Deploying
Ruby & Rails
Applications

Bryan Bibat

A Beginner’'s Guide to Deploying Rails

Bryan Bibat

This book is for sale at http://leanpub.com/deploying-rails-for-beginners

This version was published on 2015-06-16

)

Leanpub
This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get

reader feedback, pivot until you have the right book and build traction once you do.

©2015 Bryan Bibat

http://leanpub.com/deploying-rails-for-beginners
http://leanpub.com
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Contents

Introduction: Beyond Heroku Lo 1
Who is this book for? L 1
Practicing for Linux Deployment
Setting up a practice VirtualBox Virtual Machine 0000 3
Additional Sever Setup
Overview of Web Application Server Systems, 16
Serving Static and Dynamic Web Content. L o 16
How to Serve Content from Ruby Applications 18
Installing Phusion Passenger 20
Installing Ruby 20
Installing nginx + Passenger 21
Deploying Ruby Web Applications to Passenger 25
A Quick Look at nginx Server Settings 25
Deploying a Simple Sinatra Appo 26
Deploying a Simple Rails App 31
Redeploying Rails Appson Passenger 38
Modifying the Rails App o 38
Adding File Upload with Carrierwave 39
Simplifying Deployment with Mina L 40
Deployingona VPS e 47
Overview of Popular VPS Providers 47

Setting Up Your Custom Domain 0 000, 49

Introduction: Beyond Heroku

“How do I deploy my Rails app to a server?” is the inevitable question that comes out of people who have just
finished a tutorial on Rails.

Tutorials like Rails Tutorial and The Odin Project only teach their students to deploy to Heroku. Heroku is
a great service, but recent changes have required all free apps to have 6 hours of sleep per day. Any newbie
expecting round-the-clock traffic to their app would now consider getting a low-cost virtual private server
(VPS) rather than the lowest-cost “never sleeping” Heroku tier.

Those considering the VPS route will have some problems, though. To start off, the official Rails site lacks
beginner-friendly documentation, providing only links to software. Also, while there are a lot of tutorials out
there that teach you how to setup Rails on VPSs, they usually cover only the “How” of deploying and not the
“Why”. These tutorials also talk about only one set of technologies; you will have to research on your own if
you want to learn other alternatives.

I wrote this book to answer those concerns. At its core, this book is no different from other online tutorials - it
will provide you with the steps to deploy your Rails application on an online VPS. In addition, however, I will
also try to discuss the reasoning behind all of the steps to avoid the “just do this, trust me” magical thinking
trap that many beginners fall into when learning something technical.

This book is split into two parts: the first covers practicing on a local virtual machine up to deploying to a
very basic nginx/Passenger server stack. This is the “sample” book that is free to download and read online
on Leanpub. The second part covers alternative stacks and more advanced deployment tools. This part is only
available for those who have purchased the book.

Who is this book for?

This book targets two main audience groups:

+ Beginners to Ruby and Rails web development - whether you’re considering leaving Heroku for a
VPS or you’re just curious how Ruby servers are setup, this book is for you.

+ System Administrators new to deploying Ruby web apps - you’ve set up dozens of PHP, Java, .NET,
etc. servers before and you want to get an idea how things are done in the Ruby ecosystem. This book
will help you as long as you don’t mind skimming over long stretches of lessons about things that you
already know.

This book assumes that:

+ You have basic Rails knowledge. For SysAdmins, basic concepts are enough. For Devs, you should at
least complete a basic tutorial like Rails Tutorial.

» You are comfortable with using the terminal or command line. We will be primarily using *nix
commands, but Windows users should also be able to run them under MinGW or Git Bash.

https://www.heroku.com/beta-pricing
http://rubyonrails.org/deploy/

Introduction: Beyond Heroku 2

+ You have a computer that can run a virtual machine i.e. non-netbook with >2GB RAM and ~20GB free
hard drive space.

This book is not for the following:

« Experienced Ruby Devs/SysAdmins - I mean, you’re also free to browse the book, but don’t blame
me if you feel everything in this book is dumbed down for beginners.

« Devs with a deadline - your company wants to roll out their shiny new project next week/tomor-
row/right now but they won’t shell out for Heroku/Engine Yard/a Ruby SysAdmin so they want you,
the new guy, to set up the servers for them. Sorry, but this book only covers the basics and shouldn’t
be the sole resource for serious deployments. It doesn’t even go into detail about fully securing your
severs. I suggest you negotiate for an extension to give yourself time to learn what you need.

« People who won’t touch Linux - we will be using the latest “long term support” version of Ubuntu
(14.04) as our target production environment. If you’re strongly anti-Ubuntu but pro *nix, you’ll still
learn a lot of things from this book. On the other hand, there’s nothing here for die-hard Windows fans
that won’t touch anything other than Windows. If you absolutely have to deploy on Windows, look for
JRuby tutorials on how to convert your app to JRuby and deploy them on Java application servers.

Practicing for Linux Deployment

It’s not expensive to practice using a VPS - VPSs are rented for a few cents an hour while some services line
Amazon just require a credit card for using their free-tier. However, to avoid potentially expensive accidents
like forgetting to destroy a VPS after practice, we will be asking you, the beginner, to practice on Virtual
Machines (VM) running on your computer.

Setting up a practice VirtualBox Virtual Machine

Download the following:

« VirtualBox - get version 4.3.28 or higher for your OS

« Ubuntu Server 14.04 LTS - the download button should give you the latest LTS version (14.04.2) that can
be used by your machine (i.e. 64-bit). You can also download a BitTorrent torrent file at the Alternative
Downloads page

Install VirtualBox after downloading. It will install a couple of drivers but overall it should be a smooth
installation process.

VMware

You can also use VMware Player (Windows) or VMware Fusion (Mac) for this tutorial. Just use the settings
equivalent to the ones discussed below.

Creating a new Virtual Machine

Once VirtualBox is installed, you can now create your practice server. Click the “New” button to start the
process.

https://www.virtualbox.org/wiki/Downloads
http://www.ubuntu.com/download/server
http://www.ubuntu.com/download/alternative-downloads
http://www.ubuntu.com/download/alternative-downloads

Practicing for Linux Deployment 4

N N N
Create Virtual Machine (€) Create Virtual Machine (€) Create Virtual Machine
Name and operating system Memory size Hard drive
Fiease choose a descriptive name for the new virtual machine Select the amount of memory (RAM) in megabytes to be If you wish you can add a virtual hard drive to the new
and select the type of operating system you intend to install allocated to the virtual machine. machine. You can either create a new hard drive file or select
on it. The name you choose will be used throughout VirtualBox one from the list or from another location using the folder icon.
toidentify this machine. The recommended memory size is 512 MB.
| ‘ If you need a more complex storage set-up you can skip this
Mame: |Practice Server 1024 =] me step and make the changes to the machine settings once the
e .
Type: |Linux
M B1s2MB The recommended size of the hard drive is 8.00 GB.
Version: |Ubuntu (64 bit)
() Do not add a virtual hard drive
(®) Create a virtual hard drive now
() Use an existing virtual hard drive file
Ve Descrtn cance cance cance

« Name and Operating System - this step is just for labeling purposes. Choose any name you want and
set the Type/Version to Linux/Ubuntu (64 bit).

« Memory Size - 512 MB is enough for a practice server. Properly tuned, it may even be good enough
for small to medium sized sites. But for this practice, I suggest going for 1 GB to give you some extra
leeway.

« Hard Drive - The first 3 defaults (“Create a virtual hard drive now”, “VDI”, “Dynamically allocated”)
are fine. You may choose to change the location of your virtual hard drive and increase its size in the
“File location and size” step. Note that by choosing dynamically allocated storage, the full hard drive
space will not be allocated initially, saving you space in your real hard drive.

Your practice server VM has now been created. We still have to modify some settings before we can continue.
Highlight the VM and click the Settings button.

« Network - you have two main choices for networking: NAT and Bridged Adapter

In NAT mode, the VM connects to its own virtual router which uses the internet connection of the host OS.
The downside to this is that the VM is invisible to the network and you have to set Port Forwarding settings
to allow you to connect to it. Here are the port forwarding settings to use if you prefer NAT:

& Port Forwarding Rules ?
Name Protocol Host IP Host Port Guest IP Guest Port @
S5H TP 22 2 [
Web Server TCP 8080 ElNg

In Bridged Adapter mode, the VM directly uses an attached network adapter on the host OS to connect to the
internet. This means that it will also retrieve its own IP address from the router’s DHCP server and in turn

Practicing for Linux Deployment 5

be visible in the local network so there’s no need for port forwarding. Just choose the adapter connected to
the network and you’re good to go.

@ Practice Server - Settings ?
E General Network
[E system
Display Adapter 1 | Adapter 2 | Adapter 3 | Adapter 4
Storage Enable Network Adapter
8 Audio Attached to: |Bridged Adapter ¥
P Network Mame: |Realtek PCle GBE Family Controller -
{3 Serial Ports B Advanced
& uss

[Shared Folders

I suggest using Bridged Adapter since it simulates what you’ll get from VPSs (i.e. just an IP address for access)
but we’ll provide instructions for both setups so you can choose either of the two.

