

Es muy probable que los desarrolladores necesiten cambiosmás allá
de lo que hay en la imagen de base del sistema operativo, por lo que
estos deben poder especificar elementos adicionales. Pueden esta-
blecer variables de entorno, especificar paquetes para descargar e
instalar, y así sucesivamente. En el pasado, un desarrollador habría
manipulado su entorno de desarrollo hasta que todo funcione, y
luego con suerte comunicar los resultados de esa manipulación a
alguien en de Operaciones. Ops entonces, con suerte, volvería a
crear fielmente lo que el desarrollador hizo. ¿Pero se obtuvieron
las versiones correctas de los paquetes? ¿Se configuraron todas las
variables de entorno?

Sin embargo, en Elastic Beanstalk, los desarrolladores no sólo “mo-
difican” el entorno. Eso es porque cada vez que unamáquina virtual

Capacidades operacionales de un entorno DevOps 18

se apaga, se desvanece. Cualquier retoque que se haga se pierde.
En el siguiente inicio, se vuelve a la imagen del sistema operativo
base. Por lo tanto, como parte del origen del proyecto en GitHub,
los desarrolladores pueden especificar un archivo de configuración
que enumera explícitamente todos los paquetes adicionales, la
configuración del entorno o lo que sea que necesiten. Dado que
esa información de configuración forma parte de la fuente GitHub,
cada nueva VM creada por Elastic Beanstalk se creará con la misma
configuración exacta, cada vez.

Este es un enfoque muy DevOps, y en este caso, Amazon ha
asumido el papel de “Ops”. Si un desarrollador quiere hacer un
cambio ambiental, modifica la fuente del proyecto y luego le dice
a Amazon que recicle el ambiente. Todo se apaga, y un ambiente
nuevo y fresco se libera. Está completamente documentado, así que,
si funciona de la manera que el dev quiere, entonces será perfecto
cuando se usa para pruebas, producción o cualquier otra cosa. Y, de
una manera típica centrada en la nube, Ops, es decir, Amazon, no
tiene que involucrarse de ninguna manera. Han creado interfaces
de automatización que permiten a cualquier usuario autorizado
modificar lo que quiera.

Como una barra lateral, esta idea de DevOps es una especie de
seguimiento del concepto de “nube privada”. Nube privada significa
simplemente ejecutar sus recursos de TI privados de una manera
similar a los proveedores de una nube pública, lo que implica la
automatización en el lado de Operaciones. Se basa en una forma
de especificar quién puede hacer qué, y luego dejar que lo haga
por su cuenta. Con un proveedor de Cloud público, los permisos
consisten más o menos en “lo que se paga”, pero en una situación
de nube privada, los permisos pueden ser mucho más granulares
o incluso completamente diferentes. Nadie sugiere que construya
su propio AWS o Azure. Eso no es lo que significa nube privada.
Sin embargo, verá que las capacidades de la nube privada son las
mismas que debe proporcionar como persona de Operaciones, para
habilitar un enfoque de DevOps dentro de su organización.

Capacidades operacionales de un entorno DevOps 19

Infraestructura de desarrollo y
pruebas

Como describí en el capítulo anterior, la administración de TI tra-
dicional coloca algunas “puertas” bastante firmes entre desarrollo,
pruebas y, especialmente, Operaciones. “Operaciones” es más o
menos un sinónimo de “producción”. En DevOps, rompemos esa
relación y eliminamos las puertas. Operaciones es responsable de
la infraestructura, ya sea que la infraestructura se para soporte
de desarrollo, de pruebas o a los usuarios de producción. Y esas
diferentes fases del ciclo de vida de la aplicación se integran mucho
más estrechamente en DevOps. Algunas de las cosas de alto nivel
que necesitará son:

• Repositorios de código fuente. Git es un ejemplo común en
estos días, al igual que Microsoft Team Foundation Server
y algunos otros. Lo importante es que las herramientas de
sus desarrolladores estén estrechamente integradas con lo que
haya elegido. Idealmente, estos repositorios deberían tener,
o ser capaces de integrarse con, algún tipo de “codificación
avanzada”. Por ejemplo, el repositorio debería ser capaz de
ejecutar pruebas predefinidas en el propio código antes de
permitir el registro de cambios, y podría realizar una rutina
automatizada de compilación y pruebas cada vez que se
“detecte” código nuevo o cambios en el mismo.

