

Développer une Extension PHP
Pascal MARTIN

This book is for sale at http://leanpub.com/developper-une-extension-php

This version was published on 2016-04-28

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2013 - 2016 Pascal MARTIN

http://leanpub.com/developper-une-extension-php
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book !
Please help Pascal MARTIN by spreading the word about this book on Twitter !

The suggested tweet for this book is :

J’ai acheté le livre « Développer une extension PHP », par @pascal_martin —
https ://leanpub.com/developper-une-extension-php

The suggested hashtag for this book is #extensionphp.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter :

https ://twitter.com/search ?q=#extensionphp

http://twitter.com
https://twitter.com/intent/tweet?text=J%E2%80%99ai%20achet%C3%A9%20le%20livre%20%C2%AB%20D%C3%A9velopper%20une%20extension%20PHP%20%C2%BB,%20par%20@pascal_martin%20%E2%80%94%20https://leanpub.com/developper-une-extension-php
https://twitter.com/intent/tweet?text=J%E2%80%99ai%20achet%C3%A9%20le%20livre%20%C2%AB%20D%C3%A9velopper%20une%20extension%20PHP%20%C2%BB,%20par%20@pascal_martin%20%E2%80%94%20https://leanpub.com/developper-une-extension-php
https://twitter.com/search?q=%23extensionphp
https://twitter.com/search?q=%23extensionphp

Table des matières

À propos de cet aperçu . i
Qu’est-ce que contient cet aperçu ? . i
Contenu du livre ? . i

Préface . iv

Introduction . v
Pourquoi développer une extension PHP ? . v
Pourquoi ne pas développer une extension PHP ? vi
À qui s’adresse ce livre ? . vii
Remerciements . vii
À propos de l’auteur . viii

1. Une toute première extension . 1
1.1 Fichiers sources et configuration de la compilation 1
1.2 Compilation de l’extension . 5
1.3 Et voila, une nouvelle extension ! . 7
1.4 Contrôle de sources et fichiers à ignorer 8

2. Quelques points divers . 11
2.1 Déclarer des constantes . 11
2.2 Variables super-globales . 18
2.3 Personnaliser la sortie de phpinfo() . 24

3. Et maintenant  ? Un livre complet  ! . 32

À propos de cet aperçu
Ceci est un aperçu de mon livre Développer une Extension PHP, que vous pouvez acheter en
version complète à l’adresse suivante :

https ://leanpub.com/developper-une-extension-php1

Ce livre est disponible aux formats électroniques PDF, EPUB et MOBI.

Qu’est-ce que contient cet aperçu ?

Cet aperçu reproduit quelques extraits du livre complet :

• la préface,
• l’introduction,
• le premier chapitre, Une toute première extension, complet,
• et quelques petites sections plus indépendantes – pour l’instant regroupées en fin de livre.

J’espère que ces quelques dizaines de pages vous donneront envie d’en lire plus, tout en vous
permettant de vérifier que le livre complet répondra à vos attentes  !

Contenu du livre ?

Le livre complet fait plus de 520 pages et regroupe des chapitres traitant des sujets suivants :

• Création d’une première extension : il s’agit du premier chapitre du livre, qui est reproduit
intégralement dans cet aperçu. J’y explique comment créer le squelette d’une première
extension, quels fichiers sources sont requis et quelles structures de données et déclarations
sont nécessaires.

• Environnement de développement : ce chapitre montre comment compiler une version de
PHP orientée développement d’extensions sous Linux et quelles sont les informations qu’elle
nous apporte. J’en ai profité pour présenter comment configurer Eclipse CDT pour obtenir un
environnement de développement avec débogueur graphique.

1https://leanpub.com/developper-une-extension-php

i

https://leanpub.com/developper-une-extension-php
https://leanpub.com/developper-une-extension-php

À propos de cet aperçu ii

• Développer une extension PHP sous Windows : ce chapitre fait suite au précédent, en
expliquant comment mettre en place un environnement de développement avec Visual Studio,
sous Windows, en allant de la compilation de PHP jusqu’au débogage en interface graphique.

• Écrire une fonction : les fonctions sont au cœur de PHP et de ses extensions. Nous verrons
ici, entre autres, comment recevoir des paramètres et retourner une valeur. Ce sujet est abordé
au travers de deux chapitres, le second intégrant des concepts supplémentaires, comme la
réception de zval en paramètres, les fonctions attendant un nombre d’arguments variable, ou
encore le type-hinting.

• zval : les variables de PHP : les variables de PHP sont représentées, en interne, par une
structure nommée zval. Ce chapitre nous montrera comment en créer, les lire et les manipuler.

• Gestion de la mémoire : ce chapitre introduit le Zend Memory Manager, les fonctions
d’allocation et de libération de mémoire, et présente comment travailler avec le TSRMLS.

• HashTable et tableaux : la structure HashTable est utilisée par PHP pour stocker un
ensemble de données, comme un tableau. Elle est tellement importante pour PHP qu’elle est
fréquemment utilisée en interne et que de nombreuses fonctions permettent de la manipuler.

• Classes et objets : PHP 5 a apporté un véritable modèle objet. Ce sujet est couvert à travers
deux chapitres :

– Le premier montre comment créer des classes exposant constantes, propriétés et mé-
thodes, comment travailler avec de l’héritage ou des interfaces et comment stocker des
données complexes.

– Le second explique comment travailler avec des espaces de noms et des traits, présente
quelques interfaces communément manipulées et passe en revue les gestionnaires
d’objets les plus utilisés.

• Erreurs et Exceptions : PHP propose deux mécanismes de remontée d’imprévus à l’utilisa-
teur : les erreurs, et les exceptions. Nous verrons ici comment tirer parti de ces deux principes,
mais aussi comment transformer des erreurs internes en exceptions.

• Configuration par fichier .ini : le fichier php.ini représente, pour PHP et pour ses
extensions, le standard de configuration permettant aux utilisateurs d’influencer sur leur
comportement. Ce chapitre présentera comment exploiter au mieux cette possibilité de
paramétrage.

• Tests automatisés : vous n’envisageriez pas de développer une extension sans tests automa-
tisés  ? Moi non plus  !

• Travailler avec des flux : ce chapitre montre comment utiliser le mécanisme de flux de PHP,
en lecture et en écriture. Il enchaîne ensuite avec la mise en place d’un gestionnaire de flux,
avant de passer à la notion de contexte de flux et au développement d’un filtre de flux.

• Les ressources : nous verrons ici ce qu’est le type ressource et comment déclarer et manipuler
des ressources, qu’elles soient ou non persistantes.

• Configuration plus avancée de la compilation et du chargement de l’extension : ce cha-
pitre vous présentera comment mettre en place des dépendances entre extensions, comment
utiliser une bibliothèque partagée externe, ou encore comment compiler votre extension de
manière statique, intégrée à PHP.

À propos de cet aperçu iii

• Quelques points divers : ce chapitre regroupe quelques points intéressants, mais qui ne
méritaient pas à un chapitre à eux seuls, comme la déclaration de variables super-globales,
de constantes, la personnalisation de phpinfo(), ou encore l’exécution de code PHP et
l’utilisation de fonctions de rappel depuis une extension.

• Les Extensions Zend : ce chapitre, rédigé par Julien Pauli, montre de quelles possibilités
dispose une extension Zend et comment en mettre en place – ainsi qu’un exemple d’une
extension qui soit à la fois une extension PHP traditionnelle et une extension Zend.

• Un œil dans la Zend Virtual Machine : ce chapitre, rédigé par Julien Pauli, constitue une
introduction au fonctionnement de la machine virtuelle de PHP et montre comment une
extension ou une zend_extension peuvent jouer avec celui-ci.

Pour ce qui est des annexes, j’en ai mis une en place :

• Normes de codage et bonnes pratiques PECL : cette annexe reprend une partie des normes
de codage de PHP et une série de bonnes pratiques issues de revues effectuées par l’équipe de
PECL sur un nombre important d’extensions, traduites en français, filtrées et reformulées, et
parfois accompagnées d’exemples supplémentaires.

La version publiée du livre sera bien sûr mise à jour, gratuitement, en cas d’éventuelles corrections.

Notez aussi que, aujourd’hui, aucune des plus de 75 extensions PHP écrites pour rédiger ce livre
ne sont rendues publiques. Je n’ai pas encore vraiment réfléchi à l’idée, mais j’aimerais, à terme,
publier au moins une partie d’entre-elles : cela constituerait un bon accompagnement aux différents
chapitres. Cela dit, j’ai du travail à faire pour les rendre réellement présentables (ne serait-ce que
pour les documenter et commenter leur code), et ce n’est donc pas pour tout de suite. Mais je garde
l’idée à l’esprit  !

Préface
Tout le monde connaît PHP aujourd’hui, c’est un fait. Enfin… connaît de l’extérieur, pour l’avoir
utilisé du point de vue d’un développeur ou d’un administrateur.

Cet ouvrage, en revanche, est dédié aux entrailles du langage.