« Storage - Select the Empty CD and click the CD icon to find the .iso file for Ubuntu Server. The default
boot order is Floppy, CD, Hard Drive so there’s no need to change that setting.

We should now be ready to install Ubuntu Server but there’s one optional setting you can change:

(2} Practice Server - Settings ?
= General System
[# system
Display Motherboard | Processor | Acceleration
Storage Pracessor(s): [2
8 Audio 1cPU 4CPUs
P Network Exeaution Cap: 100 2
& Serisl Ports 1% 100%
97 usB Extended Features: | Enable PAENX
[Shared Folders

Increasing Processor count not going to improve performance that much, but it may help later when we go
into version managers that compile Ruby.

Install Ubuntu Server 14.04

Start the virtual machine and wait for the installer to load. Select your language and proceed to “Install Ubuntu
Server”.

Practicing for Linux Deployment 6

ubuntu®

F1 Help F2 L F3 Keymap Fd4 Modes F5 Ar hility F6 Dther Options

Arrow keys and Tab moves the cursor, Enter activates the buttons, and Space selects options.

The mouse pointer may be captured by the VM preventing you from switching to this document. When that
happens, press the Host key (Right Ctrl by default) to release the pointer.

+ Select a language - choose your preferred language

« Select your location - this affects the server used for downloading packages so choose your country

« Configure your keyboard - unless you're using a localized keyboard, just choose “No”, “English (US)”,
“English (US)”

« Configure the network - hostname can be anything. For this tutorial we’ll use “server” to make it
obvious in the examples

+ Set up users and passwords - full name, user name, and password can also be anything. For this
tutorial, our default user will be “user”. Also, choose not to encrypt your home directory.

« Configure the clock - choose “No”, and scroll all the way down to choose “UTC”. This will simulate
how some VPSs use UTC as default and will force you to think that servers can have different time
zones than your local machine.

« Partition disks - this part may be daunting but just all about choosing the defaults and agreeing to
prompts: “Guided - use entire disk and set up LVM”, “SCSI 3 (0, 0, 0)...”, “Yes”, “Continue”, “Yes”

+ Configure the package manager - leave this blank unless you’re using an HTTP proxy

« Configuring tasksel - since this is just a practice server, leave it to “No automatic updates”

« Software selection - use Space to select “OpenSSH server” and press Enter to Continue

« Install the GRUB boot loader on a hard disk - choose “Yes”

« Finish the installation - select “Continue” to eject the installation disk and restart the server

Upon restarting, go ahead and check if you can log in using the user name and password that you provided
earlier. If you can’t, it may be because you have the Caps Lock on or you may have forgotten your credentials.
Do everything all over again if it’s the latter.

If you chose Bridged Adapter for your VM’s networking settings, enter the following command to determine
the IP address of your server:

Practicing for Linux Deployment 7

$ hostname -1

Command Line Crash Course

If you aren’t familiar with the Linux command line, please take this time to run through the Command Line
Crash Course inside the VM.

Remotely connect via SSH

From this point on, we will be accessing the VM remotely via Secure Shell (SSH) to simulate how to remotely
administer a VPS.

Linux and Mac users can use the terminal, while Windows users can use Git Bash. As mentioned in the
Introduction, this book assumes that you are familiar with these terminals, either as someone who has gone
through a Rails tutorial, or as a SysAd.

To connect to Bridged Adapter VMs via SSH, run “ssh [user name]@[server IP address]” e.g.:
$ ssh user@192.168.1.10

If you're using NAT with ports forwarded as in the previous section, use “ssh [user name]@localhost
-p 22227 e.g.

$ ssh user@localhost -p 2222

Either way, the server will ask you for the user’s password. It may also ask you to verify the authenticity of
the host (it’s local so just say “yes”). Once logged in, you now have full remote control of the server.

(> X user@server: ~

ubuntu@ubuntu:~S$ ssh user@192.168.1.171

The authenticity of host '192.168.1.171 (192.168.1.171)' can't be established.
ECDSA key fingerprint is 13:c2:5d:7c:e b:4a:b8:85:62:87:0c:27:9c:23:53.

Are you sure you want to continue connecting (vyes/no)? yes

Warning: Permanently added '192.168.1.171' (ECDSA) to the list of known hosts.
user@192.168.1.171's password:

Welcome to Ubuntu 14.084.2 LTS (GNU/Linux 3.16.8-38-generic x86_64)

* Documentation: https://help.ubuntu.com/

System information as of Thu May 21 04:31:06 UTC 2015

System load: 0.0 Processes: 76

Usage of [: 22.6% of 6.50GB Users logged in: 0

Memory usage: 5% IP address for ethe: 192.168.1.171

Swap usage: 0%

Graph this data and manage this system at:
https://landscape.canonical.com/

Last login: Thu May 21 04:31:06 2015
user@server:~$

http://cli.learncodethehardway.org/book/
http://cli.learncodethehardway.org/book/
http://en.wikipedia.org/wiki/Secure_Shell

Practicing for Linux Deployment 8

Prompt format

To avoid confusing beginners, we will not be using the standard tutorial terminal prompt “$”. Instead, all
of the examples in the book for server commands will use the bash’s default prompt format to display the
current user and working directory e.g.

user@server:~$
This prompt is made of the following parts:

« user - the username of the current logged in user

« @ - a separator (i.e. “at”)

+ server - the hostname of the current machine

« : - another separator

+ ~ - the current working directory. ~ refers to the user’s home directory i.e. /home/user/
» $ - this changes to # when the current logged in user is root

Commands to be executed on your local machine (e.g. Mina commands) will have bare $ prompts.

Additional Sever Setup

We need to do a few more things before we can proceed with learning how to deploy Ruby and Rails
applications.

Updating and Installing New Software

Fresh installs of Ubuntu are usually have packages that are out of date. Let’s update them now.

user@server:~$ sudo apt-get update

As briefly mentioned in the Command Line Crash Course, sudo lets you run commands as the root user,
allowing you to do things that are not permitted for regular users. As an added precaution, using sudo requires
you to enter the user’s password to proceed.

Ubuntu is derived from Debian so it also uses APT (Advanced Packaging Tool) for managing packages.
Running apt-get update retrieves the latest package lists from the current sources (Ubuntu’s official
software package repositories by default). It does not upgrade the packages, however. That is done by the
next command:

user@server:~$ sudo apt-get dist-upgrade

Practicing for Linux Deployment 9

This will show you a list of packages that will be updated and will prompt you to continue. Enter “y” or just
press Enter (the capitalized letter is the default) to proceed. You can also add the “~y” option to automatically
yes to all prompts e.g. “sudo apt-get dist-upgrade -y”.

The command “apt-get dist-upgrade” compares the recently retrieved package list with the currently
installed packages and upgrades all packages that have new versions. We can also use “apt-get upgrade” if
we only want to install new packages that don’t affect other existing packages (e.g. don’t install kernel updates
because they uninstall old kernels), but we use the former here since we want to upgrade everything.

Upgrading will take a while to finish. When it’s done, let’s now install some of the software that we will be
using in the apps that we will deploy:

user@server:~$ sudo apt-get install build-essential git-core nodejs postgresql libpg-dev -y

As the name implies, “apt-get {install” installs new packages from Ubuntu’s repository and other
repositories you may have added beforehand. Here’s a quick explanation for each of the packages:

« build-essential - a package that contains all of the packages needed for compiling and building
common applications (e.g. for C, C++)

+ git-core - core Git packages which we will use later to pull code from repositories

« nodejs - Node]JS for Sprockets / Asset Pipeline. It’s not up to date, but it should be fine for our needs.

« postgresql - our database

« libpg-dev - when installing gems, they can sometimes require development libraries to compile
against. This package contains the libraries for PostgreSQL and is required for installing the pg gem.

Removing Password Login

Let’s add the bare minimum level of security to our server.

First off, let’s remove password login and replace it with public-key cryptography. That is, we’ll tell SSH to
reject password logins (which can be brute-forced) and instead verify the user’s identity using their private-
public key pair.

SSH Keys

Rails tutorials often require you to generate your SSH keys so that you can push your code to GitHub or
Heroku. If you haven’t generated them yet or are not sure if you have, please go to GitHub’s Generating
SSH Keys learn how to generate them now.

Start by copying over your public key to the user’s authorized keys list. Windows (Git Bash or minGW) users
have to do this manually:

https://help.github.com/articles/generating-ssh-keys/
https://help.github.com/articles/generating-ssh-keys/

Practicing for Linux Deployment 10

user@server:~$ mkdir .ssh
user@server:~$ nano .ssh/authorized_keys

These commands will create the .ssh folder and open the authorized_keys file in an editor, in this case
nano. Open your public key (typically C:\Users\username\.ssh\1id_rsa.pub) in a text editor (Notepad
should be ok), copy it’s contents to clipboard, and in the terminal, right-click the window title -> Edit -> Paste.
Press Ctrl-O and Enter to save then press Ctrl-X to quit nano.

