DEVELOPMENT
ENVIRONMENT
DEVELOPMENT

An infinite field of recursive rabbit holes

ZOLTAN NAGY

Development Environment
Development
An infinite field of recursive rabbit-holes

Zoltan Nagy
This book is for sale at http://leanpub.com/devenv

This version was published on 2020-06-13

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the
Lean Publishing process. Lean Publishing is the act of publishing an

in-progress ebook using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build traction once you do.

© 2017 - 2020 Zoltadn Nagy

http://leanpub.com/devenv
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Preface
The Pitch

Who is This Book For?
What Technologies are Covered?

How to Read This Book
About the Author
What to Expect from thisBook

Conventions Used e

Appetizer
Identifying your Motivation
Mindfulness Applies Everywhere

Superchargingyour Shell
What’'s a Shell?

Persisting Aliases e
When Aliases are Not Enough
Aliases: ACase-Study e
Also Try . . . e e e

End of the Sample

Preface

The Pitch

Maybe you’ve worked with them. Maybe you saw them in a hacker (or Hack-
ers) movie. You know the type. Fingers flying on the keyboard, weird UI on
the screen that doesn’t look like yours at all, windows showing up for seconds,
always filling the whole screen, always showing the right information. Always
the right tool at hand, every action a shortcut, every command an alias, always
doing just the right thing. Idea to shell to editor to shell to passing tests in
seconds, faster than the untrained eye can follow.

From the outside, it just looks like that person is typing really fast - and they
probably are. It may feel like they’'re just more experienced - and they might
well be. But that’s not the real source of magic. The real power comes from
a toolbox that has the right tool for whatever you want to accomplish. Where
each tool is sharpened to an edge that can split a TCP stream in two. There’s
no need to think about where each tool is, or how to use it, because of plain
old practice. Just like the guitarist of your favorite band doesn’t consciously
think about where to put their finger for that next chord, you shouldn’t need
to think about whether to use sed or ngrep. After a point, it becomes muscle
memory.

Not to mention: if you know what you want to do exactly, you have an easier
time finding the right tool. If you have a variety of tools, you have an easier
time pattern-matching and realizing what exactly it is you want to do. It's a
virtuous cycle.

That’s what a customized development environment feels and looks like,
at its best. At its worst, it’s fighting obscure bugs and weird systems. It's
finding a bug tracker showing your exact problem as wonTFIx from six years
ago. Somewhere in the middle is research, hard work, mindfulness, a special
mindset, hard work, obsession with details, lots of learning, and some more
work - though the work feels more like play.

This book aims to show you a path that leads to the good parts, without getting
bogged down in the bad parts, no matter how much time you have to invest.
At its core, putting in the effort to improve your development environment is
spending time you can spare, to be more efficient when you don’t have any
time to spare (say, when fixing an outage). Even when you’re not in a crisis,
effortlessly and efficiently using your tools cuts down on context switches,
helping you stay in the flow.

The Pitch 3

o What do you mean, “development envi-
ronment”?

There’s the obvious - your IDE or editor. But let’s widen our horizons a
bit. Is your terminal part of your development environment? How about
your browser? Would you say the computer hardware running all that
is part of the environment you develop on? These, and more, are all fair
game when looking for ways to make your work more enjoyable and
efficient.

It’s a frustrating, joyous, fumbling, exciting journey through blogs, bug
trackers, manuals and, dotfiles. I'm glad you joined the trip.

Who is This Book For?

You'll get the most out of this book if you’re motivated to work in that magical
way, and are ready to improve the way you use your development environment
to that end, but didn’t yet put in a lot of time towards getting there. You're
ready to jump in with both feet - this book is your diving board. You're in the
right place.

Maybe you are motivated, but don’t have the time to pore through all the man
pages and years of forum posts to figure it all out. You can expect some quick
wins and techniques you can implement right away, as well as warning signs
on time-sinks to avoid. This will be your cookbook.

But maybe you’re on the fence about whether spending time on improving
your devenv is worth it. Again, the quick wins and time-sink warning signs
should be useful. But more importantly, you’ll also be able to get a feel for the
journey - if you get a taste for it, you can always dive deeper. If not, take the
quick wins. Either way, I'm happy for you.

Or maybe you already went down the rabbit hole, and write Elisp code to make
Emacs send birthday reminders to your family using the MTA you run on your
VPS. For you, this book may help you organize your knowledge. It may point
out blind spots, open new avenues of research, show new perspectives and
approaches.

What Technologies are Covered?

I must also mention what technologies you can expect to see here. The biggest
divide is across the axis of operating systems. The primary focus of the content
is Linux, and macOS (you may know it as OSX). With minor exceptions, the
same techniques and technologies apply to BSD as well - but if you’'re using
BSD, I don’t need to tell you where that breaks down.

If you develop on Windows, and for Windows, and you’ll only ever touch
Windows, then I'll be straight with you: there will be biggish chunks of content
not directly applicable to your environment. You’ll still learn some ways of
thinking that you can apply, and get ideas on what to start looking for, but
much of the hands-on content will be irrelevant. In case you’re wondering,
yes, I'm open and totally willing to add that Windows-specific content you
were about to send to abestoO0@gmail.com.

