

Desenvolvendo APIs que você não odiará
Todo mundo e seus cães querem uma API, é melhor
você aprender a desenvolvê-las.

Phil Sturgeon e Pedro Borges

Esse livro está à venda em http://leanpub.com/desenvolvendo-apis

Essa versão foi publicada em 2014-05-08

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

©2013 - 2014 Phil Sturgeon e Pedro Borges

http://leanpub.com/desenvolvendo-apis
http://leanpub.com
http://leanpub.com/manifesto

Tweet Sobre Esse Livro!
Por favor ajude Phil Sturgeon e Pedro Borges a divulgar esse livro no Twitter!

A hashtag sugerida para esse livro é #desenvolvendoapis.

Descubra o que as outras pessoas estão falando sobre esse livro clicando nesse link para buscar
a hashtag no Twitter:

https://twitter.com/search?q=#desenvolvendoapis

http://twitter.com
https://twitter.com/search?q=%23desenvolvendoapis
https://twitter.com/search?q=%23desenvolvendoapis

Conteúdo

1 Nota do Autor . 1

2 Planejando e Criando Pontos de Acesso . 2
2.1 Requerimentos Funcionais . 2
2.2 Teoria dos Pontos de Acesso . 5
2.3 Planejando Pontos de Acesso . 7

3 Aprenda Mais . 9

1 Nota do Autor
Eu já vi muitas tendências irem e virem durante a minha longa e diversificada carreira de
“construir” coisas por dinheiro como um empregado, freelancer, consultor e agora como CTO.
Uma das tendências modernas é o crescimento das APIs como parte diária do trabalho damaioria
dos desenvolvedores server-side.

Alguns anos atrás, quando eu ainda era um usuário e contribuidor do CodeIgniter, eu publiquei
um Servidor Rest para o CodeIgniter e escrevi alguns artigos sobre como utilizá-lo. Naquela
época, eu sabia que aquilo não era tudo que uma API precisava, mas cobria roteamento RESTful,
autenticação HTTP básica/Digest/Chave de API; eu também acrescentei logging e throttling,
e não obriguei o uso de convenções baseadas em CRUD como: PUT = CREATE OR DIE!. Essa
era de longe uma opção muito melhor do que as disponíveis em outros frameworks. A internet
concordou comigo e atualmente este código é utilizado pela Apple, Nações Unidas e o Governo
dos EUA (USA.gov).

Mais tarde, como parte da equipe do FuelPHP, eu implementei esta funcionalidade neste
framework e, mais uma vez, desenvolvi bastante APIs para terceiros. Então me ofereceram um
trabalho em Nova Iorque e eu aceitei liderar o pessoal técnico desta empresa que também tinha
uma API desenvolvida no FuelPHP e buscava alguém para aprimorá-la.

Eu tenho desenvolvido APIs há muito tempo e possuo uma longa lista de como desenvolvê-las
sem criar um monstro. Eu gostaria de compartilhar esta informação com todos vocês.

Phil Sturgeon

2 Planejando e Criando Pontos de
Acesso

Com o seu banco de dados planejado e repleto de dados fictícios, porém úteis, é hora de planejar
os pontos de acesso¹. O primeiro passo será descobrir os requerimentos de uma API, em seguida
veremos um pouco de teoria e, finalmente, veremos a teoria implementada em alguns exemplos.

2.1 Requerimentos Funcionais

Tente pensar em tudo que sua API precisará fazer. Inicialmente esta será uma lista de pontos de
acesso CRUD (Criar, Ler, Atualizar, Excluir) dos seus recursos. Converse com o seu desenvolvedor
de aplicativos móveis, o pessoal do JS no frontend ou simplesmente converse consigo mesmo,
caso você seja o único desenvolvedor no projeto.

Definitivamentes converse com os seus consumidores ou “a empresa” (eles são consumidores) e
peça-lhes para te ajudar a pensar em funcionalidades também, mas não espere que eles entendam
o que um ponto de acesso é.

Quando você tiver uma lista relativamente comprida, o próximo passo será criar uma lista
simples de “Ações”. Este passo é muito parecido com o planejamento de uma classe de PHP;
primeiramente você escreve um código fictício referindo-se a classes e métodos como se eles
existissem, não é mesmo? TDD? Se não for, você estiver fazendo assim o Chris Hartjes mataria
você.