Ce que beaucoup d’utilisateurs de PHP ignorent, c’est que le langage est lui-même un programme,
écrit avec le langage C, qui à la date où ces lignes sont écrites, comporte environ 700.000 lignes.
D’une complexité relativement élevée, la source de PHP témoigne de son fonctionnement le plus
profond. Cependant, celle-ci n’est que très peu documentée, et se plonger dedans, même avec un
passé en C costaud, n’est pas tâche facile.
S’intéresser à l’API interne de PHP permet, principalement au moyen de l’écriture d’extensions,
de comprendre le fonctionnement du langage, de l’enrichir, d’en changer le fonctionnement ou
encore de porter des parties de code PHP en langage C, beaucoup plus efficace et rapide en terme
de traitement.

Le but de cet ouvrage est justement de vous guider pas à pas au travers de l’API de PHP. Vous
découvrirez ainsi sa richesse, mais aussi sa complexité et son long historique (les premières lignes
datent de 2000) qui font qu’elle est difficilement apprivoisable sans être tenu par la main.

Après des rappels sur la compilation de projets C sous Linux comme sousWindows, vous apprendrez
à manipuler les structures indispensables du cœur de PHP. Puis, au travers de l’écriture d’une
extension, vous verrez où et comment allouer et libérer de la mémoire, créer des fonctions PHP,
jouer avec les classes et les objets, se brancher sur le système de configuration de PHP, manipuler
les tableaux PHP de l’intérieur sans oublier la maîtrise du curieux type « ressource ». Tout ceci sera
complété de conseils, de bonnes pratiques à suivre et de pièges à éviter.

Enfin, une introduction aux pièces les plus complexes vous permettra de découvrir sereinement les
concepts de compilation de code, d’OPCode, de caches ou encore de machine virtuelle.

Je vous souhaite une bonne lecture.

– Julien Pauli
Contributeur PHP et release manager de PHP 5.5 & 5.6

iv

Introduction
There is no programming language, no matter how structured, that will prevent
programmers from making bad programs.

– Larry Flon

Une Extension PHP est un module chargé par le moteur de PHP lors de son lancement et capable
d’influer sur son comportement, généralement en ajoutant des fonctions ou classes qui sont alors
considérées comme internes à PHP.

Pourquoi développer une extension PHP ?

Plusieurs raisons peuvent justifier le choix d’écrire une extension PHP. Pour n’en citer que quelques-
unes :

• une extension est écrite en C, qui est un langage compilé de bas niveau, ce qui permet souvent
un gain en performances considérable par rapport à une portion de code équivalente écrite en
PHP.

• Une extension C peut être utilisée pour encapsuler une bibliothèque système, l’exposant ainsi
à l’espace utilisateur PHP.

• De par son intégration plus proche du cœur de PHP, une extension a des possibilités
fonctionnelles qui ne sont pas offertes aux scripts utilisateurs.

• Ce point n’est que rarement exploité et assez éloigné de la philosophie ouverte de PHP, mais
diffuser la version compilée d’une extension sans son code source permet de mettre en place
un composant boite-noire, exposant des fonctionnalités aux utilisateurs sans pour autant leur
révéler comment celles-ci sont implémentées.

Vous l’aurez compris : à partir du moment où vous développez une extension PHP, un large éventail
de possibilités s’offrent à vous – jetez un coup d’œil à la liste d’extensions diffusées sur PECL2 pour
vous en rendre compte par vous-même  !

Pour donner quelques exemples, correspondant respectivement à chacune de ces raisons :

• le moteur de templating Twig3 propose une extension, plus rapide que sa version PHP.

2http://pecl.php.net/packages.php
3http://twig.sensiolabs.org/

v

http://pecl.php.net/packages.php
http://twig.sensiolabs.org/
http://pecl.php.net/packages.php
http://twig.sensiolabs.org/

Introduction vi

• L’extension ssh24 permet à PHP d’utiliser les fonctionnalités de la bibliothèque libssh25, de
la même manière que l’extension curl6 encapsule la bibliothèque libcurl7.

• Une extension peut déclarer des variables super-globales, comme le fait ext/session8 pour
$_SESSION. Une extension PHP peut exposer à l’espace utilisateur le mécanisme de threading
intégré à PHP, comme le fait pthread9. Une extension PHP, comme AOP10 peut aussi permettre
de se brancher autour de l’exécution de n’importe quelle fonction.

• L’extension ioncube11 permet de lire à la volée des fichiers PHP encodés avant leur diffusion.
Un autre exemple serait l’extension PHP que newrelic12 fournit, qui permet d’envoyer à
son service de monitoring et d’analyse des données internes sur le fonctionnement de votre
application. Ces extensions sont toutes deux propriétaires et leurs sources ne sont pas diffusées.

Bref, les possibilités sont pour ainsi dire infinies  !

Pourquoi ne pas développer une extension PHP ?

Pour autant, développer une extension PHP n’est pas la solution à tous vos problèmes et trois points
majeurs sont à prendre en compte avant de vous lancer.

Le premier est qu’une extension s’écrit en C. Ce langage n’est pas, en soi, plus difficile qu’un autre,
mais si vous travaillez dans un contexte plutôt orienté Web, il est fort probable que vos collègues (ou
vous-même  !) ne soient pas à l’aise avec ce langage. Cela rendra le développement et la maintenance
de votre extension plus difficile : qui s’en chargera si vous êtes en vacances13   ?

Le second est qu’une extension s’intègre plus profondément au moteur de PHP qu’un script
utilisateur. En conséquence, un bug au sein d’une extension peut avoir des conséquences nettement
plus dramatiques : au lieu d’un avertissement ou, au pire, d’une Fatal Error mettant fin à l’exécution
d’une page, vous pouvez causer un plantage du serveur Web  !

Le troisième est un peu lié au second : à partir du moment où l’on travaille au plus proche de
l’interne du moteur de PHP, on ressent beaucoup plus les modifications apportées à celui-ci (ce qui
est logique). Les développeurs de PHP s’assurent que les améliorations apportées à celui-ci aient
le moins d’impact possible au niveau de l’exécution de scripts PHP, mais on ne peut pas toujours
en dire autant lorsqu’il s’agit des extensions. Autrement dit, développer une extension proche du
moteur de PHP – ce qui n’est pas le cas de toute, heureusement – qui fonctionne sous PHP 5.3 et 5.4

4http://php.net/book.ssh2
5http://www.libssh2.org/
6http://php.net/book.curl
7http://curl.haxx.se/libcurl/
8http://php.net/book.session
9http://php.net/book.pthreads

10http://pecl.php.net/package/AOP
11http://www.ioncube.com/loaders.php
12http://newrelic.com/
13Et si vous passez sous un bus� ?

http://php.net/book.ssh2
http://www.libssh2.org/
http://php.net/book.curl
http://curl.haxx.se/libcurl/
http://php.net/book.session
http://php.net/book.pthreads
http://pecl.php.net/package/AOP
http://www.ioncube.com/loaders.php
http://newrelic.com/
http://php.net/book.ssh2
http://www.libssh2.org/
http://php.net/book.curl
http://curl.haxx.se/libcurl/
http://php.net/book.session
http://php.net/book.pthreads
http://pecl.php.net/package/AOP
http://www.ioncube.com/loaders.php
http://newrelic.com/
http://en.wikipedia.org/wiki/Bus_factor

Introduction vii

et 5.5 voire même 5.6 n’est pas une tâche facile sans une parfaite connaissance de ces changements,
qui ne sont pas toujours réellement perceptibles de l’extérieur.

Bien sûr, il vous revient de faire le nécessaire pour limiter les risques : comme pour n’importe quel
composant, partagez le savoir autour de vous  ; et mettez en place des tests automatisés  !

Enfin, installer une extension PHP demande généralement l’intervention d’un administrateur. Le
déploiement d’une mise à jour de celle-ci est donc souvent moins évident que lorsqu’il s’agit de
livrer du code PHP.

À qui s’adresse ce livre ?

Ce livre s’adresse à des développeurs PHP expérimentés et suppose que vous connaissez suffisam-
ment bien PHP pour savoir ce qu’il permet, ce qu’il ne permet pas, et vouloir aller plus loin.

De bonnes notions de C, même un peu rouillées et/ou remontant par exemple à vos études, seraient
un plus non négligeable : elles vous permettraient de comprendre plus facilement une partie des
constructions utilisées. Toutefois, si vous n’avez pas peur d’apprendre sur le tas et que vous êtes prêt
à fouiller par vous-même, les points de C utilisés au cours de ce livre devraient rester abordables
même pour un débutant.

Les exemples présentés ont tous été testés sur PHP 5.414. La majeure partie d’entre eux devraient
toutefois fonctionner sur des versions inférieures (PHP 5.3, voire même l’obsolète version 5.2), mais
j’aborderai parfois – en indiquant lorsque ce sera le cas – des concepts qui ne peuvent être exploités
qu’à partir de PHP 5.5.

Remerciements

Un immense merci à Julien Pauli (@julienPauli15), Release Manager de PHP 5.5 et 5.6, pour les
nombreux retours techniques qu’il m’a adressés en relisant ce livre, qui se sont traduits par autant
de corrections ou d’ajouts de précisions.

Les sections en rapport avec le travail sousWindows doivent beaucoup à Pierre Joye (@pierrejoye16),
qui contribue à PHP depuis de nombreuses années, à qui je dois également un grand merci  !

