Desenvolvendo APIs
que vocé nao odiara

Por Phil Sturgeon

Desenvolvendo APIs que vocé nao odiara
Todo mundo e seus cdes querem uma API, é melhor
vocé aprender a desenvolvé-las.

Phil Sturgeon e Pedro Borges

Esse livro esta a venda em http://leanpub.com/desenvolvendo-apis

Essa versao foi publicada em 2014-05-08

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

©2013 - 2014 Phil Sturgeon e Pedro Borges

http://leanpub.com/desenvolvendo-apis
http://leanpub.com
http://leanpub.com/manifesto

Tweet Sobre Esse Livro!

Por favor ajude Phil Sturgeon e Pedro Borges a divulgar esse livro no Twitter!
A hashtag sugerida para esse livro é #desenvolvendoapis.

Descubra o que as outras pessoas estdo falando sobre esse livro clicando nesse link para buscar
a hashtag no Twitter:

https://twitter.com/search?q=#desenvolvendoapis

http://twitter.com
https://twitter.com/search?q=%23desenvolvendoapis
https://twitter.com/search?q=%23desenvolvendoapis

Conteudo

1 Notado Autor s,

2 Planejando e Criando Pontosde Acesso
2.1 Requerimentos Funcionais
2.2 Teoria dos Pontos de Acesso
2.3 Planejando Pontosde Acesso

3 AprendaMais.

1 Nota do Autor

Eu ja vi muitas tendéncias irem e virem durante a minha longa e diversificada carreira de
“construir” coisas por dinheiro como um empregado, freelancer, consultor e agora como CTO.
Uma das tendéncias modernas é o crescimento das APIs como parte diaria do trabalho da maioria
dos desenvolvedores server-side.

Alguns anos atras, quando eu ainda era um usuario e contribuidor do Codelgniter, eu publiquei
um Servidor Rest para o Codelgniter e escrevi alguns artigos sobre como utiliza-lo. Naquela
época, eu sabia que aquilo ndo era tudo que uma API precisava, mas cobria roteamento RESTful,
autenticacdo HTTP basica/Digest/Chave de APL eu também acrescentei logging e throttling,
e ndo obriguei o uso de convencdes baseadas em CRUD como: PUT = CREATE OR DIE!. Essa
era de longe uma opcao muito melhor do que as disponiveis em outros frameworks. A internet
concordou comigo e atualmente este codigo é utilizado pela Apple, Nagoes Unidas e o Governo
dos EUA (USA.gov).

Mais tarde, como parte da equipe do FuelPHP, eu implementei esta funcionalidade neste
framework e, mais uma vez, desenvolvi bastante APIs para terceiros. Entdo me ofereceram um
trabalho em Nova lorque e eu aceitei liderar o pessoal técnico desta empresa que também tinha
uma API desenvolvida no FuelPHP e buscava alguém para aprimora-la.

Eu tenho desenvolvido APIs ha muito tempo e possuo uma longa lista de como desenvolvé-las
sem criar um monstro. Eu gostaria de compartilhar esta informacdo com todos vocés.

Phil Sturgeon

2 Planejando e Criando Pontos de
Acesso

Com o seu banco de dados planejado e repleto de dados ficticios, porém uteis, é hora de planejar
os pontos de acesso'. O primeiro passo sera descobrir os requerimentos de uma API, em seguida
veremos um pouco de teoria e, finalmente, veremos a teoria implementada em alguns exemplos.

2.1 Requerimentos Funcionais

Tente pensar em tudo que sua API precisara fazer. Inicialmente esta sera uma lista de pontos de
acesso CRUD (Ceriar, Ler, Atualizar, Excluir) dos seus recursos. Converse com o seu desenvolvedor
de aplicativos moéveis, o pessoal do JS no frontend ou simplesmente converse consigo mesmo,
caso vocé seja o unico desenvolvedor no projeto.

Definitivamentes converse com os seus consumidores ou “a empresa” (eles sio consumidores) e
peca-lhes para te ajudar a pensar em funcionalidades também, mas nao espere que eles entendam
0 que um ponto de acesso é.

Quando vocé tiver uma lista relativamente comprida, o proximo passo sera criar uma lista
simples de “A¢des”. Este passo é muito parecido com o planejamento de uma classe de PHP;
primeiramente vocé escreve um cddigo ficticio referindo-se a classes e métodos como se eles
existissem, ndo é mesmo? TDD? Se ndo for, vocé estiver fazendo assim o Chris Hartjes mataria
Vocé.