Assim, se eu tiver um recurso chamado “Local” em mente, precisarei listar o que ele fará:

Locais

• Criar
• Ler
• Atualizar
• Excluir

Isto é algo óbvio. Quem poderá visualizar, criar ou editar estes locais é (por enquanto) irrelevante
na fase de planejamento, pois esta API ficarámais inteligente com as ideias de contexto de usuário
e permissões, que veremos no futuro. Por enquanto, apenas liste tudo aquilo que precisará ser
feito.

Uma lista de todos os locais também é um requerimento, anote-o aí:

Locais

¹endpoints, em inglês.

Planejando e Criando Pontos de Acesso 3

• Criar
• Ler
• Atualizar
• Excluir
• Listar

A API também precisará ser capaz de pesquisar locais por sua localização, mas este não é um
ponto de acesso completamente novo. Se a API fosse desenvolvida com SOAP ou XML-RPC você
precisaria criar um método getPlacesByLatAndLon para ser acessado na URL, mas felizmente
não estamos usando SOAP. O método “listar” pode cuidar disso com alguns parâmetros, então
porque não acrescentar uma nota para o futuro:

Locais

• Criar
• Ler
• Atualizar
• Excluir
• Listar (lat, lon, distância ou caixa)

Acrescentar alguns parâmetros como lembrete neste estágio é bacana, mas não vamos nos preo-
cupar em acrescentar demais. Por exemplo, “criar” e “atualizar” já são complicados; acrescentar
cada um dos campos criaria uma bagunça.

Atualizar é mais do que apenas atualizar campos específicos na tabela de “locais” em SQL. Na
atualização podemos fazer coisas bem legais. Se você precisa “favoritar” um local, é só enviar
is_favorite para aquele ponto de acesso e você já o favoritou. Veremos sobre isso mais à frente,
apenas lembre-se que nem toda ação requer um ponto de acesso próprio.

Locais também precisarão de uma imagem enviada via API. Neste exemplo aceitaremos apenas
uma imagem por local, e uma imagem nova substitui a antiga. Assim, acrescente “Imagens” à
sua lista:

Locais

• Criar
• Ler
• Atualizar
• Excluir
• Listar (lat, lon, distância ou caixa)
• Imagem

Nosso “plano de ação” completo da API ficará assim:

Categorias

• Criar

Planejando e Criando Pontos de Acesso 4

• Listar

Checkins

• Criar
• Ler
• Atualizar
• Excluir
• Listar
• Imagem

Oportunidades

• Criar
• Ler
• Atualizar
• Excluir
• Listar
• Imagem
• Checkins

Locais

• Criar
• Ler
• Atualizar
• Excluir
• Listar (lat, lon, distância ou caixa)
• Imagem

Usuários

• Criar
• Ler
• Atualizar
• Excluir
• Listar (ativo, suspenso)
• Imagem
• Favoritos
• Checkins
• Seguidores

Isso pode não ser tudo, mas me parece bem sólido para começarmos nossa API. Certamente
levará um bom tempo para se chegar a esta lista, por isso, se alguém pensar em algo que precisa
ser acrescentado, anote.

Seguindo em frente.

Planejando e Criando Pontos de Acesso 5

2.2 Teoria dos Pontos de Acesso

Transformar este “Plano de Ação” em pontos de acesso reais requer um pouco conhecimento
sobre teoria de RESTful APIs e “boas práticas” para convenções de nomes. Não há uma resposta
correta aqui, mas algumas abordagens possuem menos desvantagens que outras. Vou tentar te
levar em direção à abordagem que considero mais útil e destacarei as vantagens e desvantagens
de cada uma.

Obtendo Recursos

• GET /resources - Lista de alguma coisa paginada com um pouco de lógica para determinar
a sua ordem padrão.

• GET /resources/X - Apenas a entidade X. Pode ser uma “chave” ou um ID, mas você
não deve usar um ID auto-incrementado, a menos que você queira expor a quantidade de
usuários, estabelecimentos e etc de sua aplicação.

• GET /resources/X,Y,Z - O cliente deseja mais do que uma “coisa”.

Pode ser difícil diferenciar entre URLs com sub-recurso e URLs com dados incorporados. Bem,
dados incorporados é um assunto tão difícil que falaremos mais sobre eles no futuro. Por
enquanto a reposta é “apenas sub-recursos”, mas eventualmente a resposta será “ambos”. Sub-
recursos são assim:

• GET /places/X/checkins - Encontre todos os checkins de um local específico.
• GET /users/X/checkins - Encontre todos os checkins de um usuário específico.
• GET /users/X/checkins/Y - Encontre um checkin específico de um usuário específico.

O último é questionável e é algo que eu, pessoalmente, não tenho feito. Nesse ponto eu
simplesmente prefiro usar /places.