Je tiens aussi à remercier Agnès Haasser17 (@tut_tuuut18) qui a accepté de relire plusieurs chapitres
de ce livre, corrigeant de nombreuses fautes de français ici et là, rendant ainsi la lecture plus agréable
pour tous.

14Pendant le plus gros du temps passé à de l’écriture de ce livre, PHP 5.4 est la version stable de PHP, PHP 5.3 atteignant sa
fin de vie et PHP 5.5 ayant été diffusé il y a peu de temps.

15https://twitter.com/julienPauli
16https://twitter.com/pierrejoye
17http://www.ploque.net/
18https://twitter.com/tut_tuuut

https://twitter.com/julienPauli
https://twitter.com/pierrejoye
http://www.ploque.net/
https://twitter.com/tut_tuuut
https://twitter.com/julienPauli
https://twitter.com/pierrejoye
http://www.ploque.net/
https://twitter.com/tut_tuuut

Introduction viii

Enfin, merci aussi à vous qui prenez le temps de me signaler19 les inévitables fautes, erreurs, ou
même bugs que vous constatez : la qualité de ce livre en est d’autant améliorée. Continuez  ! Je suis
aussi bien évidemment ouvert aux suggestions et recommandations que vous avez à l’esprit.  ;-)

À propos de l’auteur

Je m’appelle Pascal MARTIN.

J’ai découvert PHP aux environs de l’an 2000 et je travaille dans le développement Web et PHP
depuis plus de 9 ans. Je publie occasionnellement des articles en rapport avec le développement Web
et principalement PHP, sur mon blog20.

Ayant de plus en plus tendance, depuis quelques années, à chercher comment PHP fonctionne
en lisant des portions de son code source, c’est presque naturellement que j’en suis venu à me
pencher sur le développement d’extensions, renouant ainsi avec le C, langage qui m’a réellement
fait découvrir la programmation il y a bientôt 15 ans.

Vous pouvez me suivre sur @pascal_martin21 et parfois me croiser sur Google+22 ou sur StackO-
verflow23, ou me joindre par e-mail : contact@pascal-martin.fr24.

Je suis bien sûr preneur de tout retour, de toute suggestion et de tout rapport d’erreur que vous
voudrez me faire  ;-)

Je vous souhaite une excellente lecture et bon courage pour vos premiers pas dans le
développement d’extensions PHP  !

– Pascal MARTIN

19mailto:contact@pascal-martin.fr
20http://blog.pascal-martin.fr/
21https://twitter.com/pascal_martin
22https://plus.google.com/100626033023167917165?rel=author
23http://stackoverflow.com/users/138475/pascal-martin
24mailto:contact@pascal-martin.fr

mailto:contact@pascal-martin.fr
http://blog.pascal-martin.fr/
https://twitter.com/pascal_martin
https://plus.google.com/100626033023167917165?rel=author
http://stackoverflow.com/users/138475/pascal-martin
http://stackoverflow.com/users/138475/pascal-martin
mailto:contact@pascal-martin.fr
mailto:contact@pascal-martin.fr
http://blog.pascal-martin.fr/
https://twitter.com/pascal_martin
https://plus.google.com/100626033023167917165?rel=author
http://stackoverflow.com/users/138475/pascal-martin
mailto:contact@pascal-martin.fr

1. Une toute première extension
The effective exploitation of his powers of abstraction must be regarded as one of the
most vital activities of a competent programmer.

– Edsger W. Dijkstra

Créer un squelette d’extension PHP, qui ne fait rien, mais qui est reconnue en tant que telle et
chargée par le moteur, demande de créer quelques fichiers : un fichier de code source C, un fichier
d’en-têtes et un fichier permettant de configurer la compilation de l’extension.

1.1 Fichiers sources et configuration de la compilation

Dans sa version la plus simple qui soit, une extension PHP n’est composée que de quelques fichiers :

• un fichier .c, qui contiendra le code source de l’extension,
• un fichier .h, qui, à terme, hébergera les définitions de types et de fonctions,
• et un fichier config.m4 qui configure la compilation sous les systèmes UNIX.

En complément, on trouve aussi, généralement :

• quatre fichiers texte nommés README, CREDITS, API-version, et RELEASE-version,
• un fichier LICENSE ou COPYING indiquant sous quelle licence l’extension est distribuée,
• et un fichier config.w32, qui configure la compilation sous Windows.

1.1.1 Fichiers sources de l’extension

Par convention, le fichier qui contiendra le code source de votre extension (le fichier « principal »,
tout au moins, si vous en avez plusieurs) porte le nom de l’extension  ; autrement dit, si vous
développez une extension nommée monext01, alors, son fichier source principal sera nommé
monext01.c.

Pour une extension la plus basique qui soit, le code source que vous devrez mettre en place aura la
forme suivante :

1

Une toute première extension 2

#include "php_monext.h"

/* {{{ monext_module_entry */

zend_module_entry monext_module_entry = {

STANDARD_MODULE_HEADER,

"monext",

NULL, /* Function entries */

NULL, /* Module init */

NULL, /* Module shutdown */

NULL, /* Request init */

NULL, /* Request shutdown */

NULL, /* Module information */

"0.1", /* Replace with version number for your extension */

STANDARD_MODULE_PROPERTIES

};

/* }}} */

#ifdef COMPILE_DL_MONEXT

ZEND_GET_MODULE(monext)

#endif

Ce fichier monext01.c est composé de trois sections :

• tout d’abord, le contenu du fichier php_monext.h, que nous verrons juste en dessous, est
inclus  ; exactement comme avec la directive include1 de PHP, cela revient à copier-coller
le contenu du fichier vers l’endroit où la directive est écrite.

• Ensuite, nous renseignons une structure de type zend_module_entry, dont le nom est _-
module_entry précédé du nom de notre extension : monext_module_entry  ; cette structure
permet au moteur de PHP de charger notre extension.

• Et enfin, la dernière section fait appel à ZEND_GET_MODULE() lorsque notre extension est
chargée dynamiquement  ; c’est cette ligne qui permettra au moteur de PHP de découvrir la
structure que nous avons définie juste au-dessus.

Pour l’instant, nous n’avons renseigné que peu de champs de la structure zend_module_entry de
notre extension : le nom et la version. Nous verrons au cours des prochains chapitres de ce livre que
cette structure permet de définir la liste des fonctions exportées par notre extension, des fonctions
exécutées lors de son chargement et déchargement…

Le fichier php_monext.h auquel faisait référence monext01.c aura, quant à lui, la forme suivante :

1http://php.net/function.include

http://php.net/function.include
http://php.net/function.include

Une toute première extension 3

#ifndef MONEXT_H_

#define MONEXT_H_

#ifdef HAVE_CONFIG_H

#include "config.h"

#endif

#include "php.h"

#include "php_ini.h"

#include "ext/standard/info.h"

#endif /* MONEXT_H_ */

Pour l’instant, considérant la simplicité de notre extension, ce fichier d’en-têtes ne fait rien de plus
qu’inclure quelques fichiers fournis par PHP 2, dont, en particulier, le fichier d’en-têtes php.h.

Ici, le nom de l’extension et sa version ont été renseignés en dur dans la structure monext_module_-
entry. À terme, vous aurez généralement tendance à définir depuis le fichier .h de votre extension
une constante nommée PHP_nom_de_lextension_VERSION pour définir son numéro de version :

#define PHP_MONEXT_VERSION "0.1"

Cette constante sera alors utilisée dans la définition de la structure déclarant l’extension au moteur
de PHP :

zend_module_entry monext_module_entry = {

STANDARD_MODULE_HEADER,

"monext",

NULL, /* Function entries */

NULL, /* Module init */

NULL, /* Module shutdown */

NULL, /* Request init */

NULL, /* Request shutdown */

NULL, /* Module information */

PHP_MONEXT_VERSION, /* Replace with version number for your extension */

STANDARD_MODULE_PROPERTIES

};

Si vous êtes amené à distribuer cette extension via PECL, cette constante sera utilisée pour
déterminer le numéro de version de l’extension indiqué sur le site.

Au cours des prochains chapitres, au fur et à mesure de l’ajout de fonctionnalités à notre extension,
nous viendrons enrichir ce fichier.

2En fait, nous aurions pu placer ces directives d’inclusion directement dans monext.c et ne pas du tout utiliser de fichier .h� ;
mais, puisque nous utiliserons réellement ce fichier par la suite, autant prendre dès maintenant la bonne habitude de le définir.

Une toute première extension 4

1.1.2 Configuration de la compilation

Une fois les deux fichiers sources de l’extension en place, il faut configurer la compilation de celle-ci.
Sous un système UNIX-like, cela se fait via un fichier nommé config.m4.

Ce fichier est responsable de la création d’une option qui permettra d’activer la compilation de
l’extension lors de l’appel à ./configure, ainsi que de la déclaration du module et de l’ensemble des
fichiers source .c qui le composent.