How to Read This Book

While you can certainly read most of this book on an e-book reader, there are
a lot of code snippets and screenshots that are going to be way less colorful.
You’ll definitely want to check at least those parts out on your computer.
Ideally on the one where you're tweaking your development environment,
for easy copy-pasting of snippets. Going further, I strongly encourage you to
download the PDF version for reading on a computer. While easy to quickly
check something out, reading online (with the LeanPub app)

will not serve you well.

I encourage you to read the next chapter, “Appetizer”, straight through. It
introduces some basic concepts, and provides a taste for the kind of wins you
can get by tweaking your environment.

For the “Main course”, reading back to front is perfectly fine as well. Some
sections build on each other - for instance, we evaluate terminal emulators
first, then talk about choosing a shell to run in that terminal emulator. If any
of the sections are not relevant for you, or if one of them seem especially
exciting, feel free to skip around. You won’t miss anything. If you do jump
around, make sure to check out the two Interludes - they provide ways of
working that are useful across any part of your development environment.

“Dessert” contains deep dives, tips, and extra-geeky ideas you can try out. Who
knows, maybe some of them will click for you. There’s little to no connection
between the topics covered here, feel free to choose and pick the ones that
look exciting. You may still want to skim through them all, just to get a picture
of what’s out there.

About the Author

As cheesy as it sounds, a development environment is a highly personal thing.
Especially so if you invest time and effort to customize it, to make it really
yours - which is exactly what this book is for. That means it makes sense for
us to get to know each other a bit before diving in. I hope knowing where I'm
coming from will also help put some of my opinions and conclusions in context.
They may not always make sense for you - and that’s alright!

One of my axioms (values?) is never to waste anyone’s time. I'm not very
altruistic about it, that also includes my own. I get annoyed when I - or anyone
- needs to spend more time doing something than they’d strictly have to, in
an ideal world. So far, that’s not unique.

Where it gets weird is what I think about how much time things should take
in an ideal world. It usually depends on how often you do something. For
something that’s as common as opening a terminal, cd-ing or whatever to your
project, and starting its unit tests? I want that whole thing to take somewhere
around 2 seconds tops. Switching to documentation / editor / e-mail? O(1), a
single shortcut. It shouldn’t matter how many windows you have open.

I'm most at home with tooling, infrastructure, Linux, and backend code, but
I tinker with a lot of software things. I learned monads. Three times. Know
them? Hell no. But there’s just something inherently fun in taking a piece of
technology, learning it, then bending it as far as it will go. Wonder if I can make
React talk to that Bacon.js stream? Speaking of JS, how does Emacs handle
JS embedded in HTML? React DOM elements in JS embedded in HTML? How
about a script tag in a React DOM element in JS embedded in HTML? Will that
break syntax highlighting? How about in Vim?

A big chunk of that tinkering necessarily went into the development environ-
ment itself. Let’s see if I can give you the result of that tinkering, without you
needing to spend the same hours - after all, we all hate wasted time.

What to Expect from this Book

I'll do my best to make all these weird tweaks accessible, quick to implement,
and quick to learn. This does not mean that this book will let you sit down,
spend thirty minutes reading the chapter on Vim, and be a Vim expert. We’ll
cover many diverse fields that are deep in themselves. This book scratches the
surface of these areas, explores why and how you may want to incorporate
them into your workflow, and then provides pointers on diving deep, if you
want to dive deep.

Don’t expect yourself to dive deep into all those topics. Any one of them can
take months, if not years, of your free time, if you choose to spend your time
there. Staying with the easy-to-use example of editors and IDEs, there’s no
point to mastering five different flavors of Vim and Emacs and three IDEs.
You can do it, if that’s your idea of fun (it is mine). You may have to do it in
some very specific lines of work, but otherwise just invest enough time so you
can make an educated decision, and go with it. Each chapter ends with an
“In a Hurry?” section with my personal recommendation, so you don’t even
need to do that if you don’t want to. Even so, I recommend skimming all the
sections, just to get a taster of what’s out there.

Once again: you don’t have to learn all this stuff. Take what’s useful, leave the
rest, maybe look it up when it becomes useful because your work changes.
My background is in infrastructure, the cloud, and distributed systems, and
my perspective on what’s useful is heavily influenced by this. Don’t take my
word for it. Evaluate it for yourself.

All this takes time. Why would you invest that time? There’s a simple way
to make that decision: do you expect the time you invest to make a positive
return on investment, during your developer lifetime? If yes, it’s probably a
good investment to make. To make that call, you’ll need understand where you
could be investing time. A good rule of thumb is that you should first sharpen
the tool you use the most.

Another reason to invest time may be that it’s fun. I get a feeling of satisfaction
when the whole system works exactly like it should, after tweaking it for
hours. “Like it should” is absolutely subjective - I can give you my list of
shell aliases, and they’ll annoy you. Because they’re not solving a problem
you have, in a way that makes sense to you. So instead, I'll show you why and
how you may want to create your own aliases. Realize that the development
environment you're using is made of the same stuff that you work on day to

What to Expect from this Book 8

day. It’s software, it’s code. You can understand it, you can tweak it, you can
change it - especially if it’s well designed.