• Tableros de instrumentos. Los desarrolladores y probadores
necesitan tener acceso a las capacidades operativas que les
han proporcionado, como la de reciclar un entorno de desa-
rrollo virtual. Idealmente, se puede integrar esto como parte
de su herramienta de gestión principal, o como un entorno
de desarrollo integrado. Ser capaz de hacer clic en un botón
para “compilar eso, preparar un entorno de desarrollo, cargar
el código compilado y ejecutar la aplicación” es bastante
potente. En los casos en que ese nivel de integración no sea

Capacidades operacionales de un entorno DevOps 20

posible, entonces necesitará proporcionar alguna otra interfaz
para hacer que algunas de esas actividades sean fáciles de
llevar a cabo.

• Herramientas de prueba. Una cierta cantidad de pruebas tiene
que ser automatizada, para que los desarrolladores pueden
obtener retroalimentación inmediata, y para que las pruebas
se pueden ejecutar de la manera más coherente posible.

Esa última capacidad es quizás una de las más complejas. En un
enfoque ideal (aunque ciertamente no el único, e incluso este será
un ejemplo simplificado), un flujo de trabajo podría ser algo como
esto:

1. El desarrollador escribe código.
2. El desarrollador ejecuta código en un entorno de desarrollo

“privado”, realizando pruebas unitarias.
3. El desarrollador repite los pasos 1-2 hasta que esté satisfecho

con el código y, a continuación, lo verifica en un repositorio.
4. El repositorio ejecuta ciertos controles de calidad, que podrían

ser simplemente cosas como hacer cumplir las convenciones
de codificación, antes de permitir el registro definitivo.

5. Si el check-in tiene éxito, el repositorio arranca una compi-
lación automatizada del código. Esto se implementa en un
entorno de pruebas recién creado.

6. Las herramientas de pruebas automatizadas ejecutan una
serie de pruebas de aceptación en el código. Esto puede
implicar proporcionar entradas específicas a la aplicación
y luego buscar salidas específicas, “hackear” datos en una
base de datos para probar la respuesta de la aplicación, etc.
La creación de estas pruebas es realmente un esfuerzo de
codificación en sí mismo, y puede ser completado por el
desarrollador que trabaja en el código, o por un codificador
de pruebas dedicado.

7. Los resultados de las pruebas se almacenan - a menudo como
una parte del repositorio de código fuente.

Capacidades operacionales de un entorno DevOps 21

8. Si las pruebas tuvieron éxito, la compilación se prepara para
su implementación. La implementación puede ocurrir duran-
te una ventana programada después de la compilación.

Puede ver que el trabajo humano aquí está casi todo del lado de
los desarrolladores, que es una razón por la que la gente se refiere
a DevOps como una “metodología de desarrollo de software”. Sin
embargo, la pieza Ops proporciona toda la infraestructura y la
automatización desde el paso 4, permitiendo que una construcción
exitosa se pueda mover directamente al ambiente de producción.

Obviamente, las diferentes organizaciones tendrán diferentes pun-
tos de vista. Algunas podrían obligar a las pruebas de aceptación
de usuario como un paso manual adicional, aunque Ops podría
ayudar a automatizarlo. Por ejemplo, después del paso 7, puede
automatizar la creación de un entorno de prueba de aceptación de
usuario, implementar el código en ese entorno y, a continuación,
notificar a alguien que esté listo para realizar las pruebas. Su
aceptación podría desencadenar el paso a producción, o su rechazo
podría regresar al desarrollador y comenzar de nuevo en el paso 1.

El punto es que Operaciones debe proporcionar la automatización
para que esta secuencia se ejecute con la menor intervención
manual como sea posible. Ciertamente, Ops nunca debe actuar
como un guardián. No son probadores de código. Si el código pasó
los puntos de control de calidad que se han definido, entonces el
código está listo para ser implementado, y todo eso debe ser tan
automáticamente como sea posible. Incluso el despliegue - una vez
aprobado, y en cualquier horario que se haya definido - debería
ocurrir automáticamente.

