

[image: Async Remote]

 Async Remote

 Arkency Team and Robert Pankowecki

 This book is for sale at http://leanpub.com/developers-oriented-project-management

 This version was published on 2016-04-04

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2013 - 2014 Robert Pankowecki, Andrzej Krzywda & Arkency Team

 Table of Contents

 	
 Story of size 1

 	
 Stream Of Work

 Guide

 	
 Begin Reading

Story of size 1

A lot has been said about task estimation in IT projects. Every
team and every tool seem to approach the problem from a different angle.
You can estimate it in time (hours/days) or in story points (whatever it means).
For example Pivotal allows you to set the size to 1, 2 or 3, which sounds very simple. Some
methodologies recommend going with Fibonacci sequence i.e.:
1, 2, 3, 5, 8, 13, 21, etc. Others suggest: 1, 2, 3, 5, 13, 40, 100.
Oh, and here is another one yet: 3, 5, 8, 13, 40, 100. I think that no matter which
numeration appeals to you, you will eagerly find some justification for using them.

Except that there is no justification. Whenever you get to a story of size 5,
you don’t really have a story at all. All you have is some blurry vision of what you need, and as a result, you are
unable to specify the task more clearly.

Those numbers mean nothing at the end of the day. Or perhaps I should say: at the end of the week, when someone asks why
only 10 points were delivered this week when usually 20 are to be delivered.
What do you need story points for anyway? To blame people for poor estimates or being lazy at the end of
the week? To track if people are working?
To guess what is going to be implemented next week, even if this is still
just guessing?

And what happens when you have estimated them wrongly? Will you change the original
value when marking the story as finished? If you do (and I know teams who do),
you will always end up with about the same number of story points per week,
because in fact, you are just using the points to track time and you work
about the same amount of time every week. So it brings you no real value whatsoever.

Because of all the hassle related to story points, we have taken a
different approach. We try to create stories of size 1 only. It’s the smallest
task that still brings business value. If you can split the task into 2 subtasks,
and they still bring value to your business, then it is not a size 1 story -
the story should be indivisible. Let’s have a look at some of the benefits of
this strategy.

It’s easier to track progress. No matter what tool you use for that, after splitting
tasks into very, very small subtasks you can track progress easier. If you split
a ticket of size 3 into two or three stories you will be able to track it better.
Instead of being notified that something is done after 1.5 days, you will be able
to see part 1 finished within the first few hours. Give it a few hours more
and the second part will be also done. By the end of next day you will know that the third part
was also finished. You won’t feel the urge to interrupt anyone and ask for the status.
Updating status often and easily is one of the most effective forms of asynchronous
overcommunication.

Marking tasks as done is rewarding, refreshing and motivating. Some teams
give programmers tasks that are going to take a week or longer. It is very tiresome
for developers to work on such features for a long time. And there are many
reasons why:

 	People start feeling alienated from the team.
 Alienation often happens when developers work on distinct parts of the
 system and have no need or reason to communicate with each other.

 	Every day you put more and more effort into the task but it still is not finished.
 You can neither say it is done, nor that it is undone . Just started. When someone
 asks for the status, the developer must either go into details to
 describe the progress or simply state: I am working on it. Either way,
 having unfinished tasks at the end of the day is stressful for both the developers and the managers. I would even say that tasks longer
 than 1 week are detrimental. They are so big, involve so many tiny changes
 and are so time demanding that you for the most part while working on them
 can’t see the end of them.

When you deal with lots of small tasks, the contrast is very sharp. You take a task, spend
a few hours on it and it is done. There is no state between. No “70% done, boss”,
or anything like that. You take, you do it, you leave it, you forget about it.

Working on smaller tasks related to different parts of the project help
propagate knowledge. When you have people working for too long on specific
parts of the project, Collective Ownership declines. People specialize in
modules or parts of the codes such as payments, billing, backend, frontend, etc. … And
later you end up pairing people with tasks that seem to be suitable for
them based on the knowledge they have, because you think the job is going to
be finished faster that way, but that’s not what happens. What happens is that
people look at the same code again and again and it is their own code. And you
can’t really learn by reading your own code. You don’t learn anything about code readability
when others don’t read it and have no chance to understand it. You don’t
know the quality of your tests when others don’t start changing things
and see what broke. And when you keep working on the same code for a
long time, it becomes boring. And the code starts to be filled with your personal
patterns that suit you very well, but might not be understandable by other
team members. So working on smaller tickets brings fresh eyes to different code
areas and helps catch bugs and improve readability. Also because people
constantly read each other’s code (in practice, when working on it, is not the
same kind of thing as reading Pull Requests and saying OK), they synchronize
their mindset. They learn from each other, mentor each other and
establish best practices.