Finally, let’s tackle a topic that comes up a lot when discussing this kind of
development environment tweaking. It seems there is a correlation between
how customized ones environment is, and how efficient an engineer they are in
general. I think this works in a number of ways. Obviously, if your environment
helps you more than my environment helps me, then you can work faster than
me. This book contains many specific snippets, and quick techniques to build
your own customizations, so you can reap this benefit without spending years
to dive deep into everything. But that seems to not explain all the effects we’re
seeing.

During the course of working on your environment, you learn a lot - you pick
up lexical knowledge of how the components you’re touching work. Over time
this can galvanize into an intuitive understanding of these kinds of systems,
leading to sentences like “I expect this to work like X, and I can test this
by performing experiment Y”. The Main Course of this book provides some
of that lexical knowledge on just-in-time basis. The Dessert chapters at the
discuss some of the topics touched upon in more depth than is strictly needed
for tweaking your development environment. This is most useful if your
development environment share components with your actual work items, like
if you both work on a Linux desktop and manage Linux servers. If that’s not the
case, some of that knowledge is useful just to understand your own desktop.
I also expect that at least some of this knowledge and intuition transfers into
other areas, but we’re getting to rather shaky ground here.

Even more importantly, your development environment is a great training
course for software development in general. You get to explore your own
requirements in depth. You get to understand how the existing tools solve
those requirements, and then you get to make changes to said tools, so
that they better solve the requirements. Most importantly, you hit bugs
and problems, and you fix them. This loop of identifying a requirement or
problem, debugging it, learning as you go, and finally fixing the problem,
builds a habit of fixing stuff. It teaches you that you can fix everything;
there’s always a bigger hammer. Your own development environment provides
visceral feedback, and iterations tend to be short - much shorter than any
kind of project work. You make a change, maybe restart an application, and
boom, it’s in production. Make sure to use virtual or test environments for
experiments though!

The conviction that the complex and weird behavior you're seeing is some-
thing you can fix translates into any kind of software engineering. Unfor-
tunately this book can’t do this part for you - you need to make your own
mistakes, debug them, and fix them. The point here is not to have the problem

What to Expect from this Book 9

fixed - it’s to have fixed the problem. The best we can do here is give you the
lexical knowledge so you know where to start debugging. Or at least, know
what to break in the first place.

However! Messing around with your development environment is not the only
way to gain that confidence for fixing problems. It is not the way to becoming
a great engineer. Spending hours and months and years tweaking your
development environment, making new mistakes and learning new things,
seems to “cause” good software engineering skills. But there are other ways
to get there. I'm not saying this is even the right way, I'm saying it’s one way.
And it’s the one journey this book takes you on.

Conventions Used

4

) o

Capitalization of names of software follows the most standard way I can find
- this is usually the way the name appears on the website and documentation

Information

Blocks like this contain information tangentially related to the topic
being discussed. They don’t provide all the details, but are instead
starting points for more research, should you be interested.

Exercises

You're encouraged to follow along with all examples along the book.
Exercise boxes like this call out specific things to try that are no obvious.

Warning

This is information that highlights pitfalls, especially ones that can have
consequences outside of “just” messing up the part of your devenv
you're working on.

Tips
Ideas, tips you can try out when the situation arises. Not something

you can do right now, more of description of a method for approaching
things.

of the software in question: tmux, GNU Screen, Bash.

When mentioned in the context of a command to run from the command-line,
software names are in monospace, and capitalization follows the name of the

executable: tmux, screen, bash.

The string “development environment” tends to come up a lot when talking
about, you know, how to build a great development environment. To make
sentences shorter and more comprehensible, the string “devenv” will usually

be used instead of the long form “development environment”.

Conventions Used 11

class CodeExamples:
"Look like this, obviously"
def run(self):
print('With syntax highlighting, when appropriate')

$ echo 'Interactive shell sessions always include the prompt'
Interactive shell sessions always include the prompt

$ echo -e 'To separate the command\nfrom the output\nLike this\n\n'
To separate the command

from the output

Like this

Some longer sections designed for copy-pasting into a terminal
echo 'are formatted 1like this, with no prompts'
echo 'so that you can really just take the whole thing and paste it into your shell'

Appetizer

In this chapter we’ll first look at the philosophy behind all the customizations
and optimizations we’ll do later on. We’ll also take a detour into philosophy,
and look at a few specific techniques you can start applying today without up-
front investment. Finally, we’ll touch on how to make sure you don’t need to
find the same tutorial more than once.

Identifying your Motivation

Different people will have different reasons for optimizing a development
environment. One thing’s for sure: whatever the first links in the causal
chain, the last item is always “therefore, I want to reduce the friction of my
development environment”. Put it differently: I want to do my work more
quickly, fight less with the environment. I want to make the environment
support my workflow, as opposed to changing my workflow to suit the
workflow of the tools at hand.