Se puede ver a DevOps, como una filosofía abstracta, que en reali-
dad requiere una gran cantidad de herramientas concretas. Y tal vez
usted puede observar que, debido a que las organizaciones tienen
todas diferentesmaneras de administrar el proceso, sería difícil para
los vendedores comerciales producir esa herramienta. En realidad,
no existe un enfoque de “tamaño único” para DevOps, lo que

Capacidades operacionales de un entorno DevOps 22

significa que Operaciones acabará creando una gran cantidad de
herramientas propias. Ahí es donde entran en juego las tecnolo-
gías de plataforma. Pueden proporcionar un conjunto de bloques
de construcción que faciliten la creación de las herramientas de
DevOps personalizadas que necesitará.

Supervisión de la experiencia del
usuario final

Esta es quizás la parte más importante de una organización De-
vOps, y es la más fácil de pasar por alto.

Como una persona de operaciones de TI, es probable que ya esté
bastante familiarizado con el monitoreo, y no se equivoca: es tan
importante en DevOps como antes de DevOps. Supervisión no
sólo para notificar a alguien cuando algo va mal, sino también
supervisar las aplicaciones de perfil (y sus servicios de apoyo e
infraestructura), para que se puedan resolver proactivamente los
problemas antes de que se conviertan en graves.

Pero la definición de “seguimiento” de IT Ops a menudo no es tan
inclusiva como debería ser. Tendemos a monitorear solamente las
cosas que están directamente bajo nuestro control. Monitoreamos
el uso de la red, la carga del procesador y el espacio en disco.
Supervisamos la latencia de la red, los tiempos de respuesta del
servicio y la salud del servidor. Controlamos estas cosas porque
podemos afectarlas directamente.

Una de las mayores colaboraciones que una organización de De-
vOps puede tener, sin embargo, es monitorear la experiencia del
usuario final. Es algo que nosotros, como gente de TI, no podemos
tocar directamente, pero si la razón de ser de TI es entregar aplica-
ciones y servicios a los usuarios, entonces la experiencia del usuario
final de esas aplicaciones y servicios es literalmente la únicamétrica
que importa. ¿Por qué medimos la latencia de la red? Porque

Capacidades operacionales de un entorno DevOps 23

contribuye a la experiencia del usuario. ¿Por quémedimos el tiempo
de respuesta del servicio? Experiencia de usuario. Intentamosmedir
indirectamente la experiencia del usuario final, porque a menudo
no tenemos forma de medirla directamente.

La filosofía de desarrolladores y operaciones de DevOps llega a
la cumbre con la supervisión de la experiencia del usuario final.
Los desarrolladores deben crear aplicaciones con la capacidad de
rastrear la experiencia del usuario final. Por ejemplo, cuando una
operación común está a punto de comenzar, la aplicación debe
rastrear la hora de inicio y, a continuación, seguir la hora de
finalización. Cualquier paso importante entre ambos debe recibir
una marca de tiempo, también, y esa información debe registrarse
en algún lugar. En Operaciones, necesitamos proporcionar un lugar
para que el registro - ese artefacto de rendimiento - viva, y necesita-
mos proporcionar una forma para que los desarrolladores accedan
a él. Tenemos que determinar a que se parece el rendimiento
“normal”, y definir una ruta para realizar el seguimiento de las
afectaciones en esa línea base. Operaciones pueden ser responsables
de la supervisión en sí, pero los desarrolladores, en su código, deben
proporcionar la instrumentación para controlar lo quemás importa.

Si los números de la experiencia del usuario final comienzan a
disminuir -digamos, el tiempo que se tarda en realizar una consulta
y mostrar los resultados comienza a hacerse más y más largo
-, podemos buscar una instrumentación más detallada y ver si
podemos encontrar la causa. ¿Es latencia de la red? ¿Tiempo
de respuesta del servidor? ¿Alguna otra correlación que pudiera
apuntar a una causa? Pero al medir directamente lo que nuestros
usuarios experimentan, contamos con una métrica de alto nivel
infalible que representa lo más real que podemos tener en el radar.