Voici le fichier config.m4 que nous pouvons utiliser pour configurer la compilation de notre première
extension :

PHP_ARG_ENABLE(monext, whether to enable monext support,

[--enable-monext Enable monext support])

if test "$PHP_MONEXT" = "yes"; then

PHP_NEW_EXTENSION(monext, monext.c, $ext_shared)

fi

La première portion de ce fichier utilise PHP_ARG_ENABLE() pour ajouter une option, --enable-
monext, au script de configuration  ; cette option pourra être utilisée lors de l’exécution de ./confi-
gure, pour activer la compilation de l’extension.

En fonction du nom de l’extension, il vous faudra souvent adapter le nombre d’espaces
entre l’option permettant d’activer sa compilation et la description de celle-ci, pour que la
sortie de ./configure --help soit correctement alignée.

Le dernier paramètre passé à cette option se retrouve dans la sortie de ./configure --help pour
indiquer l’utilité de l’option correspondante :

./configure --help

`configure' configures this package to adapt to many kinds of systems.

...

Optional Features and Packages:

...

--enable-monext Enable monext support

...

La seconde partie du fichier config.m4 que nous avons créé ici utilise l’instruction PHP_NEW_EXTEN-

SION() pour déclarer une extension PHP, dans le cas où sa compilation a été demandée via l’option
--enable-monext.

Une toute première extension 5

PHP_NEW_EXTENSION() attend en second paramètre la liste de l’ensemble des fichiers .c qui
composent l’extension : nous n’en avons qu’un seul pour l’instant, mais si nous sommes
amenés à en ajouter, il faudra les déclarer ici.

Nous verrons plus loin dans ce livre comment mettre en place le fichier config.w32, qui joue le
même rôle lorsqu’il s’agit de compiler une extension sous Windows.

1.2 Compilation de l’extension

Une fois que nous avons écrit le code source de notre extension et le fichier configurant sa
compilation, cette compilation se fait en trois étapes.

Pour ce chapitre, nous compilons notre extension pour la version de PHP installée au
niveau système. Nous verrons plus loin comment compiler une extension pour une version
spécifique de PHP (qu’il s’agisse de cibler un numéro de version particulier ou une version
de PHP compilée avec informations de débogage).

La première étape de la compilation d’une extension est de lancer la commande phpize :

$ phpize

Configuring for:

PHP Api Version: 20100412

Zend Module Api No: 20100525

Zend Extension Api No: 220100525

L’utilitaire phpize va créer le script configure à partir des informations présentes dans le fichier
config.m4 et de la configuration de PHP (version de PHP – qui se retrouve dans les numéros
de versions affichés en sortie de phpize – mais aussi options qui avaient été utilisées lors de sa
compilation, comme activation ou non du débogage).

La commande phpize extrayant les informations de config.m4 pour créer le script
configure, elle sera à relancer à chaque modification du fichier de configuration
config.m4.

Après cela, il devient possible d’exécuter le script ./configure qui vient d’être créé :

Une toute première extension 6

$./configure --enable-monext

checking for grep that handles long lines and -e... /bin/grep

checking for egrep... /bin/grep -E

checking for a sed that does not truncate output... /bin/sed

[...]

[...]

checking whether to build static libraries... no

configure: creating ./config.status

config.status: creating config.h

config.status: executing libtool commands

Le script configure vérifie que les outils et bibliothèques requis pour construire l’extension sont tous
présents sur votre système et crée le fichier Makefile qui permettra réellement de compiler celle-ci.

Si le script ./configure échoue, c’est généralement parce qu’il vous manque une bi-
bliothèque  ; le message d’erreur affiché devrait vous permettre de déterminer laquelle –
installez-la en version de développement (sous distributions debian, il s’agit généralement
d’un paquet nommé comme la bibliothèque, mais avec un suffixe -dev).

Une fois l’étape de configuration passée avec succès, vous pouvez exécuter la commande make pour
lancer la compilation de l’extension :

$ make

[...]

[...]

--

Libraries have been installed in:

/home/squale/developpement/book-php-extension/sources/monext01/modules

[...]

[...]

--

Build complete.

Don't forget to run 'make test'.

Comme l’indique la sortie de make, l’extension est compilée vers le répertoire modules/ :

Une toute première extension 7

$ ls -1 modules

monext.la

monext.so

Notre extension est le fichier monext.so.

1.3 Et voila, une nouvelle extension !

Puisque notre extension est compilée, il ne nous reste plus qu’à utiliser la directive de configuration
extension de PHP pour la charger.

1.3.1 Vérifier que l’extension est chargée

En ligne de commande, en exploitant l’option -m de PHP, nous pouvons vérifier que notre nouvelle
extension est reconnue par PHP :

$ php -dextension=modules/monext.so -m

[PHP Modules]

apc

bcmath

bz2

[...]

monext

[...]

zip

zlib

Lorsque nous indiquons à PHP qu’il doit charger le fichier monext.so de notre extension, nous
pouvons voir que celle-ci fait partie des extensions chargées  ; et aucunmessage d’erreur n’est affiché.

Bien sûr, en l’état, notre extension ne fait rien  ; mais maintenant que nous avons un squelette d’ex-
tension vide, nous allons pouvoir, petit à petit, lui ajouter les fonctionnalités qui nous intéressent  !

1.3.2 Et phpinfo() alors� ?

Àprésent, créons un fichier phpinfo.php contenant un appel à la fonction phpinfo() de PHP, comme
ceci :

Une toute première extension 8

<?php

phpinfo();

?>

Si nous avons compilé notre extension avec PHP 5.4 ou supérieur, nous pouvons tirer parti du serveur
web de test intégré, pour servir ce fichier PHP sans avoir à reconfigurer quoi que soit pour que
PHP soit exécuté par un serveur Web distinct (Apache, nginx…) que vous pourriez avoir sur votre
machine :

$ php -dextension=modules/monext.so -S localhost:8080

PHP 5.4.6-1ubuntu1.1 Development Server started at Sun Mar 10 17:36:48 2013

Listening on http://localhost:8080

Document root is /.../monext01

Press Ctrl-C to quit.

[Sun Mar 10 17:36:54 2013] 127.0.0.1:53260 [200]: /phpinfo.php

Charger http://localhost:8080/phpinfo.php dans votre navigateur affichera la sortie de phpin-
fo(), incluant une section – minimaliste – à propos de notre extension :

La sortie de phpinfo() pour notre extension

Comme nous pouvons le constater, par défaut, un squelette d’entrée a été automatiquement généré
pour phpinfo(). Nous verrons dans les prochains chapitres comment enrichir celui-ci pour y faire
remonter plus d’informations à propos de notre extension.

1.4 Contrôle de sources et fichiers à ignorer

Si vous regardez le contenu du répertoire au sein duquel vous avez travaillé pour ce chapitre, vous
verrez que là où vous n’aviez créé que quelques fichiers (un fichier .c, un fichier .h, le fichier
config.m4, et éventuellement un fichier .php), vous en avez maintenant plus d’une vingtaine, y
compris quelques répertoires.

En effet, le processus de compilation d’une extension PHP crée un nombre conséquent de fichiers –
fichiers qui ne font pas en soi partie du code de votre extension et ne devraient pas être commités sur
votre gestionnaire de code source, puisqu’ils ont été automatiquement générés, peuvent être recréés
au besoin, et, en plus de cela, dépendent pour certains de votre environnement.

Une toute première extension 9

Vous voudrez sans aucun doute indiquer à votre gestionnaire de code source3 qu’il doit ignorer le
gros de ces fichiers. Si vous travaillez avec Git, cela peut être fait en créant à la racine de votre projet
un fichier .gitignore contenant la liste des motifs de fichiers à exclure  ; si vous travaillez avec SVN,
vous pouvez arriver au même résultat en utilisant la propriété svn:ignore. Dans tous les cas, la liste
de fichiers que vous souhaiterez exclure ressemblera à celle-ci :

.deps

*.lo

*.la

.libs

Makefile

Makefile.fragments

Makefile.global

Makefile.objects

*.tgz

acinclude.m4

aclocal.m4

build

config.cache

config.guess

config.h

config.h.in

config.log

config.nice

config.status

config.sub

configure

configure.in

conftest

conftest.c

include

install-sh

libtool

ltmain.sh

missing

mkinstalldirs

modules

sm.php

run-tests.php

autom4te.cache

3Bien sûr, comme pour n’importe quel autre projet, vous avez prévu de stocker les sources de votre extension PHP au sein
d’un gestionnaire de code source, comme Git ou Subversion. Si non… Eh bien, il n’est jamais trop tard pour bien faire.� ;-)

Une toute première extension 10

Avec cela, les seuls fichiers qui seront placés sous gestion de code seront les vrais fichiers sources de
notre extension : ceux que nous avons créés au cours de ce chapitre.

En complément, notez que l’option --clean du script phpize permet d’effacer tous les fichiers
temporaires qui sont créés lors des différentes étapes de la compilation d’une extension PHP, ainsi
que ceux laissés lorsque des tests automatisés échouent.

2. Quelques points divers
Ce dernier chapitre, qui n’en est en fait pas vraiment un, est destiné à regrouper quelques sujets
distincts les uns des autres, qui ne se seraient pas en l’état actuel intégrés dans d’autres chapitres de
ce livre et ne sont pas assez longs pour constituer des chapitres à part entière, mais dont je tenais à
parler – et qui méritent mieux qu’un classement en tant qu’annexe.