Keeping stories small makes people more mobile across different projects that
your company is currently working on. It means that when a project is progressing slowly, while another one doesn’t need
much manpower at the given moment, you can shift your developers more freely between the projects. It’s way
less cognitive overhead to start working on a project story that is
going to take 2-4 hours vs. joining a project only to find out the work involved will take one week, And there might not even be enough
“flexible time” to delegate people to a different project for a whole week. One or two days to
help in a different project is usually OK, however, for any programmer to provide
value in a new project in such a short time you need to have small,
self-explainable, understandable tickets to begin with - a minimal overhead to
join the team.

With small stories, it’s also easier to jump onto them during a busy day. Let’s say you’re having a
doctor’s appointment or a meeting? No problem. You can still
take up a small task later that day and deliver something of value to the
business.

Let’s now consider a simple example and see the difference for ourselves.
Imagine we have got task A estimated as 5 points and task B estimated
as 3 points. We look at those tasks carefully and split into multiple
small stories: A1, A2, A3, A4, A5, A6, A7 and B1, B2, B3. Some really interesting things might happen
as a result.

You develop a better understanding of
what this task really is about and how time-consuming it is. This gives you
a better base for estimating and tracking it properly.

You get a chance to prioritize things more accurately. Instead of just
saying “do A and then do B”, you can now prioritize it as follows:
A1, A2, A3, B1, B2, A4, A5, B3, A6, A7, B4. So you might find out that
different parts of the task bring different value to your business. And that
the sequencing of tasks is a little more complicated.
Maybe by the end of task A6, you’ll have come up with something entirely new,
(such as some new business opportunity C1) and prioritize it over A7 and B4. And when
you do so, all other things are already on production, providing
you value. The developer won’t say “I am halfway through a really big task”. You won’t have to choose between dropping task A completely and
doing C instead. You can manage your priorities on a daily basis.

Having small tasks minimizes your risk of not delivering. If the task is
harder to implement than initially projected, then it’s only a difference of between
4 and 8 hours, not a week or two weeks. So everybody is getting the feedback
from the tasks quickly. And in case of personal misfortune, when someone
gets sick or injured, the situation is easier to manage. You simply don’t get stuck halfway through a long rewrite of a module as your key developer suddenly bails out.

And the most obvious benefit - when things are delivered swiftly, the business
profits faster, while the feedback loop is shorter.

The only downside I could identify is that implementing things in such way
might take longer time. However, it is my personal opinion that
the price for having small, working, deployable value-providing tickets
is very small, if not non-existing.

Links:

 	Don’t Take Partial Credit for Semi-Finished Stories

 	What is a story point

 	Twenty ways to split stories

 	How to split a user story - flowchart

 	Zeigarnik Effect

Stream Of Work

Leave tasks unassigned

The most common way to manage a project is to take a bunch of tasks and assign
them to developers at the beginning of the week, and then, let them work on the tasks
for the rest of the week. We believe this is not the most effective model, based
on both our experience and on tasks scheduling theory. We suggest that
you leave your task unassigned and let developers start working on it when
they are finished with other tasks. Instead of pushing tasks onto them, you want
your developers to pull them from the prioritized list.

 [image:]

The webserver analogy

A similar subtle difference emerges in case of webservers with multiple workers
where one task takes longer than others. In push model, when one
worker is busy processing the request, they can still receive next requests which will
queue waiting for the currently processed one to be finished. In pull model,
the first available worker will take the first request that needs to be served and the
queue of requests is global for all workers, and not worker-specific. And this is
a good analogy as to how you might want to manage your project and split tasks
between developers.

The first reason for that is exactly the same as in the webserver example. You
do not exactly know upfront how long the task (request) is going to take to be
finished (processed). Yes, you do estimate things. And yes, you do it wrongly. Just as
everybody does. Case in point: two developers (John and Martha) are
assigned two tasks each. John is working on tasks A and C. Martha is supposed to
be working on tasks B and D. The priority is A, B, C, D, and task A proves to be more complicated than originally assumed, so
John is still working on it. In the meantime Martha has finished working on
task B. If she goes with her assigned task D, she will be working on the task
that is not the most valuable for the business. After all, a higher priority task C is left to finish, and she could
start it if it was left unassigned. This is not rocket
science. It’s what you hear at first classes of tasks scheduling courses.
And still many projects choose the ineffective way.