Estoy extendiéndome en el tema de monitorear de la experiencia
del usuario final no sólo porque es útil e importante, sino también
porque es uno de los ejemplos más fáciles de comprender acerca
de lo que se trata DevOps. Tradicionalmente, los desarrolladores
se han preocupado por la experiencia de los usuarios (en teoría),

Capacidades operacionales de un entorno DevOps 24

pero están extremadamente desconectados de ella. Operaciones en
cambio, está muy conectado a lo que los usuarios experimentan
(después de todo ellos reciben las llamadas al Help Desk), pero
son relativamente impotentes para aplicar medidas correctivas. A
través de la colaboración que impulsa la filosofía de DevOps, sin
embargo, los desarrolladores y el personal de operaciones pueden
unirse para hacer un trabajo colectivo mucho mejor.

Habilidades IT Ops en un
entorno de DevOps

Digamos que ha decidido, al menos en teoría, ayudar a llevar a su
organización a una posición de DevOps. Ha leído acerca de algunas
de las capacidades de alto nivel que usted, como Operador, debe
proporcionar a la organización.

¿Cómo lo hace?

En una palabra, “pegamento”.

Lo diré de nuevo: DevOps es una filosofía. La contabilidad sigue
siendo un buen ejemplo. La industria de la contabilidad está de
acuerdo, más omenos, en lo que constituye una buena contabilidad,
y de ahí es de donde provienen los PCGA. Del mismo modo, la
industria de DevOps está definiendo lentamente de que se trata un
“DevOps bueno”

Pero cada organización lo hace a su manera. Observe cómo cada
organización maneja su contabilidad, en detalle, y encontrará un
montón de diferencias con otras organizaciones. Tal vez los audito-
res trabajen de formas diferentes, o tal vez un rol de trabajo diferen-
te es responsable de diferentes funciones de contabilidad. Algunas
empresas necesitan una contabilidad bastante simple, mientras
que otros necesitan una contabilidad increíblemente compleja que
exige cientos de personas que trabajan las veinticuatro horas del
día. Aunque todos ellos operan con los mismos principios, sus
implementaciones varían ampliamente.

Así es con DevOps.

En una organización pequeña, la contabilidad puede ser lo sufi-
cientemente simple como para que las herramientas disponibles en
el mercado, como Quickbooks, sean suficientes. En ese tamaño de

Habilidades IT Ops en un entorno de DevOps 26

una organización, DevOps ni siquiera podría existir, porque una
empresa de ese tamaño simplemente podría no hacer ningún “dev”
para empezar. En una empresa masiva y multidepartamental, la
contabilidad podría incluir herramientas “disponibles” que requie-
ren meses y meses de personalización y ajustes. Del mismo modo,
DevOps en esa misma organización podría implicar herramientas
personalizadas que utilizan bloques genéricos de construcción … y
un montón de pegamento personalizado.

Proporcionar la infraestructura operacional para una organización
de DevOps puede ser hacking en su mejor momento. Sí, usted
encontrará un montón de productos y tecnologías disponibles en el
mercado … pero muchos de ellos sólo le llevarán hasta cierto punto
en las metas de su organización. Después de eso, tendrá que hacer
mucho de personalización, y poco de “pegado” de herramientas
diferentes clases, además de algo de “hacking” alrededor para juntar
las piezas. Probablemente siempre será así, así como todavía es el
caso de nuevos despliegues de herramientas de contabilidad que
por lo general toman meses y meses. Nada fuera de una plataforma
podrá cubrir todas las necesidades de cada organización, por lo
que simplemente tendrá que estar preparado para hacer algo de
personalización, algo de hacking y un poco de pegado.

Con eso en mente, ¿cuáles son las habilidades adecuadas que se
deben tener?

• Capacidad de aprender rápidamente. Tendrá que dominar
nuevos productos y tecnologías sobre la marcha.

• Creatividad. Tendrá que pensar en soluciones inteligentes
para evitar obstáculos. No espere que todo “funcione” - no
lo hará.