Il est possible que les sections qui figurent ici dans la version courante de ce livre soient revues, peut-
être en profondeur, dans une prochaine version. Il est même possible que certaines soient intégrées
à un autre chapitre, ou disparaissent complètement.

2.1 Déclarer des constantes

Il est possible de définir des constantes depuis du code PHP utilisateur en utilisant l’instruction
define()1. Bien entendu, une extension peut elle aussi exposer des constantes.

2.1.1 Déclarer une constante

Une constante aura généralement toujours la même valeur – constante. Elle est donc définie, dans
une extension PHP, au moment du chargement de celle-ci  ; c’est-à-dire au moment de la phase
MINIT, depuis la fonction branchée sur celle-ci.

Si une constante doit avoir une valeur qui peut être différente pour chaque requête (mais qui reste
la même tout au long du traitement de chaque requête, bien sûr – ça ne serait pas une constante,
sinon  !), elle peut être définie depuis la fonction branchée sur la phase RINIT de votre extension.

Le plus souvent, une constante sera définie en utilisant une des macros REGISTER_*_CONSTANT() :

PHP_MINIT_FUNCTION(monext)

{

REGISTER_STRING_CONSTANT("MONEXT_CTE_STR_1", "1ère constante",

CONST_PERSISTENT);

REGISTER_STRING_CONSTANT("MONEXT_CTE_STR_2", "2nde constante",

CONST_CS | CONST_PERSISTENT);

return SUCCESS;

}

1http://php.net/define

11

http://php.net/define
http://php.net/define

Quelques points divers 12

Pour définir une constante de type chaîne de caractères, ici, nous avons utilisé la macro REGISTER_-
STRING_CONSTANT(), qui attend trois paramètres :

• le nom de la constante, qui doit être unique, une constante ne pouvant être définie qu’une
seule fois,

• la valeur de cette constante,
• et une combinaison de drapeaux.

Trois valeurs peuvent être combinées, pour ce dernier paramètre :

• CONST_PERSISTENT : indique que la constante doit être persistante, conservée d’une requête à
l’autre. Cette valeur sera utilisée pour les constantes définies au moment de la phase MINIT,
et pas pour celles qui seraient définies depuis la phase RINIT.

• CONST_CS : indique que le nom de la constante est sensible à la casse. En général, un nom de
constante se trouve en majuscules et est sensible à la casse, et ce drapeau est donc utilisé. Au
niveau des constantes déclarées par PHP, ce flag est activé pour toutes, sauf pour TRUE, FALSE,
et NULL, dont les noms sont insensibles à la casse.

• CONST_CT_SUBST : cette valeur n’est que rarement utilisée et permet une optimisation (substi-
tution lors de la compilation d’un script PHP) lorsque CONST_CS n’est pas utilisée.

À titre d’exemple, voici un script PHP utilisant les deux constantes définies un peu plus haut :

<?php

// Nom de constante insensible à la casse

var_dump(MONEXT_CTE_STR_1);

var_dump(MonExt_cTe_StR_1);

// Nom de constante sensible à la casse

var_dump(MONEXT_CTE_STR_2);

// Erreur

var_dump(MonExt_cTe_StR_2);

?>

En exécutant ce script, voici la sortie que nous obtiendrions :

Quelques points divers 13

$ $HOME/bin/php-5.4-debug/bin/php -dextension=modules/monext.so -f ./test.php

string(15) "1ère constante"

string(15) "1ère constante"

string(14) "2nde constante"

PHP Notice: Use of undefined constant MonExt_cTe_StR_2

- assumed 'MonExt_cTe_StR_2' in .../test.php on line 10

Notice: Use of undefined constant MonExt_cTe_StR_2

- assumed 'MonExt_cTe_StR_2' in .../test.php on line 10

string(16) "MonExt_cTe_StR_2"

N’importe quelle combinaison de majuscules et minuscules peut être utilisée pour désigner notre
première constante, dont le nom n’est pas sensible à la casse, alors que le nom de la seconde ne peut
être écrit qu’en majuscules, puisqu’elle a été déclarée avec le flag CONST_CS.

PHP fournit les macros suivantes pour déclarer des constantes :

• REGISTER_LONG_CONSTANT() : permet de déclarer une constante entière,
• REGISTER_DOUBLE_CONSTANT() : pour définir une constante en tant que nombre à virgule à
flottante,

• REGISTER_STRING_CONSTANT() : nous l’avons utilisée un peu plus haut : elle permet de définir
une constante de type chaîne de caractères,

• REGISTER_STRINGL_CONSTANT() : cette dernière macro permet elle aussi de définir une
constante chaîne de caractères, mais en spécifiant la longueur de cette chaîne de troisième
paramètre, les drapeaux étant alors le quatrième paramètre.

2.1.2 Noms et valeurs dynamiques

Les macros vues juste au-dessus utilisent sizeof() pour déterminer la longueur de la chaîne de
caractères correspondant au nom de la constante à définir, ce qui empêche de les utiliser avec un
nom de constante qui ne soit pas écrit en dur dans le code, lors de leur appel : il n’est pas possible
d’utiliser quelque chose de ce type :

char * nom = "...";

REGISTER_LONG_CONSTANT(nom, 123456, CONST_CS | CONST_PERSISTENT);

sizeof(nom) serait évalué comme le nombre d’octets utilisés pour représenter un pointeur char *,
et pas comme le nombre de caractères du nom de la constante.

À la place, pour déclarer une constante dont le nom n’est pas connu à la compilation de l’extension,
vous allez devoir directement faire appel aux fonctions qui sont finalement utilisées par ces macros :
chaque macro correspond à une fonction nommée sous la forme zend_register_*_constant().

Par exemple, pour définir cinq constantes, toutes de type chaîne de caractères, nommées de MONEXT_-
CTE_STR_1 à MONEXT_CTE_STR_5, nous pourrions utiliser une portion de code ressemblant à celle-ci :

Quelques points divers 14

PHP_MINIT_FUNCTION(monext)

{

int i;

for (i=1 ; i<=5 ; i++)

{

char *nom;

/* longueur = prefixe + longueur(i) + octet null de fin de chaine */

nom = emalloc(strlen("MONEXT_CTE_STR_") + 1 + 1);

char *valeur = pemalloc(strlen("constante n°") + 1 + 1, 1);

sprintf(nom, "MONEXT_CTE_STR_%d", i);

sprintf(valeur, "constante n°%d", i);

zend_register_string_constant(

nom,

strlen(nom) + 1,

valeur,

CONST_CS | CONST_PERSISTENT,

module_number TSRMLS_CC

);

efree(nom);

}

return SUCCESS;

}

Les fonctions zend_register_*_constant() s’utilisent de manière assez similaire à celle des macros
correspondantes  ; elles attendent quelques paramètres supplémentaires :

• un second paramètre est intercalé après le nom de la constante : la longueur de ce nom.
Attention, le caractère nul de fin de chaîne doit être compté – d’où le strlen() + 1 ici,

• le numéro de l’extension, reçu par toutes fonctions branchées sur les phases MINIT et RINIT lors
de l’expansion des macros PHP_MINIT_FUNCTION() et PHP_RINIT_FUNCTION(), doit être passé
après les drapeaux, pour que le moteur PHP sache rattacher la constante à notre extension.

Notez que lorsque vous déclarez une constante de type de chaîne de caractères, la valeur
spécifiée n’est pas copiée vers ladite constante, mais uniquement référencée par celle-ci.
Cela signifie que les chaînes de caractères créées dynamiquement, comme celles définies
ici, doivent être allouées en mémoire permanente.

Utilisons le script test.php suivant pour tester l’affichage de nos cinq constantes créées avec des
noms et valeurs dynamiques :

Quelques points divers 15

<?php

var_dump(MONEXT_CTE_STR_1);

var_dump(MONEXT_CTE_STR_2);

var_dump(MONEXT_CTE_STR_3);

var_dump(MONEXT_CTE_STR_4);

var_dump(MONEXT_CTE_STR_5);

?>

Exécuter ce script nous donnera la sortie reproduite ci-dessous :

$ $HOME/bin/php-5.4-debug/bin/php -dextension=modules/monext.so -f ./test.php

string(14) "constante n°1"

string(14) "constante n°2"

string(14) "constante n°3"

string(14) "constante n°4"

string(14) "constante n°5"

2.1.3 Constantes d’autres types

Les macros REGISTER_*_CONSTANT() et fonctions zend_register_*_constant() correspondantes
que nous avons vues jusqu’à présent permettent de définir des constantes de types numériques
entier et flottant et chaîne de caractères  ; mais il est tout à fait possible de créer des constantes
manuellement en construisant une variable de type zend_constant2, qui est une structure définie
comme suit :

typedef struct _zend_constant {

zval value;

int flags;

char *name;

uint name_len;

int module_number;

} zend_constant;

Ensuite, à nous de renseigner ces champs un par un et d’utiliser la fonction zend_register_-

constant() pour enregistrer la constante auprès du moteur de PHP.