Excluíndo Recursos

Deseja excluir algo? É fácil:

• DELETE /places/X - Exclui um local.
• DELETE /places/X,Y,Z - Exclui vários locais.
• DELETE /places - Este é um ponto de acesso muito perigoso e deve ser evitado, pois ele
excluiria todos os locais.

• DELETE /places/X/image - Exclui a imagem de um local, ou:
• DELETE /places/X/images - Exclui todas as imagens, se você permitiu mais de uma
imagem por local.

Planejando e Criando Pontos de Acesso 6

POST x PUT: Lutem!

E para a criação e atualização? É onde as coisas se tornammais religiosas. Muitas pessoas tentam
associar os verbos HTTP POST e PUT a uma ação específica no CRUD e usam somente aquela
ação com tal verbo. Isso não é legal, não é produtivo, nem é funcionalmente escalável.

De modo geral, PUT é usado quando conhecemos a URL completa de antemão e a ação é
idempotente. Idempotente é uma palavra bonita para algo que “pode se repetir inúmeras vezes
sem causar diferença nos resultados”.

Por exemplo, o verbo PUT poderia ser usado na criação se você está criando uma imagem para
um local. Algo assim:

PUT /places/1/image HTTP/1.1
Host: example.com
Content-Type: image/jpeg

Este é um ótimo exemplo de quando se pode usar PUT, porque já conhecíamos toda a URL e esta
ação poderia ser repetida quantas vezes quiséssemos. Você poderia tentar o check-in várias vezes
e não importaria, porque nenhum desses processos seria completo. POSTando múltiplas vezes
não é idempotente porque cada check-in é diferente. Mas PUT é idempotente porque você está
enviando aquela imagem para uma URL completa e você pode repetir este processo inúmeras
vezes (caso o envio falhe e você precise tentar novamente, por exemplo).

Assim, se você tem mais do que uma imagem para cada local, você poderia usar POST

/places/X/images e cada tentativa criaria uma imagem diferente. Mas se você sabe que usará
apenas uma imagem e cada nova tentativa será uma substituição, então PUT /places/X/image

seria o ideal.

Outro exemplo seria as configurações de um usuário:

• POST /me/settings - Eu esperaria que este ponto me permitisse, enviar um campo de cada
vez, sem me forçar a reenviar todas as configurações.

• PUT /me/settings - Envie-me todas as configurações.

É uma diferença complicada, mas não adote um método HTTP para apenas uma ação CRUD.

Plural, Singular ou Ambos?

Alguns desenvolvedores decidem nomear todos os pontos de acesso no singular, mas eu tenho
problemas com isso. Em /user/1 e /user, qual usuário é retornado pelo último ponto? Sou “eu”?
Que tal /place? Ele retorna vários locais? Bah.

Eu sei que é tentador criar /user/1 e /users porque dois pontos de acesso realizam tarefas
diferentes, não é mesmo? Eu já trilhei este caminho no meu plano original, mas em minha
experiência isso não funcionou bem. É lógico que funciona em exemplos como “users”, mas e
aquelas palavras inglesas que fogem à regra como /opportunity/1 que viraria /opportunities?

Eu escolhi o plural para tudo, pois ele é mais óbvio:

Planejando e Criando Pontos de Acesso 7

• /places - “Se eu executar GET neste ponto eu obterei uma coleção de locais”
• /places/45 - “É claro que estou falando sobre o local 45”
• /places/45,28 - “Ah sim, locais 45 e 28, entendido”

Outro motivo sólido para o uso consistente do plural é que ele também permite nomear sub-
recursos consistentemente:

• /places

• /places/45

• /places/45/checkins

• /places/45/checkins/91

• /checkins/91

Consistência é a chave.

2.3 Planejando Pontos de Acesso

Controladores

Precisa de uma lista de eventos, locais, usuários e categorias? Fácil. Um controlador para cada
tipo de recurso:

• CategoriesController
• EventsController
• UsersController
• VenuesController

Em REST, tudo é um recurso. Sendo assim, cada recurso precisa de um controlador.

À frente veremos algumas coisas que não são recursos. Às vezes, um sub-recurso pode ser apenas
um método. Por exemplo, perfil e configurações são sub-recursos de Users, por isso eles podem
fazer parte do controlador de usuários. Essas regras são flexíveis.