• Conocimiento profundo de su plataforma(s). Ya sea que esté
trabajando en Microsoft Windows, una distribución de Linux
o alguna otra plataforma, necesita conocer profundamente
cómo funciona, porque va a interactuar con ella a muy bajo
nivel.

Habilidades IT Ops en un entorno de DevOps 27

• Scripting. Va a necesitar ser fluido en lenguajes de programa-
ción de sistemas (“scripting”) usados en su plataforma, porque
ese es el “pegamento” que usará para adherir diferentes
tecnologías en una solución coherente y personalizada.

Este material de DevOps no es para principiantes, ni para débiles de
corazón. Es por esto que, en mi propia creencia personal, las empre-
sas crean títulos de trabajo como “DevOps Engineer”. Lamayoría de
la comunidad de DevOps con bastante razón se asusta por títulos
de trabajo como ese, porque a menudo son una demostración de
que alguien en la organización no lo entiende. DevOps no es un rol
de trabajo. Sin embargo, en una organización que practica DevOps,
hay ciertamente algunas habilidades que será muy práctico contar
con ellas, especialmente en el lado de Operaciones. Alguien que
posea esas habilidades podría ser llamado “Ingeniero de DevOps”,
que es quizás menos engorroso que “Una persona de TI que sabe
lo suficiente para pegar todos esos bits de tal manera que podamos
obtener las capacidades de DevOps que necesitamos”. Eso sería una
gran tarjeta de presentación. “DevOps Engineer” es probablemente
también un título menos vergonzoso para los compañeros de tra-
bajo que “El Chico listo de IT que necesitamos”, que al final suele
ser el caso.

La gente de IT Ops que trabaja para proporcionar las capacidades
compatibles con DevOps es a menudo la gente más experimentada
ymás inteligente del equipo. Tienenmás experiencia y conocimien-
to, y son a menudo los más ansiosos de hacer frente a este desafío.

Por cierto, fíjese cómo lo expresé. “… trabajar para proporcionar
las capacidades compatibles con DevOps …” fue una frase delibe-
rada. Una organización que practica DevOps necesita capacidades
específicas, y la parte de Operaciones proporciona algunas de ellas,
en estrecha colaboración con el lado Dev. Pero esto no significa
que usted vaya a tener un “Departamento de DevOps”, eso no
tiene sentido. “DevOps Engineer” como un título de trabajo es sólo
legítimo si significa “Ingeniero que ayuda a proporcionar nuestras

Habilidades IT Ops en un entorno de DevOps 28

capacidades relacionadas con DevOps”. DevOps no es algo que
simplemente se haga. Es algo en lo que usted cree y que a su
vez le impulsa a hacer las cosas. Si usted cree en DevOps, su
organización necesitara comportarse de cierta manera, y necesitara
ciertas herramientas para apoyar esos comportamientos.

También hay un conjunto de nuevas habilidades de desarrollo que
necesitan ser introducidas en un entorno DevOps. Los desarro-
lladores tienen que centrarse más en que el código se pueda ser
desplegado, supervisado y administrado de una manera centrada
en DevOps. Por ejemplo, en la mayoría de los entornos basados
en Windows, los desarrolladores suelen utilizar herramientas in-
cluidas en Visual Studio para crear paquetes de Windows Installer.
Esos paquetes no siempre han sido fáciles de desplegar de forma
automatizada, porque pueden haber requerido (o se creían nece-
sarios) privilegios de administrador u otros elementos que simple-
mente hicieron que el despliegue del código fuera difícil e incluso
peligroso. Para “hacer” DevOps eso tiene que cambiar. Operaciones
debe proporcionar a desarrollo la capacidad de desplegar el código
de forma transparente en ambientes de producción, pero desarrollo
necesita escribir código que admita ese modelo. La carga recae en
ambos grupos, como un equipo combinado, no sólo en Operaciones.

Planificar para el fracaso

“Espera un minuto,” puedo oírte diciendo, “!desplegar
el nuevo código directo en producción es lo que causa
todos los problemas!”