Editors

We will be using nano as the default editor in this book. You’'re free to use other editors like emacs or vim
if you’re more comfortable with them. The former isn’t installed by default so you will have to install it via
“sudo apt-get install emacs24-nox”.

Windows Command-line QuickEdit Mode

The QuickEdit Mode is a quicker way to paste and even copy text from Windows terminals based on
cmd . exe like Git Bash. To enable this, right-click the window title -> Properties -> Options -> tick QuickEdit
Mode.

Once enabled, you can now right-click the terminal to paste your clipboard. You can also highlight and
right-click to copy text from the terminal.

We also need to reduce the permissions of the directory and the file. Otherwise, the SSH server will consider
them insecure and ignore them.

user@server:~$ chmod 700 .ssh
user@server:~$ chmod 600 .ssh/authorized_keys

The chmod command changes file and directory permissions. We’re using octal mode here so it’s not obvious
what 700 or 600 means, but basically chmod 600 means that only the user can read and write the file while
chmod 700 means that only the user can read, write, and execute it.

Linux and Mac users have a shortcut that does the whole process. Open a new terminal or exit your current
session and run the following:

$ ssh-copy-id user@[IP address]

If you’re using NAT and port forwarding:

Practicing for Linux Deployment 11

$ ssh-copy-id user@localhost -p 2222

Mac users may have to first install ssh-copy-id via Homebrew i.e. “brew install ssh-copy-id”.

Now that you’ve added your public key to the server, open the SSH’s configuration file and change its settings.

user@server:~$ sudo nano /etc/ssh/sshd_config

There are two things we need to change. One is to disable root login:

Authentication:
LoginGraceTime 120

PormiLR L _

PermitRootLogin no

And the other is to remove password authentication and force logging in via private-public key pair:

Change to no to disable tunnelled clear text passwords
. .

PasswordAuthentication no

Once done, you can restart the SSH server daemon to apply the changes for all new connections:

user@server:~$ sudo service ssh restart

Adding a Regular User for Deployment

As another security precaution, we will be running our Ruby and Rails applications under a user without any
administration rights. Enter the following command to create this user:

user@server:~$ sudo adduser --disabled-password --gecos 'Deploy User' deploy

This command creates the “deploy” user and its corresponding “deploy” user group. The options we added
remove disables the deploy user’s password (but still allows login via private-public key) and sets the user
information to “Deploy User” (otherwise we’ll be prompted to enter it). This command also creates the user’s
home directory “/home/deploy/”.

To allow us to login via SSH, let’s copy over our ssh settings from our user user to the deploy user.

user@server:~$ sudo cp -r .ssh /home/deploy/.ssh
user@server:~$ sudo chown -R deploy:deploy /home/deploy/.ssh

The chown command changes the ownership of the folder; in this case, we changed the ownership of the
folder and all of its contents (-R) to both the deploy user and user group.

If setup correctly, you should be able to login remotely to the deploy user e.g.:

12

Practicing for Linux Deployment

$ ssh deploy@192.168.1.10
Or:
$ ssh deploy@localhost -p 2222

Wrap-up: Shutdown server and take a Snapshot

You should now be ready to start installing the software required for Ruby and Rails application servers. But
before that, let’s take a snapshot

Start by shutting down the server:
user@server:~$ sudo poweroff

When the server has shutdown, go back to the VirtualBox Manager, select your practice VM, go to the
Snapshots tab, then click the Take Snapshot button.

Ll Oracle VM VirtualBox Manager = =
Eile Machine Help

{:3 E:% é;’ R {2 petals | (@) Snapshols

Mew Settings Start Discard

[64] o] | @ A
fz @ Powered OFF @ NG =:
.| Take Snapshot (Ctrl+Shift+S5)

Take a snapshot of the current virtual machine state

Choose a name for the snapshot and continue.

Ly Oracle VM VirtualBox Manager = =
File Machine Help
{:} ﬁ? :9' \/ £2) Details Snapshots (1)

MNew Settings Start Discard

bh Cromcsor |l

=X = Snapshot 1 (15 second(s) ago)
@ Current State

You now have a snapshot of the VM. You should now be able to roll back your server in case you mess up the
installation process in the following chapters.

Practicing for Linux Deployment

Alternative SSH Client for Windows: PuTTY

While you can certainly go through this tutorial using SSH under Git Bash, the de facto standard remote
shell client for Windows is PuTTY. The latter has more features, is more customizable, and defaults to
QuickEdit-style behavior.

You can get PuTTY from this link. We only need PuTTY and PuTTYgen, but download and install the
Windows installer is more convenient.

Opening a session is pretty straightforward, just enter the address and the port and press Open to connect.
Here’s the settings for connecting to a VM with a NAT network:

) PUTTY Configuration ?
Category:
=3 Sgssion Basic options for your PuTTY session
T Logging Specify the destination you want to connect to
[=I- Teminal
... Keyboard Host Name (or IP address) Port
Bl [localhost 222
- Features Connection type: . . .
= Window (JRaw (_)Telnet () Rlogin @ SSH () Serdal
Appea!ance Load, save or delete a stored session
- Behaviour
... Translation Saved Sessions
- Selection
- Colours :
Default Settings
[=- Connection Load
... Data Save
. Proxy
. Telnet Delete
- Rlogin
(- S5H
e Close window on exit: B
(O Aways () MNever (®) Only on clean exit
About Help Qpen Cancel

You can also save your session settings by entering a name under the Saved Sessions text field and pressing
Save.

You will not be able to login yet since we already disabled password authentication and PuTTY does not
use the same private-public key format as the one used in the Git Bash’s SSH client. We need to convert our
private key first using the PuTTYgen program.

13

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Practicing for Linux Deployment

B PUTTY Key Generator ?
File Key Conyersions Help

Key

Mo key.

Actions

Generate a public/private key pair

Load an existing private key file

Save the generated key Save public key Save private key
FParameters

Type of key to generate: _ ~

() 85H-1 (RSA) (®) SSH-2 RSA (_1S8H-2 DSA

Number of bits in @ generated key: 2048

Upon opening PuTTYgen, you will be greeted by a blank form. Here we can generate new private-public
key pairs, but since we already have one, we’re just going to convert it to PuTTY’s format (. ppk). Click the
Load button (or go to File -> Load Private Key) then change the dropdown from “PuTTY Private Key Files
(*.ppk)” to “All Files (**)” and open your private key (typically C:\Users\username\.ssh\id_rsa).

7 PUTTY Key Generator ?
File Key Conversions Help

Key
Public key for pasting into OpenSSH authorized_keys file:

sshsa ~
AAAAB3NzaC Tyc2EAAAADAQABAAACAGC oy UhkMyvjgditqO2+BqPxBWEFZrYBXS
SK2¢2dm3u3Kt 11dGrBefdwsmiUgKBSVTRSKlgvzV2qswC IS WY yCwMh MthiW5K/n M
ACRQFcKiuGZsqESDEub DAYxZglOXlemeN U5+ BpS0vaCYc 51501/ liqo 836X DaEhk
PYolopU1PKm3ILa3Hs UHoopuShjyZpoOVD S0P JdSpGihk/GsDsKIB2ZWNy 3I0bREQ v

Key fingerprint : sshsa 4096 ae:c2:e7:3e:03:83.57:33:4c bbb 041 cf 24.e4:5a
Key comment: imported-opensshey
Key passphrase:

Corfim passphrase: | ssssses
Actions

Generate a public/private key pair Generate
Load an existing private key file Load

Save the generated key Save public key

Parameters

Type of key to generate: B B
() SSH-1(RSA) (@) S5H-2 RSA () SSH-2DSA

Mumber of bits in a generated key: 2048

You may be prompted to enter your private key’s passphrase in order to continue.

You can now save the private key to the . ppk format with the Save private key button. Once you have the
private key in the proper format, add it to your PuTTY SSH session settings by going to Connection -> SSH
-> Auth -> Browse...

14

Practicing for Linux Deployment

) PUTTY Configuration ?
Category:
Bell - Options controlling S5H authentication
Features
Window [] Bypass authertication entirely (S5H-2 onty)
- Appearance Display pre-authentication banner (S5H-2 only)
BEhaVID.LII' Authentication methods
- Translation
.. Selection Attempt authentication using Pageant
. Colours [] Attempt TIS or CryptoCard auth (SSH-1)

[+] Attempt "keyboard-nteractive” auth (S5H-2)

Authentication parameters

[] Allow agent forwarding

[Allow attempted changes of usemame in SSH-2
Private key file for authentication:

C:hUsers"Bryan®. sshid_rsa ppk

=
[=]
=4
IT
[
=]
i

en Cancel

Go back to Session and save so that you won’t need to do it again. You should now be able to connect to
both user and deploy users using these settings. Note that as with the normal OpenSSH SSH client, you
will be asked first to confirm the identity of the server.

= deploy@server: ~ = B

ase for key
ome to Ubumtu 14.€

* Documentation: htt

em information as

of 6.58GB

15 from gb

connected via PuTTY, font changed to Consolas

Overview of Web Application Server Systems

As a developer who has gone through a Rails tutorial or as a SysAd, you should be aware of the HTTP
request-response cycle i.e. how a client (e.g. browser) communicates with a server.