Unfortunately, as they say, there are no free lunches. Just as energy doesn’t
come from nothing, that speed improvement, that time saving, also needs
to come from somewhere. You can think of it as the law of conservation of
development time. Or maybe it’s really just conservation of energy - put in
energy to improve your environment, and you’ll need to spend less energy
later to do your work.

Either way, there’s a critical realization hiding here. In terms of invested
energy, your development environment is a bit like a savings account - you
can put in energy now, and realize the saved time days, or weeks, or months
later. Better yet, any improvement you make keeps on giving. It doesn’t run
out.

What also helps is that all time is not made equal. You have your work-time and
free-time, obviously, but there’s also crunch-time, off-time, tea-time, outage-
fixing-time, hacking time, time for side projects, time for cooking, and time
for sleeping. The art of improving your development environment is founded
on finding time you can spare (be that off-time, hacking time, or sleep time)
and investing that so that you can be more efficient when time is at a premium
(like recovering from an outage).

?9 Find the Time

Think about your weekly schedule. When can you carve out an hour or
two to implement improvements on your devenv?

Remember to have fun as well. Since you’re doing this in time you can spare,
it’s OK to go down more rabbit holes than usual. No need to justify it, just let
go and geek out!

Identifying your Motivation 3

So fine, good, we say we want to do work more efficiently when we’re low on
time. What does that look like? For one, it means minimizing mental context
switches. Every time you need to think about how to accomplish what you
want, you experience a micro-context switch. You go from “I want to know
which server is generating error logs” to “is the server name field 3 or field
4 in the access logs?”. You go from “I want to rename this function” to “does
this IDE properly refactor this language?”

A related, but not equivalent, idea is staying in the flow. Context switches
obviously kill flow, but so does the wrong kind of frustration. A problem needs
to be challenging enough for you to stay in the flow, but the half-second
input lag of your terminal should not be that challenge. Conversely, there’s a
satisfaction to the well-choreographed dance of meet problem - deploy right
tool - meet next problem - deploy the next right tool - meet next problem.

All that is a long way of saying: we want to minimize the time and number
of actions needed to get from “I know exactly what I want to do” to “what
I wanted to do has happened”. Note that this does not solve the problem of
“I don’t exactly know what I want to do”. Only analyzing the problem and
examining the available tools can do that. Having a wide array of tools ready
to use definitely helps, though.

When you know what you want, but not how to get there, having more efficient
tools can also help. Imagine you can think of five ways to refactor a piece of
code. The refactorings are not conceptually hard, but they need a lot of code
to be moved around. If your IDE can do most of that work in a few clicks,
you’'re quite likely to try all five ways, and choose the one that’s actually the
cleanest one. Similarly, you might try all of them if you’re extremely efficient
in using the text editing functions of your IDE or editor. But you’'re quite likely
to call “good enough” after the second one if each refactoring takes an hour,
because your tools don’t support you.

Mindfulness Applies Everywhere

Let’s talk a bit about a soft, squishy topic before jumping into our first hard
tech discussion.

According to Wikipedia, mindfulness “is the psychological process of bringing
one’s attention to the internal and external experiences occurring in the
present moment”. Mindfulness meditation is traditionally practiced sitting
down, eyes closed, focusing on the breathing. For me personally, it didn’t
change my life, but if nothing else, it’s a fascinating experience.

In the context of software development, and improving your development
environment, this is the very first step to take: to notice what can be
improved. There are broad strokes that are true for any developer, but to make
yourself really efficient, you need to become conscious of your own habits and
practices, and make those practices flow smoothly in your environment.

Of course the traditional practice of sitting eyes closed, hands in your laps
doesn’t mesh well with paying attention to your development process. Not all
meditation needs to be done like that, though. There’s walking meditation,
running meditation, even meditation while doing repetitive power exercises.
But coding meditation is not something I've read or heard about - maybe flow
is a bit like that.

Either way, we don’t need to get stuck on the practice of meditation - the
concept of mindfulness, of paying attention to internal and external processes,
is useful in itself, and we can build our own practice around it.

f Profile Your Workflow

Choose a workday when you have some slack-time. Have a big release
tomorrow? Try this afterwards. Make sure you have a notebook on you,
or have a text file you like. Every hour during the day, or at the end of
each Pomodoro if you're into that, stop and ask yourself two questions:

1. What action in my devenv did I repeat more than two times?
2. What intentions took long to implement? What tools did I struggle

with?

Note your answers. Later, when you have the time, review the notes.
Make a note (mental or otherwise) to look especially closely at the
sections dealing with the tools you had problems with.

Mindfulness Applies Everywhere 5

That’s a structured, somewhat forced way of experiencing what it feels like
to pay attention to your workflow, the interaction of yourself and your devel-
opment environment. Strive for a habit of continually noting opportunities for
improvement. Usually you shouldn’t break your flow to fix them, but do make
sure you know what they were once you have the time. Personally, I collect
my issues on GitHub, at https://github.com/abesto/ansible-devenv/issues.