De acuerdo. Cualquier tipo de cambio tiene el potencial de crear
problemas. El punto de DevOps - y más particularmente el papel de
Operaciones en DevOps - es crear un entorno donde se puede fallar
rápidamente, y arreglar con la misma rapidez (gracias a Chris Hunt
por eso). Si DevOps significa desplegar constantemente pequeños

Habilidades IT Ops en un entorno de DevOps 29

pedacitos de código, entonces debe estar preparado para - en el
lenguaje de Facebook - “moverse rápido y romper las cosas”. Con el
tiempo algún despliegue va a ser problemático, por lo tanto el papel
de Operaciones no es ralentizar las cosas para evitar el problema,
sino más bien golpear el problema duro y rápido. La virtualización,
como un ejemplo, nos da la capacidad de “revertir” rápidamente
entornos operativos enteros a un “buen estado conocido”, haciendo
que la perspectiva del fracaso sea un poco menos aterradora.
Planificar para el fracaso, en lugar de tratar de evitar el fracaso
por completo.

Pregúntese si usted es el tipo de persona que rutinariamente planea
fracasar. Por ejemplo, en cada vuelo de avión que tomo, tengo un
juego de ropa de repuesto en mi equipaje de mano, aunque sea
sólo mi bolsa para la computadora. Tengo un pequeño desodorante,
porque es un artículo no incluido en los paquetes de amenidades
de las aerolíneas. Supongo que habrá un fracaso en el viaje, y
tengo planes sencillos para mitigar ese fracaso. Sin embargo, pocas
personas toman estos sencillos pasos, y cuando el fracaso ocurre, se
enojan, estresan, se sienten incómodos, incluso cuando las causas
del fracaso están completamente fuera su control, como el clima
por ejemplo. Planeo esperas más largas que la mayoría de la gente
- normalmente 2 horas en cada aeropuerto de cada país - y con
frecuencia soy capaz de evitar un fallo en mi viaje debido a ese
margen adicional.

En un entorno DevOps, tiene que aceptar que se producirá un
error. Su esfuerzo debe ir menos en la prevención de ese fracaso -
especialmente poniendo “puertas” que consumen tiempo como una
pared entre los codificadores y los usuarios - y en su lugar poner
el esfuerzo en poder iterar y recuperarse rápidamente en caso de
ser necesario. En un verdadero equipo de DevOps, cuando en una
liberación se encuentra un bug no significa volver a la última copia
estable conocida. El verdadero significado debe ser poder hacer una
nueva liberación con las correcciones mucho más rápido. Eso es
avanzar en lugar de retroceder, y tener la capacidad de hacerlo es

Habilidades IT Ops en un entorno de DevOps 30

el sello principal de una organización preparada para DevOps.

Operaciones como
desarrollo

Hay un cierto temor al respecto de tener un equipo DevOps como
apoyo, y es que el equipo de Operaciones se convierta en una
especie de equipo de desarrollo de propósito especial. Este temor, de
hecho, crea uno de los mayores malentendidos acerca de DevOps:
creemos que DevOps significa “Operaciones convirtiéndose en
codificadores”.

DevOps no significa que Operaciones se convierta en un grupo
de desarrollo. Significa que Operaciones trabajara para suavizar
el camino entre el codificador y el usuario. Resulta que la forma
más sencilla de operar es automatizando, y la forma más común de
automatizar suele implicar cierta codificación. Por lo tanto, DevOps
normalmente ocasionará que Operaciones tenga que codificar, al
menos hasta cierto punto.

La mayoría de los sistemas operativos que Operaciones administra
tiene algún lenguaje de programación diseñado para facilitar la
automatización operacional. En Linux, por ejemplo, Perl y Python
son lenguajes de scripting muy comunes. En Microsoft Windows,
PowerShell ha asumido ese papel. Así que no estamos hablando
de programación en C, C++, C#, u otro lenguaje de programación
“profunda”. Se trata más bien de “scripting”, que por lo general en
un lenguaje de nivel superior que está diseñado para tareas de au-
tomatización operacional. Como mencione en el capítulo anterior,
la habilidad principal que Operaciones debería proporcionar a un
entorno DevOps es la capacidad de automatizar en un lenguaje de
scripting apropiado para su ambiente.