L

= —g
AT HTTP Response

e

HTTP Request :J:]
—

| E— |

But there is more to serving web content than this simple diagram. So before we begin, it’s best that you at
least have an idea what goes on behind web servers.

Serving Static and Dynamic Web Content

From the early days of the Internet and even up to today, a good portion of the data sent over the internet is
static content e.g. images, static text files like CSS, HTML. And that’s what a web server does.

GET index.ht@l

|/ - Web Server |—=—=
index.html

[var fwww/

index_html

In this diagram, the web server program is set to serve files from the /var/www/ folder. If the requested file
exists, it returns it. Otherwise, it returns a “404 Not Found” HTTP error.

Eventually the internet became more and more complex that there came a need to serve dynamic content. Say
you have a constantly updated news site - manually crafting an HTML page for every news item is difficult
enough, what if you need to change the layout of all of the pages? How do you implement article searching?

These problems can be solved by saving your data in a database, then dynamically crafting a new page for
every request. The simplest way to do this is through CGI (Common Gateway Interface).

Overview of Web Application Server Systems 17

GET cgi-bin/latestnews.pl

[1 - spawn CGl
- Web Server latestneus.pl
& \4 latestnews.pl (HTML)

¢ -
[var fwaw/ l m

latestnews.pl
index . html (process terminated)

In this diagram, the client wants to request the latest news articles and does so by requesting /cgi-
bin/latestnews.pl. The server has set /cgi-bin/ folder as the CGI directory so instead of serving the
contents of that file, it runs that program (in this case a Perl script) and returns the output to the client. The
script can do whatever it wants: it can access the database, read files, send network requests, etc., all the server
cares about is its output.

The simplicity of CGI made it popular but it had one main problem: starting up programs and killing them
every request incur a significant overhead.

One possible solution is to have a process that loads the interpreter and keeps it running while it accepts
requests for dynamic content from the web server. This is basically what FastCGI does.

GET cgi-bin/latestnews.pl

| | e ™ | web Server | ==/ APP ierver
/’\—/‘\ latestnews.pl (HTML) (FaS CGI) -
e — [

[var fwww/

index_html

Here we see the web server which still serves static content. It is also configured to pass the requests for
dynamic content to the separate FastCGI server - our new application sever. Properly configured, the request
to /cgi-bin/latestnews.pl will return the same result as the CGI setup, only faster.

The diagram above is oversimplified. Here’s a slightly more detailed take on the system:

Overview of Web Application Server Systems 18

) = ™ | WebServer ~| App Server

[Worker][Worker } worker -

T—
| |

Y Y Worker |

[var fwww/

ARRRRRE

Worker T

Your web and application servers aren’t limited to being single-process systems. Each can have multiple
processes and threads in order to handle multiple loads concurrently. In turn, those workers are managed by
the master process: the master can spawn new workers to handle increased load, balance the requests between
workers, kill non-responsive workers, and so on.

Another thing about the FastCGI-style: the web and application server are separate processes and have to use
either TCP sockets or UNIX sockets to communicate with each other.

Of course, the FastCGI-style isn’t the only alternative to CGI. For example, a popular solution for PHP is to
use Apache HTTP Server (commonly shortened to just “Apache”) and enable the mod_php module:

[—— Apache
P \\,
[Worker | mod_php][Worker mod php -
i
Y

Jvar fwww/

ARRRREN

This loads the PHP interpreter to all of the workers allowing Apache to process PHP scripts without having
to use a separate application server, essentially making it a combined web and application server.

How to Serve Content from Ruby Applications

All modern Ruby web applications use Rack as an interface between the application and the application server.
Any application server that supports Rack will be able to load a Ruby web application with Rack and use the
latter to serve requests.

If you look at your Ruby and Rails apps, you will see the standard entry points for both the web and the
Rack-enabled application server: the /public folder often refers to the root directory that will be served by
the web server, while the config. ru (rackup configuration) is what the Rack server will look at for starting
the Ruby application. Here’s an example with Nginx and Unicorn serving a Rails application:

http://rack.github.io/

Overview of Web Application Server Systems 19

B — .]
e Nginx " Unicorn
& R,
[Worker J[Worker } -
R
| |
e
bli
D e
I | N | | B config.ru
/home fuser /app/

Nginx at the front, serving precompiled assets and other static files from the /home/user/app/public/
folder. Other requests will be directed to Unicorn, which by default runs the Rails application through
/home/user /app/config.ru.

As the diagram implies, Unicorn is a multi-process application server separate from the web server. It is
similar to the FastCGI server above, but we can’t call them FastCGI servers since it doesn’t follow the FastCGI
protocol. (With some effort, you can use FastCGI servers to serve Rack applications, but it’s definitely not
recommended.)

Other Rack application servers follow the same theme with some differences. Passenger and Puma can be used
as multi-process servers, and they can also be used as multi-threaded servers when used with an interpreter
that supports real threading like JRuby. Thin and Rainbows are servers which use a different approach
(evented) to improve concurrency in certain types of applications.

In this tutorial, we will be starting off with Passenger and Nginx. When installed as an Nginx or Apache
module, Passenger makes them behave like combined web and application servers - instead of having to
configure two different servers separately, all configuration is done in the Nginx/Apache side.

Installing Phusion Passenger

In this chapter, we will install nginx (pronounced “engine x”) with Phusion Passenger, our combined web
and application server. We will also install Ruby 2.2 which will be used by Passenger when spinning up the
application workers.

Most of the commands here require sudo; we’ll work around this minor annoyance by switching to the root
user.

user@server:~$ sudo -1

This will switch you from the user user to the root user and move you to root’s home directory, “/home/”.

Installing Ruby

First we’ll install Ruby. We’d like to install it via apt-get again, but unfortunately the version in Ubuntu’s
official repository for Ubuntu 14.04 is out of date (version 1.9.3p484 as of this writing).

Good thing we can add third party repositories to APT, in this case Brightbox’s PPA in Launchpad.
root@server:~# apt-add-repository ppa:brightbox/ruby-ng -y

After adding the repository, we must retrieve the new package list by running apt-get update again:
root@server:~# apt-get update

Now to finally install install Ruby 2.2. We also include the development libraries since they are required when
installing gems.

root@server:~# apt-get install ruby2.2 ruby2.2-dev -y

The Ruby installed via the Brightbox repository is separate from the one available in Ubuntu’s official
repository but it will not be in conflict even when installed side by side: upon installation, the default behavior
of both ruby and gem commands will be changed to use the newly installed version. If you want to use the
old version, you can call the appropriate executable directly (e.g. /usr/bin/rubyl.9.1) or you can install
and use the ruby-switch package also available in the Brightbox repository.

Our last step in installing Ruby would be to install Bundler:

http://nginx.org/en/
https://www.phusionpassenger.com/
https://www.brightbox.com/docs/ruby/ubuntu/

Installing Phusion Passenger 21

root@server:~# gem install bundler --no-ri --no-rdoc

Why not use RVM, rbenv, etc?

Many tutorials out there will tell you to install a version manager of some sort for your production server.
However, when you think about it, you’ll realize that you don’t need them.

Let’s look at the main reasons why we use version managers:

« System Rubies (e.g. from Ubuntu’s repos) are usually out of date and we need version managers to
install them - not a problem since we can install the latest version of Ruby via 3rd party repositories
like Brightbox’s

« You can install gems without having root access - after installing Bundler, you can install gems on a
non-root path via the --path option and you run them using bundle exec. And since binstubs are
enabled by default in Rails 4, you don’t need to type out bundle exec much anymore.

« Version managers allow us to switch between Ruby versions - you usually only have one app installed
per server in a production setting.

Version managers have their drawbacks; we just don’t realize them because they’re necessary in development
environments:

« Compiling Ruby takes time - we have no choice in development but to let our version manager compile
and install a new Ruby to our home directory, and this can take around 10 minutes for a decent
computer. This may be a non-issue if you have a top of the line server, but I still doubt it can beat
the less than one minute installation speed of installing via APT.

« Path craziness - version managers use different techniques to modify the PATH to avoid conflicting with
the system Ruby and to auto-switch between versions. As mentioned above, we don’t need to switch
Ruby versions and these techniques can complicate certain aspects of your system e.g. job scheduling
via cron.

Of course, we cannot ignore that there are still use cases for version managers so we’ll cover how to use them
in a latter chapter.

Installing nginx + Passenger

Next up is installing our web and application servers, nginx and Passenger. Like Ruby 2.2, we will install both
using apt, but this time the setup will be slightly different.

The Passenger package is not hosted in Launchpad, so instead of apt-add-repository we’ll have to
manually get the authentication key and add the URL of the Passenger repository.

Run the following command to get the key which will be used by apt to authenticate the Passenger packages:

Installing Phusion Passenger 22

root@server:~# apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 561F9B9CAC40B2F7

Let’s then add the APT repository for Ubuntu 14.04 to apt’s sources:

root@server:~# echo "deb https://oss-binaries.phusionpassenger.com/apt/passenger trusty main" \
> /etc/apt/sources.list.d/passenger.list

(We split the command to multiple lines with a backslash (\) because the command is too long for this
document.)