After noting down the issues, the next step is of course to go ahead and fix
them. Generally, this should be an iterative improvement - tweaking a bit here,
adding an argument there, installing a package, changing a configuration
option. There will be times for big changes, designing, researching, and
planning though - especially when you first set out to make your development
environment truly your own. The next section, “Main course”, will take you
through some of those big changes. Before that though, let’s take a look at a
specific change you can start implementing today, iteratively.

On Premature Customization

It may be tempting to copy-paste all the cool-looking examples you find
on public GitHub repositories, or in the environments of coworkers,
or even in this book, and see what happens. While that’s not a bad
approach, make sure you have a recovery method ready, in case things
go wrong. For instance, if you’'re messing with your .bashrc, what will
you do if it turns out there’s an exit 1 in the snippet you pasted? (You’'d
run bash --norc). Better yet, make sure you understand the context of
the tweak you’'re about to adopt (is it for Bash or Zsh?), and what it
does, before pasting it into your configuration. This book aims to give
you enough knowledge and tools to do both.

https://github.com/abesto/ansible-devenv/issues

Supercharging your Shell

Shell aliases are one of the easiest, quickest, most ubiquitous ways to sharpen
your devenv. Let’s first unpack what a “shell alias” is.

What’s a Shell?

Strictly speaking, a shell is any piece of software built with the intention of
allowing access to functions of an operating system. The command prompt
of MS-DOS is a shell, Windows 3.1 is another shell, and Bash is also a shell.
However, in daily use, we don’t usually refer to graphical interfaces as shells
- that word is reserved for text-based “shells” using a CLI (command-line
interface). That's also what “shell” will mean in the rest of this book.

Shells have, without exception, two modes of operation: an interactive, and
a batch mode. If you know of an exception, let me know - I love esoteric
software. Interactive mode is what everyone who’s ever seen a terminal
knows: you have a prompt at the left-hand side with some information about
the state of the system and shell. It might look something like this:

[username@hostname]$

This is followed by the area where commands are entered (usually one line at
a time). Once a command is finished, the output is printed, then the prompt
again, and on and on it goes. In code listings of showing shell sessions, the
prompt will be just the character $. Unless otherwise indicated, the shell used
is Bash version 4.3.

On the other hand, batch mode is about capturing a series of commands to
execute in a script, and running them at once - in a batch. These scripts are
called shell scripts (except for Windows, where they’'re called batch scripts).
At their simplest, they’re just a series of commands to run, one after the other.
For example, this is how you’d create a directory, create a file inside it, then
delete the directory, in an interactive shell:

Supercharging your Shell 7

$ mkdir -v awesome-dir

mkdir: created directory 'awesome-dir'
$ touch awesome-dir/awesome-file

$ rm -rv awesome-dir

removed 'awesome-dir/awesome-file'

removed directory 'awesome-dir'
Now we can create a file called awesome-script.sh with the following contents:

mkdir -v awesome-dir
touch awesome-dir/awesome-file
rm -rv awesome-dir

These are exactly the commands issued above in the interactive shell session.
When we run the script, we get:

$ bash awesome-script.sh

mkdir: created directory 'awesome-dir'
removed 'awesome-dir/awesome-file'
removed directory 'awesome-dir'

That’s exactly the output we got above, without the interleaved prompts.
Creating shell scripts is a way of automating repetitive work, especially
useful when that work is error-prone. We’ll look at constructs and practices
making that as painless as possible in the chapter dedicated to command-line
productivity. For now, let’s focus on ways of making the interactive mode of
operation easier, without diving deep into hard-core shell scripting.

What’s a Shell Alias?

I imagine you use a shell at least a couple of times a day. I further imagine
some of the commands you type are the same, over and over again. Someone
working on Node.js projects might type npm test over and over (then again,
someone working on Node.js projects is probably using something to automat-
ically re-run tests as the code changes). Someone working on Python projects
might find themselves typing nosetests over and over. Pretty much everyone
these days is using some version control system. If they use the CLI, they’ll
be typing things like git checkout master, git commit -a, and git pull all day.

A shell alias is a way to say “when I say this, | mean that”. Oh and: you usually
want to make this shorter and easier to type than that. For example, you can
try this in your shell right now:

Supercharging your Shell 8

$ alias la='ls -lhat'

$ la

total 8.0K

drwxrwxr-x 2 abesto abesto 4.0K Apr 5 21:55 .

-rw-rw-r-- 1 abesto abesto © Apr 5 21:55 awesome-file-3
-rw-rw-r-— 1 abesto abesto O Apr 5 21:52 awesome-file-2
-rw-rw-r-— 1 abesto abesto O Apr 5 21:52 awesome-file
drwxr-xr-x 63 abesto abesto 4.0K Apr 5 21:52 ..

All examples in this chapter use Bash as their shell. They should work
just fine if you’'re using any other POSIX-compatible shell as well. Then
again, if you’'re using something funky like tcsh or fish, you don’t need
me to tell you that.

Let’s break down what happened there. First, what are all those arguments
to 1s?