Availability and efficiency

You might not know or be sure about the availability of your developers. In some
projects, you’ve got people working for you full-time so you think you know their
availability. But even in such projects the efficiency of developers can
differ. It does not matter how many hours people work. What matters is how much they can
accomplish during that time. And this varies greatly. Sometimes people
feel good and motivated. Sometimes they are worried about some recent events and more
easily distracted. Not to mention the fact that random events happen. People
get sick, accidents occur. Welcome to real life.

In our company people are usually assigned to two projects at the same time,
so this is especially important for us. We work on two projects so that people
have access to more broad scope of tasks and experiences. And when they feel
tired or bored by the situation in one project, they can use the other one to rest.
We will work at least the minimum of hours we have agreed to
with our customers (usually more), but we cannot guarantee the exact number.
Our developers are free to schedule their time and decide how much or when they want to
work within their week (though with the minimum number in mind). So we prefer not to
have our tasks explicitly assigned, but rather jump into the project, take the
most important task to be done and deliver value quickly. So this model allows us
enormous amount of freedom and flexibility.

Quit the self-reinforcing loop

Many project methodologies advise you to let the team assign the tasks. What I see
mostly in practice is that tasks are assigned by the same person over and over again, usually
by some kind of project manager. Doesn’t matter. The effect
is the same in both cases, because people are naturally flawed. The managers
will usually assign tasks to people whom they personally find most qualified.
Developers will try to assign tasks that they feel most comfortable with. In the long run, people
end up specializing in particular code domains,
while your Collective Ownership declines.

The only way to escape this
self-reinforcing loop is to assign tasks differently, changing the criteria.
You don’t need the same person working on the same module or part of the code
again and again. Let people try something different. But there is one crucial element we already learnt in the previous chapter:
the story must be small. If you have a small task that might take two hours
to finish by your frontend developer, but you give it to your mostly-backend
developer, they might be curious about it and willing to finish. Real
tasks are great learning opportunities. It’s my personal conviction that programmers
are always willing to learn and improve their skills. But do not expect a
warm welcome if you try to assign a challenging week-long task. Allow people to start easy - the smaller the tasks, the easier it is for people with
varying tech-backgrounds to finish and learn from them. And should you refuse
to go that way, you might put the whole project at risk if one of your
developers leaves the team for any reason, be it a different project or company or just
vacation or a sick leave.

Take the first task

So let’s say you’ve taken heed of our previous advice and as a team, you’re now facing
a list of unassigned tasks. As human nature dictates, developers will still be
tempted to pick the easiest or most compelling tasks from the list. And that
is exactly what we want to avoid. So there is one simple rule that everyone
must follow for this whole system to work: “Take the first task”, where
first means an unstarted task with the highest priority. The developer should
spend no time thinking about which task should be done next when grabbing new
story to begin working on. Just look at the list and see what is on top. It
should be a no-brainer.

Do not estimate

I must mediate as to what is written in this part.

What do you have in the end?

With one-point stories, unassigned tasks, and developers taking the first story you
end up with a smooth, and more scalable system to distribute the work. You
do not rely on estimates and guesses. Developers can more freely juggle
projects that need attention with their personal lives. There is very
little overhead to join the project and to deliver small, but measurable value.

Instead of tasks being pushed to them, the developers themselves are pulling them out when they are free
to start something new. Developers are always working on the feature that has been
ranked highest in priority based on current state of knowledge.

Links

 	
Fred George - Agile is the new black - Railsberry 2013 (Vimeo)

 	Why are software development estimates regularly off by a factor of 2-3 times?

 	Software projects have an inherent bias towards unpredictability

 	
The #NoEstimates movement (xprogramming.com)

 	‘No Estimates’ in Action: 5 Ways to Rethink Software Projects

 	
Peopleware (Wikipedia)

 	
Peopleware: Productive Projects and Teams (Wikipedia)

 	
Peopleware: Productive Projects and Teams (Amazon)

 	
Collective Ownership (extremeprogramming.org)

 	For Workers, Less Flexible Companies

OEBPS/images/stream_of_work.png

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.jpg
ASYNG
REMOTE

The Guide to Build a Self-Organizing Team

Robert Pankowecki & Andrzej Krzywda