The echo command outputs a string to the console, which is then redirected by > to the new file
/etc/apt/sources.list.d/passenger.list. You can do the same by creating and editing the file via
a text editor (e.g. nano /etc/apt/sources.list.d/passenger.list)but the command above has fewer
steps.

And finally we install nginx and Passenger:

root@server:~# apt-get update

root@server:~# apt-get install nginx-extras passenger -y

By now you should be able to verify that nginx is installed by opening your browser to the URL of your virtual
machine (or http://localhost:8080/ if you're using NAT and port forwarding).
|- -

/[Welcome to nginxon Uk % |

&« C [9192.168.1.194 =

Welcome to nginx on Ubuntu!

If you see this page, the nginx web server Is successfully installed and waorking
on Ubuntu. Further configuration is required.

For online documentation and support please refer to nainx.org

Please use the ubuntu-bug tool to report bugs in the nginx package with
Ubuntu. However, check existing bua reparts before reporting a new bug.

Thank you for using Ubuntu and nginx.

Why not install via passenger gem (i.e. passenger-install-nginx-module)?

Same reason as why we’re installing Ruby via packages: it’s just more convenient especially for beginners.
Installing via the passenger gem requires more commands to be entered, has a 2-5 minute compilation step,
and needs more configuration to make it start automatically on startup. Not to mention that you have to go
through all that again when you upgrade Passenger.

Install via packages whenever possible. Your SysAds will thank you for that later.

http://localhost:8080

Installing Phusion Passenger 23

Wrap-up: Enable Passenger

Open nginx’s configuration file /etc/nginx/nginx.conf with your favorite editor e.g.
root@server:~# nano /etc/nginx/nginx.conf

You should see the default settings for nginx:

user www-data;

worker_processes 4;

pid /run/nginx.pid;

events {

worker_connections 768;
multi_accept on;

}

http {
##
Basic Settings
##

sendfile on;
tcp_nopush on;

Note that most of the file is enclosed in a http { } block. This is how settings are applied in nginx - each
setting is a line ending in a semicolon, settings are applied to the current enclosing block, and certain blocks
can be nested within each other.

To enable Passenger within nginx, we must uncomment the following lines inside the http block.

##

Phusion Passenger config

##

Uncomment it if you 1dinstalled passenger or passenger-enterprise
##

passenger_root /usr/lib/ruby/vendor_ruby/phusion_passenger/locations.ini;
passenger_ruby /usr/bin/passenger_free_ruby;

We don’t need to modify Ruby’s path because /usr/bin/passenger_free_ruby is practically an alias for
the default Ruby i.e. the one we installed from Brightbox earlier.

Now let’s restart the server to apply the changes. As pointed out above, had we installed nginx and Passenger
manually, we would have had to also manually install System V init scripts that will start the server
for us on server startup. But since we installed via packages, the init script is already installed for us at
/etc/init.d/nginx. We can call service to run this script and restart the server for us:

Installing Phusion Passenger 24
root@server:~# service nginx restart
Open the server again through your browser. You should see the same page again if you properly set the

passenger_root and passenger_ruby settings and not an error page.

We will discuss how to configure the other blocks in the next chapter.

71

Deploying Ruby Web Applications to
Passenger

In this chapter, we will be discussing how to configure nginx and Passenger to serve Ruby web applications.
Before that, let’s look at how nginx is currently configured to serve static files.

A Quick Look at nginx Server Settings

The settings for the page we viewed in the browser are not present in the /etc/nginx/nginx.conf file.
They are instead found in the /etc/nginx/sites-enabled/ directory and are included by the following
line:

include /etc/nginx/sites-enabled/*;
Let’s look at the only file in that directory, default:

root@server:~# nano /etc/nginx/sites-enabled/default

##

You should look at the following URL's in order to grasp a solid understanding
of nginx configuration files in order to fully unleash the power of nginx.

http://wiki.nginx.org/Pitfalls

http://wiki.nginx.org/QuickStart

http://wiki.nginx.org/Configuration

#

Generally, you will want to move this file somewhere, and start with a clean
file but keep this around for reference. Or just disable 1in sites-enabled.

#

Please see /usr/share/doc/nginx-doc/examples/ for more detailed examples.

H+
+

Default server configuration

#

server {
listen 80 default_server;
listen [::]:80 default_server;

SSL configuration

root /usr/share/nginx/html;

Deploying Ruby Web Applications to Passenger 26

Add index.php to the list if you are using PHP
index index.html index.htm index.nginx-debian.html;

server_name _;

Read the links in the files comments when you have the time. For now, here’s a quick rundown of the settings
(aka directives) in the above server block:

« listen - sets the address and port that the current server is listening to: listen 80 default_server
means listen to port 80 (default HTTP port) and make this server block be the default server in case a
request comes in that doesn’t match a server_name in other server blocks. The second listen line is
the same, but for IPv6 addresses.

« root - the document root of the server

« index - if the request asks for a folder, the files listed will be the ones displayed to the user. For example,
when we requested for the “/” path, nginx returned to us the contents of /usr/share/nginx/htm-
1/index.html.

« server_name - this line determines if the request is for this block by matching it with the Host header.
The dummy entry _ is used here to allow the default_server setting in the 1isten directive to catch
all non-handled requests.

One thing to note about this server configuration file is merely a symbolic link, a special file referencing
another file:

root@server:~# 1ls -1 /etc/nginx/sites-enabled/
total ©
lrwxrwxrwx 1 root root 34 May 31 20:41 default -> /etc/nginx/sites-available/default

As you can see, the real file is located at /etc/nginx/sites-available/.

This whole scheme (separating the server settings out of nginx.conf, storing those settings in a folder and
symlinking it) is not necessary but it makes modifying the files easier later on, especially if you’re hosting
many servers in a single nginx installation.

(The symlinking scheme is also for Apache users who are more familiar with setting up Virtual Hosts in that
manner.)

Deploying a Simple Sinatra App
To better understand how Passenger is configured to start and serve Rack applications, we are not going to

go directly to a Rails app. Instead, we will be practicing first on a Sinatra application.

Half of the things we will do in this section will be done as the deploy user. We recommend opening a new
SSH session under the deploy user separate from the root.

Deploying Ruby Web Applications to Passenger 27

If you prefer to use just one terminal, you can always switch from root to deploy via the su command:

root@server:~# su -1 deploy
deploy@server:~$

The -1 option makes the switch behave like it was a login, similar to how sudo -1 does this for root.

To go back to root, simply exit the session.

deploy@server:~$ exit
logout
root@server:~#

Setting up and Creating the Sinatra Application

Let’s start by creating the project folders.

deploy@server:~$ mkdir -p sinatra_demo/public

Here sinatra_demo is our project folder. The minimal required for a Rack app in Passenger are the
config. ru file and the public folder, the latter of which we created here.

Passenger can use Bundler if it sees a Gemfile. This is our preferred behavior since we do not want to install
other gems on the system-level.

Change directories and create a new Gemfile

deploy@server:~$ cd sinatra_demo
deploy@server:~/sinatra_demo$ nano Gemfile

source '"https://rubygems.org"

gem "sinatra"
And now let’s install the Sinatra gem and all required gems to the bundle folder using the --path option:
deploy@server:~/sinatra_demo$ bundle 1install --path=bundle

Now let’s create our Sinatra application. Sinatra apps are small so we’ll just put all of it inside our config. ru
file:

W 0 N O U M W N

[
= ©

0 N o b~ W N B

Deploying Ruby Web Applications to Passenger 28

deploy@server:~/sinatra_demo$ nano config.ru

require 'rubygems'
require 'sinatra'

set :environment, ENV['RACK_ENV'].to_sym
disable :run, :reload

get u/u do
"Hello World!"
end

run Sinatra::Application

Modifying nginx Settings

Now that we’ve created our Sinatra application, let’s switch back to the root user to setup its settings.

First, let’s delete the default symlink:

root@server:~# rm /etc/nginx/sites-enabled/default

Then create the server config file:

root@server:~# nano /etc/nginx/sites-available/sinatra

server {
listen 80 default_server;
listen [::]:80 default_server;
server_name _;

root /home/deploy/sinatra_demo/public;
passenger_enabled on;

If you recall our previous lesson on web and application servers, we needed to point nginx and Passenger to
the document root and the application respectively. For nginx, the root line does this. On the other hand, we
didn’t need to tell Passenger where config. ru is - it can already guess that it’s in the parent directory of the
public folder.

Overall, the settings here are not much different from the previous nginx static settings apart from the new
passenger_enabled directive, which, as the name implies, enables Passenger.

All that’s left to do is create a symlink:

Deploying Ruby Web Applications to Passenger 29

root@server:~# cd /etc/nginx/
root@server:/etc/nginx# ln -s ../sites-available/sinatra sites-enabled/sinatra

(We changed directories and tweaked the 1n command so that the line will fit in this document. The full correct
commandis “Ln -s /etc/nginx/sites-available/sinatra /etc/nginx/sites-enabled/sinatra”)
And restart the server:

root@server:/etc/nginx# service nginx restart

Opening the browser should now give you the “Hello World” served from Sinatra.