Assim, se eu tiver um recurso chamado “Local” em mente, precisarei listar o que ele fara:

Locais

e Criar

e Ler
Atualizar
Excluir

Isto é algo 6bvio. Quem podera visualizar, criar ou editar estes locais é (por enquanto) irrelevante
na fase de planejamento, pois esta API ficara mais inteligente com as ideias de contexto de usuario
e permissoes, que veremos no futuro. Por enquanto, apenas liste tudo aquilo que precisara ser
feito.

Uma lista de todos os locais também é um requerimento, anote-o ai:

Locais

Yendpoints, em inglés.

Planejando e Criando Pontos de Acesso 3

e Criar

e Ler

» Atualizar
« Excluir

« Listar

A API também precisara ser capaz de pesquisar locais por sua localiza¢do, mas este ndo é um
ponto de acesso completamente novo. Se a API fosse desenvolvida com SOAP ou XML-RPC vocé
precisaria criar um método getPlacesByLatAndLon para ser acessado na URL, mas felizmente
néo estamos usando SOAP. O método “listar” pode cuidar disso com alguns paradmetros, entdo
porque nao acrescentar uma nota para o futuro:

Locais

e Criar

e Ler

Atualizar

Excluir

Listar (lat, lon, distincia ou caixa)

Acrescentar alguns parametros como lembrete neste estagio é bacana, mas ndo vamos nos preo-
cupar em acrescentar demais. Por exemplo, “criar” e “atualizar” ja sdo complicados; acrescentar
cada um dos campos criaria uma bagunca.

Atualizar é mais do que apenas atualizar campos especificos na tabela de “locais” em SQL. Na
atualizacdo podemos fazer coisas bem legais. Se vocé precisa “favoritar” um local, é s6 enviar
is_favorite para aquele ponto de acesso e vocé ja o favoritou. Veremos sobre isso mais a frente,
apenas lembre-se que nem toda acio requer um ponto de acesso proprio.

Locais também precisardo de uma imagem enviada via API. Neste exemplo aceitaremos apenas
uma imagem por local, e uma imagem nova substitui a antiga. Assim, acrescente “Imagens” a
sua lista:

Locais

e Criar

e Ler

Atualizar

Excluir

Listar (lat, lon, distancia ou caixa)
» Imagem

Nosso “plano de agdo” completo da API ficara assim:

Categorias

e Criar

Planejando e Criando Pontos de Acesso 4
« Listar

Checkins

e Criar

e Ler

« Atualizar
« Excluir

« Listar

« Imagem

Oportunidades

e Criar

e Ler

« Atualizar
« Excluir

o Listar

» Imagem
« Checkins

Locais

e Criar

e Ler

« Atualizar

« Excluir

« Listar (lat, lon, distancia ou caixa)
+ Imagem

Usuarios

e Criar

e Ler

« Atualizar

« Excluir

« Listar (ativo, suspenso)
« Imagem

« Favoritos

o Checkins

« Seguidores

Isso pode nao ser tudo, mas me parece bem soélido para comecarmos nossa API. Certamente
levara um bom tempo para se chegar a esta lista, por isso, se alguém pensar em algo que precisa
ser acrescentado, anote.

Seguindo em frente.

Planejando e Criando Pontos de Acesso 5

2.2 Teoria dos Pontos de Acesso

Transformar este “Plano de A¢do” em pontos de acesso reais requer um pouco conhecimento
sobre teoria de RESTful APIs e “boas praticas” para convencoes de nomes. Nao ha uma resposta
correta aqui, mas algumas abordagens possuem menos desvantagens que outras. Vou tentar te
levar em direcdo a abordagem que considero mais ttil e destacarei as vantagens e desvantagens
de cada uma.

Obtendo Recursos

« GET /resources - Lista de alguma coisa paginada com um pouco de légica para determinar
a sua ordem padrao.

« GET /resources/X - Apenas a entidade X. Pode ser uma “chave” ou um ID, mas vocé
nao deve usar um ID auto-incrementado, a menos que vocé queira expor a quantidade de
usuarios, estabelecimentos e etc de sua aplicacao.

« GET /resources/X,Y,Z - O cliente deseja mais do que uma “coisa”.

Pode ser dificil diferenciar entre URLs com sub-recurso e URLs com dados incorporados. Bem,
dados incorporados é um assunto tdo dificil que falaremos mais sobre eles no futuro. Por
enquanto a reposta é “apenas sub-recursos”, mas eventualmente a resposta sera “ambos”. Sub-
recursos sao assim:

« GET /places/X/checkins - Encontre todos os checkins de um local especifico.
« GET /users/X/checkins - Encontre todos os checkins de um usuario especifico.
« GET /users/X/checkins/Y - Encontre um checkin especifico de um usuéario especifico.

O dltimo é questionavel e é algo que eu, pessoalmente, ndo tenho feito. Nesse ponto eu
simplesmente prefiro usar /places.