* -1 turns on the long listing format, providing a big bunch of metadata
about each file

* -h prints file sizes in a human-readable format like 12m for 12 megabytes,
instead of printing the number of bytes

* -a prints all files, including hidden ones

» -t sorts the listing by modification time, newest first.

So that would be 1s -1 -h -a -t. We can contract short command-line flags
into just 1s -lhat, Or 1s -hatl, or any other ordering - the order of the flags
here doesn’t matter.

Next, we have quotes around the command on the right-hand side. Why is
that? Notice also that there’s no space around the =, unlike what you would
see in any cultured programming language. The construct lefthand=righthand
is how variable assignment looks like in Bash; 1efthand must be a valid variable
name, then comes = without any spaces on either side, then righthand, which
must be a single string. In Bash, the unquoted character sequence foo bar
represents two strings - foo and bar. To create a single string containing both
words, we can escape the space like this: foo\ bar, but that’s not very easy to
read. Better, we can quote the string: 'foo bar'. Note the use of single quotes -
variable and subshell interpolation happens inside double quotes, so if you just
want to represent a string verbatim, it’s safest to go with the single quotes.
Putting all that together, here’s what variables look like in use:

Supercharging your Shell 9

$ apology='sorry if this is too trivial'
$ echo "$apology"
sorry if this dis too trivial

Fine, so what does all this have to do with aliases? Only this: creating an alias
uses exactly the same syntax and rules as defining a variable, preceded with
the special keyword atlias. That is, the command alias lefthand=righthand tells
Bash to, whenever it sees lefthand, pretend it saw righthand instead, taking all
the above rules into account. Putting all that together, it’s now quite clear that
in alias la='ls -lhat' defines an alias called 1a that expands to 1s -1lhat, as
well as how it does that.

Note that any arguments you pass to the invocation of the alias will be passed
to the expanded command. You might type 1s -1lhat awesome-dir to list the
contents of that awesome directory. Having defined alias 1la='ls -lhat', you
can equivalently type 1a awesome-dir.

Why would you want to do this though? Couple of reasons:

1. It’s shorter. Fewer key-presses means not only shorter time to type, but
also fewer chances to mistype a character.

2. It encapsulates knowledge. You may need to search the internet and
read man 1s to get all the options you want - and chances are, if you wanted
them once, you’ll need them again. So create an alias, and remember that
la is that thing with the verbose output, instead of “1 for long, a for hidden,
and what was it for the human-readable file-sizes again?”

3. It opens the way to iterative improvement. For instance, you might learn
that adding --color=auto to the arguments of 1s causes it to use color in
its output to highlight different kinds of files - blue for directories, light-
blue for symlinks, green for executables. You can now extend the alias you
defined previously. This increases the other two gains - compared to the
full command, the alias is even shorter. It encapsulates more knowledge.
The best part? You don’t need to commit anything to working memory.
Just keep using the alias you've been using all this time, except now it’s
better.

Persisting Aliases

Unfortunately any aliases you define in an interactive session are lost the
moment that interactive session ends - when you close the terminal, in plain
English. Not to worry though - ~/.bashrc to the rescue!

Supercharging your Shell 10

When an interactive Bash session starts, all the lines in ~/.bashrc are evaluated
as ifyou had entered them directly on the command line. This is different from
just running it as a script in a number of significant ways - again, we’ll cover
those in the chapter dedicated to each shell. For now, it’s enough to know that
to persist an alias, as well as any other customization of your shell, just open
up ~/.bashrc in your favorite text editor and add the commands, same way as
you would type them in an interactive shell.

On startup, Bash loads (ie. executes the commands in) a bunch of files.
Depending on whether we’re in an interactive shell, a login shell, and the
phase of Mercury, this includes some combination of ~/.bashrc, ~/.bash_-
profile, ~/.profile, and /etc/profile. For a proper description, refer to https:
/[www.gnu.org/software/bash/manual/html node/Bash-Startup-Files.html.

When Aliases are Not Enough

One of my favorite aliases goes like this (line-breaks inserted to fit on a page):

alias glg="git log --graph \

-—pretty=format: '%Cred%H%Creset -%C(yellow)%d%Creset \
%s %Cgreen(%cr) %C(bold blue)<%an>%Creset' \
--abbrev-commit"

There’s no way in hell I'd want to type this more than once. I don’t even
know what half of it does. I probably didn’t even write it myself, just copy-
pasted it from somewhere on the internet because I like the output. It prints
an extremely fancy and nice-to-read version of the history of the git repository
I'm in.

And this is about the limit of what aliases can do. If you want something
more complex - for example, something that needs flow control, you should
absolutely not use an alias. It’s possible to do. Technically, anything in Bash
can be a one-liner, it’s just the line will be extremely long. But there’s a better
way.

Instead of diving into deep and complex examples though, consider this: what
if the logical argument of an “alias” is not the last string on the command
line? For instance, in the configuration management system Chef, whose main
command-line interface is the command knife, sometimes it’s necessary to

https://www.gnu.org/software/bash/manual/html_node/Bash-Startup-Files.html.
https://www.gnu.org/software/bash/manual/html_node/Bash-Startup-Files.html.