O - -EN

/[192.168.1.104 %\

<« C' [} 192.168.1.194 =

Hello World!

Modifying and Restarting the Application

Let’s try modifying our application. What will happen if we added a new file to the pub1lic folder?

deploy@server:~/sinatra_demo$ echo "Hello again!" > public/hello.txt

Open hello. txt on your browser.

B - E

[192.168.1.194/hello.txt x \

<« C' | [} 192.168.1.194/hello.txt

Hello again!

nginx was able to find the new file and served without problem. But what if we modified our Sinatra
application to add a new path handler?

Deploying Ruby Web Applications to Passenger 30
require 'rubygems'
require 'sinatra'

set :environment, ENV['RACK_ENV'].to_sym
disable :run, :reload

get ll/ll do
"Hello World!"

end

get "/now" do
Time.now.to_s

end

run Sinatra::Application

One might expect that the change will be applied immediately. Unfortunately we get this error:

- -
/[192.168.1.194/now %\
€« C | [192.168.1.194/now =
Not Found

This happens because Passenger caches your entire application on startup to improve performance. This means
that all changes to our Rack applications must require an application restart.

Our deploy user doesn’t have rights to restart nginx, but there is a way to restart Passenger on the application
level: by creating or modifying the tmp/restart. txt file.

Let’s create the file now to restart our application:

deploy@server:~/sinatra_demo$ mkdir tmp
deploy@server:~/sinatra_demo$ touch tmp/restart.txt

The touch command either updates the timestamp of the file (i.e. touching the file) or creates a new file if it
doesn’t exist.

Try opening the /now page again:

Deploying Ruby Web Applications to Passenger 31

B - E

192.168.1.194/now *

€« C | [1 192.168.1.194/now

2015-06-06 18:06:45 0000

Deploying a Simple Rails App

We finally get to the part most of you are here for: deploying a Rails application.

We will be using a sample application for this tutorial. This is be a very simple app, but the concepts that you
will learn from it should prepare you for deploying your own app.

Setting up the PostgreSQL Database

Our first step in deploying would be to set up our database user.

In other tutorials, this part also includes setting the user’s password. But since we have our PostgreSQL
database on the same machine as the application server, there is a simpler alternative, one that we can see in
the database’s authentication settings:

root@server:~# cat /etc/postgresql/9.3/main/pg_hba.conf
PostgreSQL Client Authentication Configuration File

Database administrative login by Unix domain socket
local all postgres peer

TYPE DATABASE USER ADDRESS METHOD

"local" is for Unix domain socket connections only

local all all peer
IPv4 local connections:

host all all 127.0.0.1/32 md5

IPv6 local connections:

host all all ::1/128 md5

The last two non-comment lines enable md5 password authentication, something that we expect in a database
server. On the other hand, the first 2 lines enable “Peer” authentication (aka “Ident” authentication in older
versions).

https://github.com/bryanbibat/sample_app

Deploying Ruby Web Applications to Passenger 32

In peer authentication, the database checks the current user name if it is a database user name and allows
access as that database user if it does. This authentication does not require a password for login.

One might think that this passwordless scheme is insecure, but it’s not that much different from password
authentication - in the latter you’ll still have the database credentials visible to the current user. And since
peer authentication is local-only, remote attacks on your database will require the attacker to have access to
the user (if they do get access to your user, you’ve got worse problems than them getting into your database).

We first need to login as the postgres (which is essentially the top-level admin user) user in order for us to
create our deploy database user.

root@server:~# su -1 postgres

postgres@server:~$ createuser --superuser deploy
postgres@server:~$ createdb deploy
postgres@server:~$ exit

logout

root@server:~#

As the command implies, createuser --superuser creates our deploy user which is a superuser so it has
rights to create databases.

Creating the deploy database is optional; we added it because many applications assume that a database with
the same name as the user exists when using peer authentication.

We log out in the end to go back to our root user.

Database Super User

Normally, it would be dangerous to have our database user as a super user. But given our simple setup, the
increased privileges on a password-less account doesn’t pose that much of a security risk.

If you want, you can use a non-super user account by removing the --superuser option in the command.
This will prevent you from creating databases later with rake db:create and you’ll have to create them
manually e.g.

root@server:~$ sudo -u postgres createdb sample_app

Initial Setup for the Rails App

Check out the whole app. It’s a public repository so we don’t need credentials yet. Later on we’ll discuss how
to check out code from private repositories.

deploy@server:~/sinatra_demo$ cd ~
deploy@server:~$ git clone https://github.com/bryanbibat/sample_app.git

Next up is installing the required gems.

o b~ W N

Deploying Ruby Web Applications to Passenger 33

deploy@server:~$ cd sample_app
deploy@server:~/sample_app$ bundle install --without development test --deployment

The first option is self-explanatory: it doesn’t install gems in the development and test groups of the Gemfile.

The other option, --deployment, is slightly more complicated; it installs the gems for deployment i.e.
production servers. More specifically:

« It requires a Gemfile. lock to determine the exact versions of the gems to be installed

« Install all the gems to the vendor /bundle folder. This is similar to how we installed the Sinatra-related
gems to the bundle folder.

Production Server Settings
Some application settings are intentionally left out of the code. Database credentials are one; other people
should not be able to log in to your production database just because you put your app in a public git repository.

Other tutorials suggest storing sensitive information as environment variables to be accessed by your app on
run time. Here we will be using a simpler file-based approach.

Start by creating a config/database.yml file:

deploy@server:~/sample_app$ nano config/database.yml

production:
adapter: postgresql
database: sample_app
username: deploy
encoding: unicode
pool: 5

Note the lack of password thanks to peer authentication.

Also note that the code has a config/database.yml.example file and the /config/database.yml entry
in .gitignore. In development, the developer can just copy over the example template to config/-
database.yml and tweak its settings all the while being ignored by git on later commits.

Apart from database credentials, the only other production-specific settings we need to set in our simple app
is the session secret. First generate a secret key using the rake secret task:

deploy@server:~/sample_app$ RAILS_ENV=production bin/rake secret

(We prefixed the environment variable RAILS_ENV=production to tell Rails to run the task in production.
Otherwise, the task will run it in development and will throw an error due to missing development gems.)

Take note of the generated random key then overwrite the secrets.yml file:

Deploying Ruby Web Applications to Passenger 34

deploy@server:~/sample_app$ nano config/secrets.yml
Remove everything and replace it with:

production:
secret_key_base: [rake secret output]

Setup Production Database and Precompile Assets

Now for the final steps in the deploy user side.

Create and migrate the database using rake db:create and rake db:migrate under production:

deploy@server:~/sample_app$ RAILS_ENV=production bin/rake db:create
deploy@server:~/sample_app$ RAILS_ENV=production bin/rake db:migrate
== 20150520151700 CreatePosts: migrating ======================================
-- create_table(:posts)

-> 0.0241s
== 20150520151700 CreatePosts: migrated (0.0243s) =============================

Then precompile the assets using rake assets:precompile:
deploy@server:~/sample_app$ RAILS_ENV=production bin/rake assets:precompile

As mentioned in the previous chapter, this (Sprockets / Asset Pipeline) is the only reason why we installed
Node]S. If you don’t want to install NodeJS on your server, you can always add the therubyracer gem to
your Gemfile. We will come back to this in a bit.

nginx/Passenger Settings

With the app fully set up, it’s time to change our nginx settings to serve the new app.

Create a new server configuration file:

root@server:~# nano /etc/nginx/sites-available/rails

0 N o b wWw N

Deploying Ruby Web Applications to Passenger 35

server {
listen 80 default_server;
listen [::]:80 default_server;
server_name _;

root /home/deploy/sample_app/public;
passenger_enabled on;

Yes, it’s almost the same as our Sinatra app’s settings. This is because there’s really no difference from the
two apps: both are Rack applications with public as the static file folder.

Next, replace the Sinatra entry from sites-enabled with our new Rails entry and restart the server.
root@server:~# cd /etc/nginx/
root@server:/etc/nginx# rm sites-enabled/sinatra

root@server:/etc/nginx# ln -s ../sites-available/rails sites-enabled/rails
root@server:/etc/nginx# service nginx restart

Open your browser and you should now see...

) | We're sorry, but somethin % "‘\

<« C' [} 192.168.1.194 =

We're sorry, but something went wrong.

We've been notified about this issue and we'll take a
lock at it shortly.

...al error.

What happened here? Let’s find out by opening the logs:
root@server:/etc/nginx# nano /var/log/nginx/error.log

Scroll up a bit to see the offending line:

Deploying Ruby Web Applications to Passenger 36

[2015-06-03 21:00:05.9892 20894/7fbd72ab9700 App/Implementation.cpp:287]: Could not spawn process \
for application /home/deploy/sample_app: An error occured while starting up the preloader.
Error ID: 3a7a406e
Error details saved to: /tmp/passenger-error-eOEdZA.html
Message from application: Could not find a JavaScript runtime. See https://github.com/rails/execjs\
for a list of available runtimes. (ExecJS::RuntimeUnavailable)
/home/deploy/sample_app/vendor/bundle/ruby/2.2.0/gems/execjs-2.5.2/1lib/execjs/runtimes.rb:48:in "a\
utodetect'

It couldn’t find a JavaScript runtime. Which is weird since we installed Node]S system-wide.