Par exemple, pour définir une constante de type booléen, nous pourrions utiliser une portion de code
similaire à celle-ci :

2La structure zend_constant est définie dans le fichier Zend/zend_constants.h.

http://lxr.php.net/xref/PHP_5_4/Zend/zend_constants.h

Quelques points divers 16

PHP_MINIT_FUNCTION(monext)

{

/* Définition d’une constante booléenne */

zend_constant c;

c.flags = CONST_CS | CONST_PERSISTENT | CONST_CT_SUBST;

c.module_number = module_number;

c.name = zend_strndup(ZEND_STRL("MONEXT_CTE_BOOL"));

c.name_len = sizeof("MONEXT_CTE_BOOL");

c.value.value.lval = 1;

c.value.type = IS_BOOL;

zend_register_constant(&c TSRMLS_CC);

return SUCCESS;

}

La constante est ensuite accessible, comme celles créées précédemment, depuis un script PHP :

<?php

var_dump(MONEXT_CTE_BOOL);

?>

Et l’exécution de ce script donne la sortie attendue :

$ $HOME/bin/php-5.4-debug/bin/php -dextension=modules/monext.so -f ./test.php

bool(true)

Les macros REGISTER_NULL_CONSTANT() et REGISTER_BOOL_CONSTANT(), ainsi que les
fonctions correspondantes zend_register_bool_constant() et zend_register_null_-

constant(), n’existent pas en PHP 5.4 ni 5.5, mais il est possible qu’elles soient implé-
mentées pour la version suivante3.

2.1.4 Lire la valeur d’une constante

La valeur d’une constante peut être lue, depuis une extension PHP, en appelant la fonction
zend_get_constant(), qui prend en paramètres le nom de celle-ci et un pointeur vers une zval

qui permettra de stocker une copie de la valeur recherchée.

Par exemple, nous pourrions écrire la fonction suivante, qui prend elle-même en paramètre le nom
d’une constante à lire et affiche la valeur correspondante :

3Ces deux macros et ces deux fonctions ont été commitées sur la branche master de PHP après la création de la branche
correspondant à PHP 5.5. Il y a donc de bonnes chances qu’elles fassent leur apparition pour PHP 5.6 – et que vous ne puissiez
pas les utiliser si votre extension est compilée avec une version inférieure de PHP.

Quelques points divers 17

PHP_FUNCTION(monext_get_constant)

{

/* zval vers laquelle sera stockée la valeur de la constante */

zval val;

char *name;

int name_len;

/* Nom de la constante, passé en paramètre */

if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s",

&name, &name_len) == FAILURE) {

return;

}

if (zend_get_constant(name, name_len, &val TSRMLS_CC))

{

/* Pour affichage, il est plus facile d’avoir une chaine de caractères */

convert_to_string(&val);

PUTS("Constante ");

PHPWRITE(name, name_len);

PUTS(" : ");

PHPWRITE(Z_STRVAL(val), Z_STRLEN(val));

PUTS("\n");

zval_dtor(&val);

}

}

Notez que, en vue de faciliter l’affichage, nous avons converti en chaîne de caractères la zval

renseignée par zend_get_constant(). Cette zval correspondant à une copie de la valeur de la
constante et non directement à cette valeur, nous pouvons la manipuler comme bon nous semble.

Notre fonction monext_get_constant() peut être appelée depuis PHP, pour afficher la valeur d’une
constante définie par notre extension (cf plus haut), d’une constante définie depuis le script PHP, ou
d’une constante inexistante :

define('PHP_CTE_DOUBLE_1', 3.1415);

monext_get_constant('MONEXT_CTE_STR_1');

monext_get_constant('PHP_CTE_DOUBLE_1');

monext_get_constant('CONSTANTE_INEXISTANTE');

La sortie obtenue en exécutant ces quelques lignes sera la suivante :

Quelques points divers 18

Constante MONEXT_CTE_STR_1 : Constante depuis extension

Constante PHP_CTE_DOUBLE_1 : 3.1415

La fonction zend_get_constant() est capable de lire aussi bien les valeurs de constantes définies
depuis PHP que depuis une extension, et n’affiche pas d’avertissement en cas de constante
inexistante. Elle retourne 1 en cas de succès et 0 en cas d’échec.

PHP fournit aussi la fonction zend_get_constant_ex() qui va un peu plus loin, en permettant de
spécifier la classe à laquelle une constante doit appartenir, ainsi qu’une série d’options.

2.1.5 Constantes namespacées

Pour déclarer des constantes dans un espace de noms, PHP fournit les macros REGISTER_NS_*_-
CONSTANT().

Ces macros font appel aux mêmes fonctions que REGISTER_*_CONSTANT(), à la différence près que
le nom de la constante est calculé à l’aide de la macro ZEND_NS_NAME() – qui concatène le nom de
l’espace de noms et le nom de la constante, en intercalant entre les deux le séparateur d’espaces de
noms.

2.2 Variables super-globales

PHP inclut unmécanisme de variables appelées super-globales, qui sont accessibles depuis n’importe
quelle fonction, sans avoir à être déclarées manuellement comme globales à l’aide du mot-clef
global. Ces variables, traditionnellement, ont un nom en majuscules, qui commence par un
underscore, comme $_POST, $_GET, ou $_FILES.

Une super-globale doit être connue du moteur de PHP avant que celui-ci ne commence à exécuter
un script. En conséquence, il n’est pas possible d’en déclarer depuis du code PHP utilisateur. Par
contre, une extension peut tout à fait créer des super-globales – d’ailleurs, $_SESSION est définie par
l’extension ext/session  !

2.2.1 Déclarer une variable super-globale

Déclarer une variable super-globale se fait depuis la fonction de votre extension branchée sur la
phase MINIT de PHP, en appelant zend_register_auto_global() :

Quelques points divers 19

PHP_MINIT_FUNCTION(monext)

{

zend_register_auto_global("_MAVAR", sizeof("_MAVAR") - 1, 0, NULL TSRMLS_CC);

return SUCCESS;

}

Cette fonction attend en paramètres :

• le nom de la variable super-globale,
• la longueur de ce nom – sans compter le caractère nul de fin de chaîne,
• un paramètre booléen indiquant si la variable doit être initialisée “juste à temps” (JIT : Just
In Time)  ; spécifions pour l’instant 0 et nous verrons un peu plus loin ce que ce paramètre
permet lorsqu’on lui passe 1,

• et finalement et optionnellement, une fonction qui sera appelée lors de la phase de compilation
du script PHP, à chaque fois que le nom de la variable sera rencontré.

Cette déclaration aurait aussi pu s’écrire en appelant la macro ZEND_STRL(), plutôt que d’écrire
manuellement les deux premiers paramètres :

zend_register_auto_global(ZEND_STRL("_MAVAR"), 0, NULL TSRMLS_CC);

Pour illustrer l’utilisation de cette variable super-globale, faisons appel au script test.php suivant :

<?php

ma_fonction_init();

ma_fonction_affiche();

function ma_fonction_init()

{

// Initialisation de la variable,

// sans la spécifier comme "global"

$_MAVAR = "Bonjour, Monde !";

}

function ma_fonction_affiche()

{

// Utilisation de la variable,

// toujours sans la noter "global"

var_dump($_MAVAR);

}

?>

Quelques points divers 20

Ce script utilise la variable $_MAVAR depuis deux fonctions, une fois en écriture et une fois en lecture,
sans jamais utiliser le mot-clef global ni le tableau $GLOBALS. Ceci ne fonctionne qu’avec une
variable super-globale et ne serait pas possible avec une variable normale, chaque fonction ayant
son espace de variables propre.

Exécuter cette portion de code donnera la sortie reproduite ci-dessous :

$ $HOME/bin/php-5.4-debug/bin/php -dextension=modules/monext.so -f ./test.php

string(16) "Bonjour, Monde !"

La première fonction a renseigné une valeur dans notre variable, et la seconde a pu la lire – nous
avons donc bien créé une variable super-globale  !

Notez que l’appel de zend_register_auto_global() permet de déclarer la variable, mais
pas de l’initialiser. Cela signifie que si nous y accédons, depuis du code PHP, en lecture
avant d’avoir écrit une valeur dedans, nous obtiendrons une notice  !

La variable devant généralement avoir une valeur différente pour chaque requête, son
initialisation peut être faite depuis la fonction branchée sur la phase RINIT de PHP – ou
alors, comme nous allons le voir un peu plus bas.

2.2.2 Détecter les utilisations d’une super-globale

Plus haut, nous avons passé NULL en quatrième paramètre à la fonction zend_register_auto_glo-

bal(). Celle-ci attend, pour ce quatrième paramètre optionnel, une fonction qui sera appelée lors de
la compilation des scripts PHP, à chaque fois que la variable super-globale sera rencontrée.

En reprenant le code écrit précédemment, nous pouvons le modifier de la manière suivante :

PHP_MINIT_FUNCTION(monext)

{

zend_register_auto_global("_MAVAR", sizeof("_MAVAR") - 1, 0,

php_monext_auto_globals_create_mavar TSRMLS_CC);

return SUCCESS;

}

Déclarons ensuite la fonction correspondante : elle reçoit en paramètres le nom de la variable super-
globale et la longueur de ce nom, et retourne un booléen.