Supercharging your Shell 11

“force” uploading a “cookbook”. (If you've never touched Chef, don’t fret;
the functionality of the command is irrelevant for the example. Feel free
to imagine this is the CLI of a developer-friendly collaborative cookbook-
collecting site). Here’s what it looks like:

knife cookbook upload <name-of-cookbook> --force

That’s quite a mouthful, so of course defining an alias for it makes sense. But
oh no! If we define the alias as alias kcuf='knife cookbook upload --force’,
then the name of the cookbook to upload can only be passed as an argument
to kcuf, which means the expanded command will be knife cookbook upload
--force <name-of-cookbook>.

The solution is to use a function instead of an alias:

kcuf() {
knife cookbook upload "$1" --force

}

The syntax identifier() { starts a function in Bash. It’s designed to look like
the definition of a function in any C-like language, but it doesn’t have any
of the features you’d expect: you can’t define the argument list inside the
parentheses. You can’t even move the { to the next line, even if you prefer
one of the inferior coding standards out there. } of course ends the function
definition. Finally, $1 is a built-in special variable in Bash - its value is the first
argument passed to the function it’s used in. When used outside a function, it’s
the first argument passed to the process it’s used in. In case you’'re wondering,
it has a few friends like $2 and $3. There’s also $e, then name of the function
(or the “name” of the process, when used outside a function).

All in all, this is a tiny bit more typing than defining an alias, but it elegantly
resolves the limitation of aliases around argument order. You can also use any
and all Bash features inside the body of a function, which can lead to powerful
abstractions, as shown in the story below.

Aliases: A Case-Study

I used to work quite a bit on projects based on the Django web framework.
For reasons that are not worth detailing, I didn’t have a way to run the unit
test suite from the IDE - I had to switch to a terminal, optionally switch to the
right project, activate the virtualenv of the project, and then invoke . /manage.py
test.

Supercharging your Shell 12

Virtualenv provides isolated Python environments - it’s a bit like nvm plus npm
in Node-land, or rvm for Ruby. Each virtualenv has its own Python interpreter
(versions of which may differ between environments), as well as its own set
of Python packages, instead of using globally installed packages. This allows
development and packaging of applications without having to synchronize any
versions between different projects.

At a guess, I would do this around ten to thirty times a day. It quickly became
annoying. The part I'd do most often was running the tests. That’s pretty easy
to fix in bash. It’s as simple as adding this line to ~/.bashrc:

alias mt='./manage.py test'

This saves some keystrokes, but more importantly it erases the mental burden
of “how do I run the tests again?” - mt is simple enough that it can go straight
to muscle memory. Alt-Tab mt return. Tests are running, elapsed time: ~0.3
seconds. Nice.

Sometimes I'd want to run the unit tests with the env var TEST_WITH_REMOTE set
to 1. That’s quite a lot of typing, and easy to get wrong, and the only indication
I'll get of getting it wrong is that tests fail in the wrong way. No surprise, I
guess, here’s our alias to fix that:

alias rmt='TEST_WITH_REMOTE=1 ./manage.py test'

Environment variables (colloquially “env vars”, or sometimes even ENV vars)
are a way to pass string values from a parent process to a child process. In this
example, the parent process is your shell, while the child process is the Python
test runner. Test code can then check for the value of this environment vari-
able, and change its behavior as needed. Like the name suggests, environment
variables encode information specific to the environment a process is running
in. For example, you might use env vars to tell a web application whether
it’s running on a development machine (and so should expose debugging
facilities) or in production (and so should optimize whatever it can, and should
not expose any debugging features).

Working outwards, next up is activating the virtualenv. In all our projects,
the virtualenv is always stored in the root of the project, a directory called

Supercharging your Shell 13

virtualenv, and you have to activate it using the magic incantation . virtualenv/bin/activate,
where the dot (.) tells bash to “source” that file - pretend that you typed the

contents of the file directly, instead of running it as a command. Typing that

becomes second nature over time, and is easy to always get right using auto-
completion, but it’s still time that could be saved. Not to mention, if you're

not in the root of the project, you need to put the right number of ../s in

front of virtualenv/bin/activate. That's mental effort that does nothing, at all,

to get you closer to your goal, whatever that may be. It’s a function of the
environment - and you can change the environment. Here’s one way of doing

that - again, in ~/.bashrc:

v() {

for candidate in virtualenv ../virtualenv ../../virtualenv; do
if [-f $candidate/bin/activate]; then
. Scandidate/bin/activate
return
fi
done

}

This looks a bit different - the logic is complex enough that it doesn’t fit in a
simple alias. We have to define a function. The idea is to check all the usual
locations where the virtualenv can be, and activate it once we find it. Note
that it could be generalized in a lot of ways, it could traverse the directory
structure more generally to generate more possible candidates. But it hits the
golden standard of It Works.