Thankfully the solution is simple.

root@server:/etc/nginx# nano nginx.conf

env PATH;
user www-data;
worker_processes 4;

By default, nginx removes almost all environment variables and this prevented Exec]S from finding the
location of the Node]S executable. Adding the env directive with the PATH environment variable allowed
Exec]S to see the executable at /usr/bin/nginx.

Restart the server after adding the env line.
root@server:/etc/nginx# service nginx restart

You can now access the app in the browser.

/ [SampleApp x §
&« C [192.168.1.194 =

Listing Posts

Title Content

New Post

Deploying Ruby Web Applications to Passenger 37

On “therubyracer” gem

We would not have encountered the previous error if we went with the therubyracer gem; why don’t we
just use that instead of Node]S?

Historically, the problem with the therubyracer gem was its instability when installing and running it.
But nowadays the main reason to avoid the gem is its large memory footprint.

Because of this, we will be using Node]JS as our JavaScript runtime for the entirety of this book.

https://devcenter.heroku.com/articles/rails-asset-pipeline#therubyracer

Redeploying Rails Apps on Passenger

We’ve discussed how redeploying Sinatra apps only need a touch tmp/restart.txt. As you might expect,
redeploying Rails apps can be a lot more complicated than that.

Let’s look at a few examples of manually updating and restarting a Rails application. We’ll see how we can
simplify this process later.

Modifying the Rails App

The basic workflow for changing apps in production would be to push the changes to your repo then you
would pull the changes on your server. Problem is, trying to simulate git pull in our practice app will
require us to do slightly complicated git reset commands.

Instead of going through all that, we’ll just use branches to simulate pulling changes from the origin repository:

deploy@server:~/sample_app$ git checkout bootstrap

M config/secrets.yml

Branch bootstrap set up to track remote branch bootstrap from origin.
Switched to a new branch 'bootstrap'

This bootstrap branch changes the UI from the basic scaffold CSS to Bootstrap. This relatively large change
means that we need to do a couple of things before we can restart the server.

First is to install the gems that provides the Bootstrap assets:

deploy@server:~/sample_app$ bundle install

Note that we didn’t need to use the full command for bundle -install. Those options were already saved
under the .bundle/config file:

deploy@server:~/sample_app$ cat .bundle/config

BUNDLE_FROZEN: '1'

BUNDLE_PATH: vendor/bundle
BUNDLE_WITHOUT: development:test
BUNDLE_DISABLE_SHARED_GEMS: '1'

After installing all of the news gems, the next step is to precompile the new assets:

deploy@server:~/sample_app$ RAILS_ENV=production bin/rake assets:precompile

We can now restart our app and see its new UL

Redeploying Rails Apps on Passenger 39

deploy@server:~/sample_app$ touch tmp/restart.txt

B - K
j SampleApp % |
€ = @ [[7192168.1.194 =
Project name Home Posts
Home

View Posis

Adding File Upload with Carrierwave

Sometimes we have to deploy new builds that require more than just a Bundler update. Let’s try one such
example:

deploy@server:~/sample_app$ git checkout carrierwave

In this new build, we added file uploading through Carrierwave with thumbnail generation via the RMagick
gem. These require both ImageMagick and libMagick so we switch back to root and install them before we
continue with the deploy.

root@server:~# apt-get install imagemagick libmagickwand-dev -y

After the 150MB+ download and installation, we go back to our deploy user and run the commands for
updating gems, migrating the database, precompiling assets, and restarting the application.

deploy@server:~/sample_app$ bundle

deploy@server:~/sample_app$ RAILS_ENV=production bin/rake db:migrate

deploy@server:~/sample_app$ RAILS_ENV=production bin/rake assets:precompile

deploy@server:~/sample_app$ touch tmp/restart.txt

Redeploying Rails Apps on Passenger 40

H - E

SampleApp x ¥
« C' | [} 192.168.1.194/posts

Project name Home Posts

Listing Posts

Title Content

a First post Hello world! Show Edit Destroy

New Post

Simplifying Deployment with Mina

As you can see, most of the process in deploying new builds are just repetitive tasks. There’s no reason we
can’t make scripts to automate the process.

Thankfully, there are existing tools that already do this. Capistrano is arguably the more popular deployment
tool for Ruby, but we’ll be covering Mina first. It has less features than the former, but for single machine
deploys, it’s much simpler (and sometimes even faster).

We'll be using a different project to explore Mina. Fork this repository to the online repository host of your
choice then check out the fork on your local machine.

$ git clone git@github.com: [username]/sample_mina_app.git

You might notice in the project’s Gemfile that this application uses SQLite as its development and test
database and PostgreSQL in production. This is intentional: we expect that some of you will try to deploy
your own apps that were started off using SQLite and doing the same in the sample app will demonstrate that
the deployment process will work just fine even when using the said scheme.

We strongly suggest that you use the same database for your development and production environments for
your future projects, though.

Initial Setup
Let’s install the gem and generate the default deploy. rb settings file.

$ cd sample_mina_app
$ bundle install
$ mina init
————— > Created ./config/deploy.rb
Edit this file, then run "mina setup’ after.

We will be deploying to /home/deploy/sample_mina_app. Open config/deploy.rb and change the
following lines to your practice server settings:

http://capistranorb.com/
http://nadarei.co/mina/
https://github.com/bryanbibat/sample_mina_app

Redeploying Rails Apps on Passenger 41

set :domain, '[ip address]'

set :deploy_to, '/home/deploy/sample_mina_app'

set :repository, 'https://github.com/[username]/sample_mina_app.git'
set tbranch, 'master'

set tuser, 'deploy'

Settings for NAT networked servers are slightly different:

set :domain, 'localhost'

set :deploy_to, '/home/deploy/sample_mina_app'

set :repository, 'https://github.com/[username]/sample_mina_app.git'
set :branch, 'master'

set :user, 'deploy'

set :port, '2222'

The repository setting above uses HTTPS instead of SSH to pulling of code without having credentials. We’ll
discuss later how to use deploy keys to allow checking out of code via SSH.

Mina Directory Structure

Mina creates the following directory structure for projects:

/home/deploy/sample_mina_app/ # The deploy_to path

|- releases/ # Holds releases, one subdir per release
ERY,

EEY,

1= 3/

| -

|- shared/ # Holds files shared between releases

| |- logs/ # Log files are usually stored here

[-

'- current/ # A symlink to the current release 1in releases/

Everytime a new build is deployed, Mina checks it out to a new folder under releases. It then symlinks files
and folders from the shared folder before running the other tasks (e.g. bundle -install). If the deploy is
successful, the current folder is symlinked to the current release.

Clean builds are checked out to the release folder so our previous strategy for secrets.yml (simply
overwiting it) will not work. Instead, we will have to put the secrets.yml and database.yml under the
shared folder and let Mina symlink them at the symlinking step.

Modify the set :shared_paths line to add the secrets.yml:

Redeploying Rails Apps on Passenger 42

1 -1 1 1 Ll
_ E) . H

set :shared_paths, ['config/database.yml', 'config/secrets.yml', 'log']

We also need to modify the Mina setup script to give us empty files to configure later.

task :setup => :environment do
queue! %[mkdir -p "#{deploy_to}/#{shared_path}/log"]
queue! %[chmod gt+rx,utrwx "#{deploy_to}/#{shared_path}/log"]

queue! %[mkdir -p "#{deploy_to}/#{shared_path}/config"]
queue! %[chmod g+rx,u+rwx "#{deploy_to}/#{shared_path}/config"]

queue! %[touch "#{deploy_to}/#{shared_path}/config/database.yml"]
queue %[echo "----- > Be sure to edit '#{deploy_to}/#{shared_path}/config/database.yml'."]

queue! %[touch "#{deploy_to}/#{shared_path}/config/secrets.yml"]
queue %[echo "--——- > Be sure to edit '#{deploy_to}/#{shared_path}/config/secrets.yml'."]
end

Note that the log folder is also symlinked and shared between releases. Otherwise, the production logs will
be lost everytime you deploy a new build.

Other folders like vendor /bundle and public/assets are also shared between builds but they are handled
by different tasks and don’t need to be set in : shared_paths.

Carrierwave Files

File uploading libraries like Carrierwave are often placed under the public folder. Like logs, they will be
lost if you do not add them to the shared files.

For Carrierwave, you’ll need to add the public/uploads folder to the Mina settings i.e.

set :shared_paths, ['config/database.yml', 'config/secrets.yml', 'log',
'public/uploads']

task :setup => :environment do
queue! %[mkdir -p "#{deploy_to}/#{shared_path}/public/uploads"]
queue! %[chmod gt+rx,u+rwx "#{deploy_to}/#{shared_path}/public/uploads"]

Server Setup

We should now be ready to deploy with Mina. But first we need to let Mina create the directoy structure as
well as the files we configured in the setup task.