Ici, nous utilisons cette fonction pour initialiser notre variable $_MAVAR, en lui faisant correspondre
un tableau associatif qui contiendra un élément :

Quelques points divers 21

static zend_bool php_monext_auto_globals_create_mavar(const char *name,

uint name_len TSRMLS_DC)

{

zval *valeur;

php_printf("CREATE_MAVAR\n");

ALLOC_ZVAL(valeur);

array_init(valeur);

INIT_PZVAL(valeur);

add_assoc_string(valeur, "plop", "Bonjour", 1);

zend_hash_update(&EG(symbol_table), "_MAVAR", sizeof("_MAVAR"),

&valeur, sizeof(zval *), NULL);

return 0;

}

Si cette fonction retourne 1, alors, elle sera à nouveau appelée si la variable super-globale est à
nouveau rencontrée plus loin dans le script PHP, lors de sa phase de compilation. Par contre, si cette
fonction a retourné 0, alors, elle ne sera plus appelée.

Pour tester cette modification apportée à notre extension, utilisons le script test.php suivant :

<?php

ma_fonction();

function ma_fonction()

{

var_dump($_MAVAR);

}

?>

Puisque, désormais, notre extension initialise la variable $_MAVAR, exécuter ce script PHP donnera
la sortie suivante :

Quelques points divers 22

$ $HOME/bin/php-5.4-debug/bin/php -dextension=modules/monext.so -f ./test.php

array(1) {

["plop"]=>

string(7) "Bonjour"

}

Autrement dit, nous pouvons à présent, depuis du code utilisateur, accéder à la variable super-
globale en lecture sans avoir auparavant écrit dedans : ceci est maintenant fait directement depuis
l’extension  !

Au sein du moteur de PHP, c’est typiquement de cette manière que sont renseignées les
variables super-globales $_GET et $_POST.

2.2.3 Et avec JIT� ?

Jusqu’à présent, lorsque nous avons appelé zend_register_auto_global() en lui passant en
paramètre un nom de fonction à appeler lorsque la variable serait rencontrée lors de la phase de
compilation d’un script PHP, nous avons toujours passé la valeur 0 en troisième paramètre.

Ce troisième paramètre est nommé jit (JIT, Just In Time – Juste à Temps). Si nous passons 0 comme
nous l’avons fait à présent :

• la fonction sera appelée une première fois,
• puis elle sera appelée à chaque fois que la variable sera rencontrée lors de la compilation du
script PHP, tant que la fonction n’a pas retourné 0 pour désactiver ces appels.

Dans le cas où la variable globale n’est pas du tout utilisée dans le script PHP exécuté, la fonction sera
jouée une première fois, typiquement pour initialiser la variable – alors qu’il y a de fortes chances
que cela soit complètement inutile (puisque la variable en question ne figure même pas dans le
script).

Par exemple, modifions un peu notre extension et notre script PHP pour :

• que l’extension affiche un message depuis la fonction branchée sur la phase MINIT et depuis la
fonction qui initialise la variable super-globale (la fonction de rappel branchée en quatrième
paramètre lors de la déclaration de celle-ci),

• et que le script PHP affiche AVANT et APRES autour de l’appel de ma_fonction()

Exécuter ce script avec l’extension affichant plus d’informations de débogage donnera la sortie
suivante :

Quelques points divers 23

$ $HOME/bin/php-5.4-debug/bin/php -dextension=modules/monext.so -f ./test.php

MINIT

CREATE_MAVAR

AVANT

array(1) {

["plop"]=>

string(7) "Bonjour"

}

APRES

Ici, la variable super-globale est utilisée dans le script PHP et le paramètre jit est passé à 0 comme
précédemment. La fonction utilisée pour initialiser la super-globale est donc appelée.

Si la variable était présente dans le code PHP, mais sans être utilisée (par exemple, si elle
figurait dans le corps d’une fonction non invoquée), le comportement serait exactement le
même : la super-globale est détectée à la compilation du code PHP, et non à son exécution.

Par contre, si le code de l’extension est modifié pour que le paramètre jit soit passé à 1, alors, la
fonction de rappel ne sera appelée que si la variable super-globale figure effectivement dans le code
du script PHP.

Autrement dit, si le nom de la variable $_MAVAR ne figure pas du tout dans le script PHP, la sortie
obtenue sera la suivante :

$ $HOME/bin/php-5.4-debug/bin/php -dextension=modules/monext.so -f ./test.php

MINIT

AVANT

APRES

Et si la variable est présente dans le code PHP au moins une fois, nous retrouvons la même sortie
que précédemment, lorsque le JIT était désactivé :

$ $HOME/bin/php-5.4-debug/bin/php -dextension=modules/monext.so -f ./test.php

MINIT

CREATE_MAVAR

AVANT

array(1) {

["plop"]=>

string(7) "Bonjour"

}

APRES

Quelques points divers 24

Et, pour insister un peu sur ce que je disais plus haut, si la variable est présente dans le code PHP,mais
sans être utilisée, nous obtenons ceci, qui prouve que la fonction de rappel définie dans l’extension
est bien appelée :

$ $HOME/bin/php-5.4-debug/bin/php -dextension=modules/monext.so -f ./test.php

MINIT

CREATE_MAVAR

AVANT

APRES

Ce troisième paramètre jit accepté par la fonction zend_register_auto_global() permet d’éviter
une initialisation, potentiellement coûteuse, de variables super-globales, dans le cas où elles ne sont
absolument pas utilisées dans un script PHP.

Il est utilisé au niveau du moteur de PHP qui spécifie une valeur de 1 pour la variable $GLOBALS

(qui n’est que rarement utilisée – son initialisation n’est donc souvent pas utile), valeur qui peut
aussi être spécifiée pour $_SERVER, $_ENV, et $_REQUEST en fonction de la valeur de la directive de
configuration auto_globals_jit4 (la première étant coûteuse à construire, et les deux suivantes peu
utilisées).

2.3 Personnaliser la sortie de phpinfo()

La section de votre extension sur la page générée par la fonction phpinfo(), ou via php -i en ligne
de commandes, est à ne pas négliger : elle sera vue par une bonne partie des développeurs utilisant
les fonctionnalités de votre extension, mais aussi probablement par ceux qui devront installer,
paramétrer ou administrer leurs applications.

Elle doit donc reprendre les informations principales de votre extension  ; à savoir, en général :

• le nom de l’extension, pour indiquer qu’elle est chargée correctement,
• sa version,
• ses paramètres de configuration .ini,
• et, si l’extension dépend d’une bibliothèque externe, de la version de cette bibliothèque contre
laquelle l’extension a été compilée.

Par défaut, si vous n’effectuez aucun développement spécifique à ce niveau, la sortie de phpinfo()
reprendra les trois premiers points  ; par exemple, pour une extension n’exposant aucune directive
de configuration .ini :

4http://fr2.php.net/manual/fr/ini.core.php#ini.auto-globals-jit

http://fr2.php.net/manual/fr/ini.core.php#ini.auto-globals-jit
http://fr2.php.net/manual/fr/ini.core.php#ini.auto-globals-jit

Quelques points divers 25

Affichage de phpinfo()

Mais il est possible de personnaliser cette sortie, pour ajouter ou ne pas faire figurer certaines
informations.

2.3.1 Personnaliser phpinfo()

Pour déclarer aumoteur de PHP que votre extension contient une fonction qui se chargera de générer
la section de phpinfo() lui correspondant, il faut ajouter une référence à celle-ci dans la structure
zend_module_entry de l’extension, à l’aide de la macro PHP_MINFO() :

zend_module_entry monext_module_entry = {

STANDARD_MODULE_HEADER,

"monext",

NULL, /* Function entries */

NULL, /* Module init */

NULL, /* Module shutdown */

NULL, /* Request init */

NULL, /* Request shutdown */

PHP_MINFO(monext), /* Module information */

"0.1", /* Replace with version number for your extension */

STANDARD_MODULE_PROPERTIES

};

Le prototype de la fonction correspondante est ajouté dans le fichier .h de notre extension :

PHP_MINFO_FUNCTION(monext);

Et sa définition trouve sa place dans le fichier .c correspondant :

Quelques points divers 26

PHP_MINFO_FUNCTION(monext)

{

php_info_print_table_start();

php_info_print_table_colspan_header(2, "Extension de test 'monext'");

php_info_print_table_row(2, "Version", "0.1");

php_info_print_table_header(2, "Première colonne", "Seconde colonne");

php_info_print_table_row(2, "Hello", "World");

php_info_print_table_row(2, "Bonjour", "Monde");

php_info_print_table_end();

php_info_print_table_start();

php_info_print_table_header(1, "Autre tableau");

php_info_print_table_row(1, "Ligne d’informations");

php_info_print_table_end();

}

Les sorties correspondant à phpinfo() sont généralement générées par le biais de fonctions dont le
nom est de la forme php_info_print_*().