Now for how impactful such a small tweak can be: an engineer I worked
together with at the time asked what v does when he saw me use it in my shell.
I explained it to him; he got excited, we copy-pasted it into his .bashrc, he was
happy, then I forgot about it. A year or so later a new hire asked me for help
to solve a tricky problem he hit while setting up the virtualenv for a project.
As he was explaining the steps to reproduce the problem, he said “then I use
v to activate the virtualenv”. I got suspicious; I asked him what that is and
where it comes from. He showed me the exact same code, which he got from
his tech-lead - not the engineer I showed it to. Turns out, this function was
so useful that it got passed around across a chain of at least three engineers.
Not only that, it was so useful that it was included in the welcome package of
a newly hired developer!

For completeness’ sake, v is only complete with its counterpart d that deac-
tivates the virtualenv. Virtualenvs define a function deactivate to deactivate
themselves, so this is trivial:

Supercharging your Shell 14

alias d=deactivate

Navigating the File System in Constant
Time

... in a shell, that is. There’s a tool called autojump. It latches on to your
shell, and goes with you where-ever you cd, and it keeps track of the
directories. Then, you can invoke it with a partial name of a directory

you’'ve visited previously. It will do its level best to figure out which
directory you mean, and take you straight there.

Here’s an idea: set up https://github.com/wting/autojump, do a few days
of work as usual so that it can learn your patterns. Then focus on using
it for another day, see what it feels like.

If you want more magic, https://github.com/clvv/fasd has more magic.

Tying it back to the original story of running unit tests: given all this
preparation, I now had a sequence of keystrokes, in muscle memory, that I
could use to run tests. Starting from the IDE being open, it goes like this, and
takes around 1.2 seconds from “I want to run tests” to “tests are running”:

Alt-Tab (switches from IDE to terminal)

j auth (uses autojump to go to the project, called authservice in this case)
v (activates the virtualenv)

mt (runs tests)

If you'’re wondering about the weirdly accurate timings: I once gave a little
internal talk on optimizing the development workflow on Django services - I
recorded my screen, and measured how long each step takes.

So what should you turn into aliases / functions? How much is too much?
Should you even use aliases? Won’t that make things confusing when you
need to work at another computer? Generally speaking, the right balance is
what feels right for you, personally. If you're just starting out on the path
of customizing your shell environment, I'd suggest starting slow and adding
just a few aliases, seeing how they work, tweaking them over time. Slowly
expanding your arsenal allows you time to recognize the situations when you
can use that alias. Initially you can expect to have a tiny shock when you use
an alias. Your brain gets confused. It usually takes another 3-5 seconds to
implement that intention, and your brain tends to turn off for that time. Now
that the intention takes a fraction of a second to complete, you must unlearn
that pause.

https://github.com/wting/autojump,
https://github.com/clvv/fasd

Supercharging your Shell 15

ﬁ Adoption

Be aware that actually benefiting from your new shell improvements
requires that you actively use them, and that takes time. You need to
remember to use them and then use them enough times, until they
become muscle memory. This is one more reason to go bit by bit: you
can’t instantly remember 6 new magic spells and also recognize the
situations in which they should be useful. I have this friend who started
to use autojump three times, but then always forgot to use j instead of
cd, and then she just forgot about it. You need to actively practice the
use of your new tool.

'f[‘ DRY your shell usage!

DRY, short for Don’t Repeat Yourself, is a principle we apply liberally
to code - repeated code is prime target for refactoring. Apply the same
principle to your use of the shell. What operations do you repeat? Can
you automate them? You have the full power of shell scripting at your
hands.

Once you start looking for ways to customize your environment (shell or
otherwise), you’ll inevitably come across situations where you just want to
have the same features that other developer seems to have. Copy-pasting their
configuration might do just that, or it might mess up your environment or
workflow. Keep in mind that you can only customize what you understand. In
one extreme case, I've helped someone debug a messed-up shell where they
copy-pasted configuration into their .bashrc that was written for another shell.

Some of the systems you’ll need to understand will be ones specific to
your company or project. I can’t directly help you with those; but hopefully
by the end of this book you’ll understand enough of the underlying open-
source, standard technologies they’re built on to be confident in exploring
and customizing them.

Also Try

* huffshell suggests new aliases based on your shell history
* commandlinefu is a crowdsourced repository of shell commands that do
useful, complex stuff

https://github.com/paulmars/huffshell
https://www.commandlinefu.com/commands/browse

End of the Sample

Here’s a teaser of the rest of what’s available in the full book currently:

* Version Control for your dotfiles
Automating Environment Setup
Editors and IDEs: Choosing and Customizing
Picking an Operating System

- macOS, the Safe Option

- Ubuntu: Beginner-Friendly and Stable

- Arch Linux: Minimal, Always Up to Date
Terminal Emulators
Command-line Productivity

	Table of Contents
	Preface
	The Pitch
	Who is This Book For?
	What Technologies are Covered?

	How to Read This Book
	About the Author
	What to Expect from this Book
	Conventions Used

	Appetizer
	Identifying your Motivation
	Mindfulness Applies Everywhere
	Supercharging your Shell
	What's a Shell?
	What's a Shell Alias?
	Persisting Aliases
	When Aliases are Not Enough
	Aliases: A Case-Study
	Also Try

	End of the Sample