Excluindo Recursos

Deseja excluir algo? E facil:

o DELETE /places/X - Exclui um local.
o DELETE /places/X,Y,Z - Exclui varios locais.

« DELETE /places - Este é um ponto de acesso muito perigoso e deve ser evitado, pois ele
excluiria todos os locais.

« DELETE /places/X/image - Exclui a imagem de um local, ou:

« DELETE /places/X/images - Exclui todas as imagens, se vocé permitiu mais de uma
imagem por local.

Planejando e Criando Pontos de Acesso 6

POST x PUT: Lutem!

E para a criacio e atualizacio? E onde as coisas se tornam mais religiosas. Muitas pessoas tentam
associar os verbos HTTP POST e PUT a uma acéo especifica no CRUD e usam somente aquela
acdo com tal verbo. Isso nao é legal, ndo é produtivo, nem é funcionalmente escalavel.

De modo geral, PUT é usado quando conhecemos a URL completa de antemao e a acdo é
idempotente. Idempotente é uma palavra bonita para algo que “pode se repetir inimeras vezes
sem causar diferenca nos resultados”.

Por exemplo, o verbo PUT poderia ser usado na criacdo se vocé esta criando uma imagem para
um local. Algo assim:

PUT /places/1/image HTTP/1.1
Host: example.com
Content-Type: image/jpeg

Este ¢ um 6timo exemplo de quando se pode usar PUT, porque ja conheciamos toda a URL e esta
acdo poderia ser repetida quantas vezes quiséssemos. Vocé poderia tentar o check-in varias vezes
e ndo importaria, porque nenhum desses processos seria completo. POSTando multiplas vezes
nao ¢ idempotente porque cada check-in é diferente. Mas PUT ¢é idempotente porque vocé esta
enviando aquela imagem para uma URL completa e vocé pode repetir este processo inimeras
vezes (caso o envio falhe e vocé precise tentar novamente, por exemplo).

Assim, se vocé tem mais do que uma imagem para cada local, vocé poderia usar POST
/places/X/images e cada tentativa criaria uma imagem diferente. Mas se vocé sabe que usara
apenas uma imagem e cada nova tentativa sera uma substituigdo, entdo PUT /places/X/image
seria o ideal.

Outro exemplo seria as configuracdes de um usuario:

« POST /me/settings - Eu esperaria que este ponto me permitisse, enviar um campo de cada
vez, sem me forcar a reenviar todas as configuragdes.
« PUT /me/settings - Envie-me todas as configuracoes.

E uma diferenca complicada, mas nao adote um método HTTP para apenas uma ag¢io CRUD.

Plural, Singular ou Ambos?

Alguns desenvolvedores decidem nomear todos os pontos de acesso no singular, mas eu tenho
problemas com isso. Em /user /1 e /user, qual usuario é retornado pelo tltimo ponto? Sou “eu”?
Que tal /place? Ele retorna varios locais? Bah.

Eu sei que é tentador criar /user/1 e /users porque dois pontos de acesso realizam tarefas
diferentes, ndo ¢ mesmo? Eu ja trilhei este caminho no meu plano original, mas em minha
experiéncia isso ndo funcionou bem. E 16gico que funciona em exemplos como “users”, mas e
aquelas palavras inglesas que fogem a regra como /opportunity/1 que viraria /opportunities?

Eu escolhi o plural para tudo, pois ele é mais dbvio:

Planejando e Criando Pontos de Acesso 7

« /places - “Se eu executar GET neste ponto eu obterei uma colegio de locais”
« /places/45 - “E claro que estou falando sobre o local 45”
. /places/45,28 - “Ah sim, locais 45 e 28, entendido”

Outro motivo sélido para o uso consistente do plural é que ele também permite nomear sub-
recursos consistentemente:

* /places

* /places/45

e /places/45/checkins

e /places/45/checkins/91
e /checkins/91

Consisténcia é a chave.

2.3 Planejando Pontos de Acesso

Controladores

Precisa de uma lista de eventos, locais, usuarios e categorias? Facil. Um controlador para cada
tipo de recurso:

CategoriesController
« EventsController

« UsersController

« VenuesController

Em REST, tudo é um recurso. Sendo assim, cada recurso precisa de um controlador.

A frente veremos algumas coisas que nao sao recursos. As vezes, um sub-recurso pode ser apenas
um método. Por exemplo, perfil e configuracdes sdao sub-recursos de Users, por isso eles podem
fazer parte do controlador de usuarios. Essas regras sao flexiveis.