Ici, la sortie générée se compose d’un premier tableau, délimité par les appels à php_info_print_-
table_start() et php_info_print_table_end(), à deux colonnes :

• la première ligne est une ligne de titres, contenant une seule colonne occupant la largeur de
deux, via un attribut HTML colspan que l’on retrouve dans le nom de la fonction php_info_-

print_table_colspan_header(),
• la seconde ligne est composée de deux colonnes, affichant la version de notre extension,
• vient ensuite une nouvelle ligne de titre, de deux colonnes cette fois-ci,
• Suivie de deux lignes de deux colonnes contenant quelques mots.

La sortie se poursuit ensuite avec un second tableau, et le rendu en sortie HTML serait le suivant :

Quelques points divers 27

phpinfo() personnalisé : affichage de tableaux

Il est cela dit possible de ne pas utiliser ces fonctions de tableaux et d’écrire du texte sur la
sortie standard, comme le fait la fonction ci-dessous, qui sépare deux lignes de texte par une ligne
horizontale (balise HTML <hr />) :

PHP_MINFO_FUNCTION(monext)

{

/* Texte en dehors de tout conteneur */

php_printf("Voici un peu de texte ;-)");

/* <hr /> ; ou 31 "_" si sortie non HTML */

php_info_print_hr();

/* Texte en dehors de tout conteneur (suite) */

php_printf("Et un peu plus ^^");

}

La sortie HTML ressemblerait alors à la capture d’écran reproduite ci-dessous :

phpinfo() personnalisé : affichage sur la sortie standard

Cette sortie n’est pas vraiment jolie et ne met pas vraiment notre extension en valeur… À
éviter, donc  !

En sortie texte, si le script PHP contenant l’appel à phpinfo() est invoqué en ligne de commandes,
ou via php -l, nous obtiendrions la sortie suivante :

Quelques points divers 28

monext

Voici un peu de texte ;-)

Et un peu plus ^^

Notez que la ligne horizontale a automatiquement été transformée par PHP en 71 caractères "_",
correspondant à une ligne.

Dans le cas où une sortie sous forme de tableaux ne vous conviendrait pas, et pour éviter cette
sortie brute visuellement peu satisfaisante, il est possible de positionner des boites dans la sortie
de phpinfo() : des zones de texte, dont les styles sont en accord avec le reste de la sortie, où les
affichages sont libres.

La création d’une telle zone est entourée d’un appel aux fonctions php_info_print_box_start()
et php_info_print_box_end(), la première acceptant 0 ou 1 en paramètre, en fonction du style
souhaité pour la boite. La sortie textuelle entre ces deux appels se fait vers la sortie standard, et vous
êtes libre d’y positionner ce que vous souhaitez. Par exemple :

PHP_MINFO_FUNCTION(monext)

{

char html[] = "Bonjour, Monde !";

char *html_escaped = php_info_html_esc(html TSRMLS_CC);

php_info_print_box_start(1);

php_printf("%s", html_escaped);

/*

php_info_html_esc() retourne une chaîne dont l’espace a été alloué

en mémoire => il faut le libérer nous-mêmes

*/

efree(html_escaped);

php_info_print_box_end();

php_info_print_box_start(0);

php_printf("Boite d’un autre style.");

php_info_print_box_end();

}

Notez que nous avons ici utilisé la fonction php_info_html_esc() pour encoder une chaîne de
caractères à afficher, qui contenait des balises HTML que nous ne souhaitions pas voir interprétées  ;

Quelques points divers 29

cette fonction peut être considérée comme équivalente à la fonction utilisateur html_entities(),
adaptée à une sortie de phpinfo().

La fonction php_info_html_esc() retourne une nouvelle chaîne de caractères, allouée en
mémoire, qu’il vous revient donc de libérer lorsque vous n’en avez plus besoin  !

La sortie HTML obtenue avec cette portion de code ressemblerait à ceci :

phpinfo() personnalisé : boites et sortie HTML échappée

Vous pouvez remarquer les deux styles différents pour chacune des deux zones de texte et le fait que
les balises HTML présentes dans le texte de la première zone ont bien été échappées et ne sont donc
pas interprétées.

En interne, le moteur de PHP invoquera la fonction php_info_print_module(). C’est elle
qui affiche le nom du module et sa version si vous ne définissez pas de fonction chargée
de la génération de la section de phpinfo() correspondant à votre extension, ou appelle la
fonction MINFO() si vous en avez défini une.

2.3.2 Sortie HTML / sortie textuelle

La fonction phpinfo() n’est pas toujours appelée pour générer une sortie HTML : en fonction de
la SAPI, il se peut qu’une sortie textuelle doive être générée – typiquement, lorsque phpinfo() est
appelée depuis un script exécuté en ligne de commande, ou directement via php -i.

Si la sortie que vous cherchez à générer est susceptible de contenir du HTML, il vous faudra donc
veiller à prévoir une version textuelle, qui restera lisible lorsqu’une sortie plus brute sera générée.

Le fichier SAPI.h contient ce qu’il nous faut pour déterminer si la SAPI courante correspond à une
génération de phpinfo() en mode textuel  ; incluons donc ce fichier d’en-têtes depuis le fichier .h
de notre extension :

#include "SAPI.h"

Et ensuite, dans la fonction MINFO() de notre extension, nous pouvons accéder à sapi_mo-

dule.phpinfo_as_text, qui sera vraie s’il nous faut générer une sortie textuelle. Par exemple, nous
pourrions envisager l’utilisation d’un portion de code ressemblant à celle-ci :

Quelques points divers 30

PHP_MINFO_FUNCTION(monext)

{

php_info_print_table_start();

if (sapi_module.phpinfo_as_text)

{

php_info_print_table_row(2, "Texte", "Bonjour, **Monde** !");

}

else

{

/* Echappement HTML déjà fait en interne !!! */

php_info_print_table_row(2, "Texte",

"Bonjour, Monde !");

}

php_info_print_table_end();

}

La sortie obtenue en mode HTML serait la suivante :

phpinfo() personnalisé : sortie HTML

Notez que la fonction php_info_print_table_row() a elle-même pris le soin d’échapper les balises
HTML que nous avions positionnées dans la chaîne de caractères affichée  ! La condition utilisée
ici, basée sur sapi_module.phpinfo_as_text, aurait donc plutôt tendance à être utile lorsque la
sortie est affichée sans passer par les fonctions php_info_*(), comme lorsque nous produisons un
affichage au sein d’un boite.

En mode textuel, c’est la première chaîne qui remonterait :

monext

Texte => Bonjour, **Monde** !

Pour rebondir sur ce que je disais quelques lignes plus haut, voici un exemple de code où nous
générons une sortie dans une boite :

Quelques points divers 31

PHP_MINFO_FUNCTION(monext)

{

php_info_print_box_start(0);

if (sapi_module.phpinfo_as_text)

{

php_printf("Bonjour, **Monde** !");

}

else

{

php_printf("Bonjour, Monde !");

}

php_info_print_box_end();

}

Ici, la sortie HTML correspond à ce que nous attendions :

phpinfo() personnalisé : boite et sortie HTML

Veillez à ce que les sorties textuelles et HTML présentent les mêmes informations, de façon
à ne pas perdre vos utilisateurs.

2.3.3 Affichage des directives .ini

À partir du moment où votre extension définit des directives de configuration .ini, il est recom-
mandé de les faire remonter dans la sortie de phpinfo(). C’est même le fonctionnement par défaut
si vous ne définissez pas de fonction MINFO().

Pour plus d’informations, notamment sur la personnalisation de l’affichage des valeurs pour chaque
directive, consultez la section phpinfo() du Chapitre « Configuration par fichier .ini »

3. Et maintenant� ? Un livre complet� !
Arrivés ici, vous avez parcouru l’introduction de mon livre Développer une Extension PHP, ainsi
que l’intégralité de son premier chapitre et quelques sections qui figurent plus loin dans le livre.

Si ces quelques dizaines de pages ont – ce que j’espère – éveillé votre curiosité et que vous souhaitez
en apprendre plus, vous pouvez acheter ce livre en version complète à l’adresse suivante :

https ://leanpub.com/developper-une-extension-php1

Il est disponible aux formats électroniques PDF, EPUB et MOBI. Les éventuelles mises à jour,
qui pourraient apporter quelques corrections et ajout de précisions ici et là sont bien entendu
téléchargeables sans surcoût.

Encore une fois, je vous souhaite une excellente lecture et bon courage pour vos premiers
pas dans le développement d’extensions PHP  !

– Pascal MARTIN

1https://leanpub.com/developper-une-extension-php

32

https://leanpub.com/developper-une-extension-php
https://leanpub.com/developper-une-extension-php

	Table of Contents
	À propos de cet aperçu
	Qu’est-ce que contient cet aperçu ?
	Contenu du livre ?

	Préface
	Introduction
	Pourquoi développer une extension PHP ?
	Pourquoi ne pas développer une extension PHP ?
	À qui s’adresse ce livre ?
	Remerciements
	À propos de l’auteur

	Une toute première extension
	Fichiers sources et configuration de la compilation
	Compilation de l’extension
	Et voila, une nouvelle extension !
	Contrôle de sources et fichiers à ignorer

	Quelques points divers
	Déclarer des constantes
	Variables super-globales
	Personnaliser la sortie de phpinfo()

	Et maintenant ? Un livre complet !