Rotas

Resista à tentação de usar convenções mágicas de roteamento², faça-as manualmente. Darei
continuidade aos exemplos anteriores e demonstrarei o processo de transformar o plano de ações
em rotas. Usarei a sintaxe do Laravel 4, por que não:

²http://philsturgeon.co.uk/blog/2013/07/beware-the-route-to-evil

http://philsturgeon.co.uk/blog/2013/07/beware-the-route-to-evil
http://philsturgeon.co.uk/blog/2013/07/beware-the-route-to-evil

Planejando e Criando Pontos de Acesso 8

Ação Ponto de Acesso Rota

Criar POST /users Route::post(‘users’,
‘UsersController@create’);

Ler GET /users/X Route::get(‘users/{id}’,
‘UsersController@show’);

Atualizar POST /users/X Route::post(‘users/{id}’,
‘UsersController@update’);

Excluir DELETE /users/X Route::delete(‘users/{id}’,
‘UsersController@delete’);

Listar GET /users Route::get(‘users’, ‘UsersController@list’);
Imagem PUT /users/X/image Route::put(‘users/{id}/image’,

‘UsersController@uploadImage’);
Favoritos GET /users/X/favorites Route::get(‘users/{id}/favorites’,

‘UsersController@favorites’);
Checkins GET /users/X/checkins Route::get(‘users/{user_id}/checkins’,

‘CheckinsController@index’);

Algumas precisam ser consideradas:

1. Tanto a criação quanto a atualização usam o método POST. Não que o método PUT seja mal,
mas porque neste exemplo não conhecemos a URL quando criamos um usuário. As URLs
são geradas automaticamente baseadas no ID do usuário. Por exemplo, se conhecêssemos
o nome de usuário, teríamos usado PUT /users/philsturgeon. Mas isso difilmente
funcionaria caso fizessemos a mesma request HTTP acidentalmente uma segunda vez ou
caso tentássemos substituir um usuário existente.

2. Favoritos fazem parte do controlador UserController, pois eles são relevantes ao usuário.
3. Checkins fazem parte do controlador CheckinController, pois ele já cuida da rota

/checkins e a sua lógica é basicamente idêntica. Nós saberemos se há um parâmetro
user_id na URL, se o nosso roteador for gentil o bastante para nos informar, e assim
poderemos usá-lo para tornar o check-in específico àquele usuário.

Esse dois últimos são um tanto complexos, mas são exemplos de coisas que você já deve estar
pensando neste estágio. Você não vai querer múltiplos pontos de acesso para coisas similares
copiando e colando a lógico porque: A) o Detector de Copia e Cola PHP³ ficaria zangado;
b) seu desenvolvedor para iOS ficaria bravo porque pontos de acesso diferentes estão agindo
diferentemente e confundindo o RestKit; e, C) porque isso é chato e ninguém tem tempo pra
perder com isso.

Métodos

Quando você terminar de listar todas as rotas necessárias para a sua aplicação e ligá-las aos seus
controladores, esvazie-as e faça com que uma rota retorne “Oh hai!”. Verifique no navegador. Por
exemplo, GET /places deve exibir Oh hai!. Pronto, você acabou de escrever uma API!

³https://github.com/sebastianbergmann/phpcpd

https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd

3 Aprenda Mais
Você acabou de ler o Capítulo 2 de Desenvolvendo APIs que você não odiará¹, há muito mais
conteúdo como este na edição completa. Este são os capítulos disponíveis até este momento:

1. Semeando o Banco de Dados
2. Planejando e Criando Pontos de Destino
3. Teoria de Entrada e Saída
4. Códigos de Status, Erros e Mensagens
5. Testando Pontos de Destino
6. Exibindo Dados

Mas não é só isso, alguns dos próximos assuntos incluem:

• Incorporando/Aninhando Dados
• Debugando
• Paginando
• Links
• Criando Classes “Localizadoras” para Controladores e Modelos “Magros”
• Autenticação (Digst, Generic Key ou OAuth 2)
• Logging
• Throttling
• Considerações sobre Performance
• Suportando Multiplas Versões (URL ou Cabeçalhos)

Este livro está disponível no Leanpub², vá até lá e adquira a sua cópia.

¹https://leanpub.com/desenvolvendo-apis
²https://leanpub.com/desenvolvendo-apis

https://leanpub.com/desenvolvendo-apis
https://leanpub.com/desenvolvendo-apis
https://leanpub.com/desenvolvendo-apis
https://leanpub.com/desenvolvendo-apis

	Índice analítico
	Nota do Autor
	Planejando e Criando Pontos de Acesso
	Requerimentos Funcionais
	Teoria dos Pontos de Acesso
	Planejando Pontos de Acesso

	Aprenda Mais