Pero una vez que Operaciones comienza a producir unidades de au-
tomatización, es decir, código, las Operaciones mismas necesitaran

Operaciones como desarrollo 32

comenzar a actuar como una tienda de DevOps. Esas unidades de
automatización son la aplicación que el codificador (Ops) entrega
al usuario (en este caso, otros roles en el equipo de TI). Así que
Operaciones necesita las herramientas y los enfoques de gestión que
permitan liberar rápidamente su código, probarlo y desplegarlo en
producción. Como los usuarios (por ejemplo los desarrolladores)
generan constantemente nuevas necesidades Operaciones deben
estar preparado para responder a esas necesidades.

Todo este concepto es a menudo uno de los mayores obstáculos
para fomentar una mentalidad de DevOps en cualquier organiza-
ción, especialmente en aquellas que están fuertemente apoyadas
en ambientes de Microsoft Windows. El obstáculo se debe a que
los administradores de Windows, en general, no han tenido la
necesidad de “aprender a automatizar”, en gran parte porque el
sistema operativo sólo comenzó a ofrecer esta capacidad en 2006 y
solo ofreció una capacidad significativamente mejorada hasta 2012.
Los administradores entonces como no han tenido las herramientas,
no han aprendido las técnicas. El cambio siempre es aterrador para
algunas personas (y para algunas organizaciones), por lo tanto,
moverse de una administración basada en GUI (que no admite
DevOps) a una administración basada en código (que sí se admite)
puede ser aterrador.

Muchos administradores, una vez más, en un ambiente Windows,
están acostumbrados a utilizar herramientas GUI para la adminis-
tración de sus entornos. Tal vez se quejen de que las herramientas
no funcionen de la manera que quieren, pero generalmente están
lo suficientemente cerca y es por ello que las utilizan. Pasar a
un mundo centrado en DevOps, sin embargo, introduce nuevas
variables. ¿Qué tipo de código se está entregando? ¿Qué metodo-
logía utilizan los desarrolladores? ¿Cuáles son los problemas de
producción en torno a la estabilidad y la disponibilidad? ¿Cuánto
espacio hay para el error? ¿Qué tipo de ventanas de mantenimiento
están disponibles? ¿Cómo se comunica con la base de usuarios? El
gran número de variables significa que casi todas las organizaciones

Operaciones como desarrollo 33

son únicas, lo que significa que las herramientas disponibles en el
mercado no van a ser suficientes para resolver su problemática.
Consecuentemente, DevOps casi que exige que Operaciones cons-
truya sus propias herramientas y procesos, generalmente “pegando”
algunas tecnologías de plataforma. Eso es lo que he tratado en
el capítulo anterior, aunque desde una perspectiva ligeramente
diferente.

Ese proceso de “pegamento” es donde Operaciones se desvía hacia
su propio desarrollo. Es posible que utilice el Administrador de
máquinas virtuales deMicrosoft SystemCenter para administrar su
infraestructura virtual, pero escribirá algún código para que haga lo
que desee de acuerdo con sus procesos particulares. Puede utilizar
Chef para manejar la configuración declarativa de entornos de
máquinas virtuales, pero escribirá algún código para decirle a Chef
exactamente qué es lo que desea y para administrar los elementos
personalizados que sólo existen en su entorno.

Otro resultado de este enfoque de DevOps es que, una vez que se
pone en ello, comienza a tratar su infraestructura como código, y
comienza a abordar la gestión de la infraestructura de una manera
más ágil. La virtualización, en particular, ha hecho esto tremen-
damente fácil, porque podemos eliminar y volver a crear entornos
masivos con el solo toque de un botón. ¿No le gusta la configuración
actual del entorno? No hay problema: modifique el documento de
configuración declarativa y recicle el entorno. ¿No está contento
con el resultado? Repita. Reconfigurar el entorno puede (y debe)
ser tan fácil como modificar una estructura similar a un código,
así como modificar una aplicación es tan fácil como cambiar el
código. En otras palabras, una vez que utilice código, o algo pa-
recido, para describir cómo debería verse su entorno, básicamente
está tratando la infraestructura como código. Las metodologías
de desarrollo como Agile y Lean comienzan a convertirse en una
opción para gestionar infraestructura… y de repente, usted ya se
está convirtiendo en DevOps.