Rotas

Resista a tentacdo de usar convengdes magicas de roteamento’, faca-as manualmente. Darei
continuidade aos exemplos anteriores e demonstrarei o processo de transformar o plano de acoes
em rotas. Usarei a sintaxe do Laravel 4, por que nao:

®http://philsturgeon.co.uk/blog/2013/07/beware-the-route-to-evil

http://philsturgeon.co.uk/blog/2013/07/beware-the-route-to-evil
http://philsturgeon.co.uk/blog/2013/07/beware-the-route-to-evil

Planejando e Criando Pontos de Acesso 8

Aciao Ponto de Acesso Rota

Criar POST /users Route::post(‘users’,
‘UsersController@create’);

Ler GET /users/X Route:get(‘users/{id}’,
‘UsersController@show’);

Atualizar POST /users/X Route::post(‘users/{id}’,
‘UsersController@update’);

Excluir DELETE /users/X Route::delete(‘users/{id},
‘UsersController@delete’);

Listar GET /users Route:get(‘users’, ‘UsersController@list’);

Imagem PUT /users/X/image Route::put(‘users/{id}/image’,
‘UsersController@uploadImage’);
Favoritos ~GET /users/X/favorites Route:get(‘users/{id}/favorites’,

‘UsersController@favorites’);
Checkins GET /users/X/checkins Route::get(‘users/{user_id}/checkins’,

‘CheckinsController@index’);

Algumas precisam ser consideradas:

1. Tanto a criagdo quanto a atualizacdo usam o método POST. Nao que o método PUT seja mal,
mas porque neste exemplo nao conhecemos a URL quando criamos um usuéario. As URLs
sao geradas automaticamente baseadas no ID do usuario. Por exemplo, se conhecéssemos
0o nome de usudrio, teriamos usado PUT /users/philsturgeon. Mas isso difilmente
funcionaria caso fizessemos a mesma request HTTP acidentalmente uma segunda vez ou
caso tentassemos substituir um usuario existente.

2. Favoritos fazem parte do controlador UserController, pois eles sdo relevantes ao usuario.

3. Checkins fazem parte do controlador CheckinController, pois ele ja cuida da rota
/checkins e a sua logica é basicamente idéntica. Nos saberemos se ha um parametro
user_id na URL, se o nosso roteador for gentil o bastante para nos informar, e assim
poderemos usa-lo para tornar o check-in especifico aquele usuario.

Esse dois ultimos sdo um tanto complexos, mas sdo exemplos de coisas que vocé ja deve estar
pensando neste estagio. Vocé nao vai querer multiplos pontos de acesso para coisas similares
copiando e colando a logico porque: A) o Detector de Copia e Cola PHP? ficaria zangado;
b) seu desenvolvedor para iOS ficaria bravo porque pontos de acesso diferentes estdo agindo
diferentemente e confundindo o RestKit; e, C) porque isso é chato e ninguém tem tempo pra
perder com isso.

Métodos

Quando vocé terminar de listar todas as rotas necessarias para a sua aplicacéo e liga-las aos seus
controladores, esvazie-as e faga com que uma rota retorne “Oh hai!”. Verifique no navegador. Por
exemplo, GET /places deve exibir Oh hai!. Pronto, vocé acabou de escrever uma API!

*https://github.com/sebastianbergmann/phpcpd

https://github.com/sebastianbergmann/phpcpd
https://github.com/sebastianbergmann/phpcpd

3 Aprenda Mais

Vocé acabou de ler o Capitulo 2 de Desenvolvendo APIs que vocé ndo odiara', ha muito mais
conteudo como este na edi¢do completa. Este sdo os capitulos disponiveis até este momento:

Semeando o Banco de Dados
Planejando e Criando Pontos de Destino
Teoria de Entrada e Saida

Codigos de Status, Erros e Mensagens
Testando Pontos de Destino

Exibindo Dados

SARENANEE- S

Mas nao é s0 isso, alguns dos proximos assuntos incluem:

+ Incorporando/Aninhando Dados

+ Debugando

« Paginando

+ Links

« Criando Classes “Localizadoras” para Controladores e Modelos “Magros’

>

« Autenticacdo (Digst, Generic Key ou OAuth 2)

» Logging

« Throttling

 Consideracoes sobre Performance

« Suportando Multiplas Versdes (URL ou Cabecalhos)

Este livro esta disponivel no Leanpub?, va até 14 e adquira a sua copia.

"https://leanpub.com/desenvolvendo-apis
*https://leanpub.com/desenvolvendo-apis

https://leanpub.com/desenvolvendo-apis
https://leanpub.com/desenvolvendo-apis
https://leanpub.com/desenvolvendo-apis
https://leanpub.com/desenvolvendo-apis

	Índice analítico
	Nota do Autor
	Planejando e Criando Pontos de Acesso
	Requerimentos Funcionais
	Teoria dos Pontos de Acesso
	Planejando Pontos de Acesso

	Aprenda Mais