Combinar mentalmente con todos estos conceptos - infraestructura

Operaciones como desarrollo 34

como código, Operaciones como codificadores de pegamento - real-
mente abre algunas posibilidades. Ya no está limitado a este enfoque
de “grandes proveedores”, donde tiene que encontrar una pila de
proveedores que satisfaga todas sus necesidades (lo cual nunca fue
realmente práctico). En su lugar, se siente cómodo utilizando los
componentes de varios proveedores según sea necesario, porque
crece confiado en su capacidad de pegarlos todos juntos en la
estructura que necesita.

DevOps no excluye a
nadie

Porque … bueno, porque se llama Dev Ops, aunque a menudo
existe esta sensación de que la filosofía excluye la seguridad … o
la infraestructura de red … o los diseñadores gráficos … o alguien.

No lo hace.

Si DevOps significa cualquier cosa, significa que todos colaboran.
Lo que no significa es que alguien sea vetado de participar. Por
ejemplo, IT Security no puede entrar y decir, “no hay manera de
que podamos automatizar el despliegue de esa aplicación debido a
la seguridad”. Eso no es colaboración, es obstruccionismo. Lo que
pueden decir es “para automatizar el despliegue de esa aplicación en
particular, necesitamos asegurarnos de que xyz están sucediendo”.
Seguridad, Desarrollo y Operaciones pueden trabajar juntos para
automatizar esos requisitos, ayudando a asegurar que todas las
veces se lleven a cabo de forma consistente. Seguridad gana porque
sus preocupaciones se cumplen como parte del proceso. Desarrollo
gana porque obtiene una mejor comprensión de las preocupaciones
de seguridad. Operaciones gana porque deja de ser el intermediario
que tiene que reconciliar los problemas de todos.

Es por esto qué DevOps no puede funcionar sin la gestión de buy-
in desde un nivel muy alto. Al igual que el CEO y CIO (o CTO).
Las partes de su empresa que tradicionalmente han trabajado en
sus propios mandatos necesitan renunciar a sus antiguos estilos y
trabajar juntos. “No” nunca es la respuesta. Es “así es cómo”. Eso,
estoy seguro de que usted ya lo imagina, puede ser enormemente
difícil, o políticamente incorrecto, en algunas organizaciones. Y ahí
es donde la gente falla en DevOps.

Una lista de lectura
DevOps

Muchas gracias a Chris Hunt (@cdhunt en Twitter) por proporcio-
nar esta lista de lecturas sugeridas.

The Phoenix Project by Gene Kim
The Goal by Eliyahu M. Goldratt
It’s Not Luck by Eliyahu M. Goldratt
The Checklist Manifesto by Atul Gawande
Thinking in Systems: A Primer by Donella H. Meadows
Lean Enterprise: How High Performance Organizations Innovate at
Scale by Jez Humble
Becoming a Technical Leader: An Organic Problem-Solving Ap-
proach by Gerald M. Weinberg
Theories of Work: How We Design and Manage Work¹⁰ by David
Joyce
Quiet: The Power of Introverts in a World That Can’t Stop Talking
by Susan Cain
Continuous Delivery by Jez Humble and David Farley
Test Driven Development by Kent Beck

¹⁰http://www.theoriesofwork.com/

http://www.theoriesofwork.com/
http://www.theoriesofwork.com/

	Tabla de contenidos
	DevOps: La Perspectiva de Operaciones
	¿Qué es DevOps?
	Algunos Antecedentes
	DevOps, para Ops
	Es una Filosofía
	Es un enfoque
	No hay tal cosa como un equipo de DevOps
	Lo que no es DevOps

	¿Cómo se ve DevOps?
	Capacidades operacionales de un entorno DevOps
	Creación automatizada del entorno
	Infraestructura de desarrollo y pruebas
	Supervisión de la experiencia del usuario final

	Habilidades IT Ops en un entorno de DevOps
	Planificar para el fracaso

	Operaciones como desarrollo
	DevOps no excluye a nadie
	Una lista de lectura DevOps