(Windows users, please see the note at the end of this chapter before continuing.)

o b W N

Redeploying Rails Apps on Passenger 43

$ mina setup

————— > Be sure to edit '/home/deploy/sample_mina_app/shared/config/database.yml’.
————— > Be sure to edit '/home/deploy/sample_mina_app/shared/config/secrets.yml'.

Switch over to the deploy SSH session and edit the database config file.

deploy@server:~$ nano sample_mina_app/shared/config/database.yml

production:
adapter: postgresql
database: sample_mina_app
username: deploy
encoding: unicode
pool: 5

Then the session secret (generate one locally by running rake secret):

deploy@server:~$ nano sample_mina_app/shared/config/secrets.yml

production:
secret_key_base: [rake secret output]

Then create the database:
deploy@server:~$ createdb sample_mina_app

Configuring a new nginx server entry and restarting nginx to apply the changes are left as exercises to the
reader. (Hint: the root should be “current/public”)

Deploying

Now that everything is ready, we can now deploy the latest build through Mina:

Redeploying Rails Apps on Passenger 44

$ mina deploy
————— > Creating a temporary build path
————— > Cloning the Git repository
Cloning into bare repository '/home/deploy/sample_mina_app/scm'...
————— > Using git branch 'master'
Cloning into '.'.
done.
————— > Using this git commit

Mina will automatically perform all of the manual deployment steps that we did in the previous section. The
“deploy” task in config/deploy.rb lists down all of those steps.

desc "Deploys the current version to the server."
task :deploy => :environment do
to :before_hook do
Put things to run locally before ssh
end
deploy do
Put things that will set up an empty directory into a fully set-up
instance of your project.
invoke :'git:clone'
invoke :'deploy:link_shared_paths'
invoke :'bundle:install'
invoke :'rails:db_migrate'
invoke :'rails:assets_precompile’
invoke :'deploy:cleanup'

to :launch do
queue "mkdir -p #{deploy_to}/#{current_path}/tmp/"
queue "touch #{deploy_to}/#{current_path}/tmp/restart.txt"
end
end
end

It pulls a new build, links the shared files, runs bundle -{install, etc. It even assumes that we are using
Passenger and includes touch tmp/restart.txt by default to restart the application.

s
/[SampleMinafpp %
€« C [} 192.168.1.194 =
Sample Mina App

Congratulations on your successful deploy!

Redeploying Rails Apps on Passenger 45

Try to redeploy a new build: modify a file in the project (/app/views/pages/home.html.erb is a good
candidate), commit and push it to your repository, then run “mina deploy” again. Refresh the browser to see
the changes.

O - -EN

y [Y SampleMinafpp x \
[= C | [1192.168.1.194 =

Sample Mina App

Congratulations on your successful deploy!

Congratulations again on another successful deploy!

As you can see, having a deployment tool like Mina significantly reduces the amount of effort needed to
deploy new builds.

Mina on Windows
To put it bluntly, Mina has a bug preventing it from running on Windows

As a Windows user, this would be a great time for you to to start switching over to using Linux as your
development environment. Windows was fine when you were still learning the ropes, but now that you are
going deeper into Rails development, you should seriously consider matching your dev environment to your
target production environment. That means using plain VMs under VirtualBox/VMware or using tools like
Vagrant. (Yes, many Mac users also do this - OS X is in fact different from Linux.)

If for some reason you absolutely have to run Mina on Windows, you can follow the workaround provided
in the bug report. First find out where the Mina gem was installed via:

$ bundle show mina

The path could be “c:/RailsInstaller/Ruby2.1.0/1ib/ruby/gems/2.1.0/gems/mina-0.3.4"; the
file you’re looking for is “lib/mina.rb” under that folder. Open it with your text editor and add the
following lines after the module declaration:

1 module Mina

2 #if windows os

3 require 'rbconfig'

4 is_windows = (RbConfig::CONFIG['host_os'] =~ /mswin|mingw|cygwin/)
5 if dis_windows

6 module Shellwords

7 def shellescape(str)

8 T+ stregsub(/\\(75\\\)/, MV gsub (/1 /, M) cgsub(/\\$/, "\\\\\\") . gsub ("%, \
9 "9696") + 1

10 end

11

12 module_function :shellescape

class << self

=
w

https://github.com/mina-deploy/mina/issues/83
https://www.vagrantup.com/

Redeploying Rails Apps on Passenger

14
15
16
17
18

alias escape shellescape
end
end
end

Mina should now work under Git Bash. (It won’t work under “Start Command Prompt with Ruby on Rails”
because that terminal lacks ssh.)

46

Deploying on a VPS
You should now be ready to deploy your Ruby application on a real VPS.

Overview of Popular VPS Providers

There are may VPS providers out there. To help you decide what to choose, we’ll look at three of the more
popular providers: Linode, DigitalOcean, and Amazon.

Linode

We start with Linode because it’s a safe bet for many developers: its VPSs are affordable, it has data centers
around the world, and it has a fairly good reputation for the past decade.

Pricing and Billing

Linode’s lowest priced server is at $0.015 an hour or $10 for a whole month. This will give you a virtualized
server with 1GB RAM, 1 CPU core, and 24 GB of SSD storage, more than enough for serving a small to
medium-scale web application.

Linode requires a valid credit card to setup servers, and will be billed at the end of the month automatically.
There is a 7-day money back guarantee for new users if you wish to cancel your account early.

Setting Up a Server in Linode

Linode’s Getting Started guide is a good step-by-step walkthrough on setting up your new Linode server. To
sync with this book, however, you should use Ubuntu 14.04 LTS instead of the guide’s suggested 12.04 LTS,
and you should prefer setting the timezone to UTC; we can always change the displayed time zone under
Rails later.

You might have noticed that Linode immediately gives you a root user. To avoid shooting yourself in the foot,
create a new admin user with sudo privileges (i.e. the user user in the past few chapters) with the help of
the Securing your Server guide. After creating the admin user, you should now be able to continue the steps
provided under the Additional Server Setup section. (You should also do the other two steps in the guide,
creating a firewall and installing fai12ban, since your server is now publicly available on the internet.)

And that’s basically it for Linode - just follow the steps we did in the previous chapters to deploy your own
Rails app on the server. If you're just planning to use this as a test, don’t forget to destroy the instance as
merely shutting down the server will not stop the billing of the instance.

Digital Ocean

Another popular VPS provider is DigitalOcean. A relative newcomer, DO was one of the reasons why VPSs
are cheap nowadays. Back in the day when many VPSs were priced at $20 a month, DO came out with $5
VPSs with SSD storage, something unheard of in the low-end server space.

https://www.linode.com
https://www.linode.com/pricing
https://www.linode.com/docs/getting-started
https://www.linode.com/docs/security/securing-your-server#debianubuntu
https://www.digitalocean.com

Deploying on a VPS 48

Even though the market has somewhat caught up, DO is still a viable choice for VPS hosting.
Pricing and Billing

DigitalOcean’s $5 server is still available and at 512MB RAM, it should be able to serve small-scale or practice
applications. You should go for the higher tiers if you’re deploying applications that have a decent amount of
traffic.

Like Linode, requires a valid credit card before you can create a server. One thing DO has that many VPS
providers don’t is a PayPal payment option, though this requires you to pre-load credit from PayPal to your
account or face monthly Termination Notices.

Instead of a 1 week money-back guarantee, DO has promo codes that give you credit when you sign up. For
example, using DROPLET10 will give you $10 of credit. Combined with a valid credit card, this can give the
new user 1-2 months of free use (a verification fee of $1.23 is charged to the card but is quickly refunded upon
verification).

Setting Up a Server in DigitalOcean

DO has its own Getting Started guide, with the walkthrough at How To Create Your First DigitalOcean Droplet
Virtual Server. As with Linode, you should use Ubuntu 14.04 to match the OS used in this book.

DO lets you provide a public key before spinning up the instance of your server. If you do this, DO will perform
all of the steps to adding the key (e.g. creating the .ssh/authorized_keys) allowing you to immediately
login as root remotely. As with Linode, it’s recommended to create a separate admin user and prevent remote
root login. This guide explains the process; it’s similar to Linode’s guide, with the only difference being the
command used - gpasswd instead of usermod. The two practically do the same thing so it comes to personal
preference (I personally prefer gpasswd).

Configuring the timezone and firewall is detailed in another document. They are somewhat important, but
not as important as the section on Creating a Swap File.

Unlike other VPSs, DO “droplets” do not have swap files (where Linux stores its Virtual Memory) configured
by default and you should create them manually. So before you proceed with trying to deploy your Rails app
on your DO droplet, you must create a swap file which is at least as large as your droplet’s memory (e.g. sudo
fallocate -1 512M /swapfile or more for 512MB droplets, 16 or more for 1GB droplets, etc).

Amazon Elastic Compute Cloud (EC2)

An alternative to traditional VPSs would be to use a cloud computing platform to host your entire system.
Amazon Web Services (AWS) is a well-known example; not only does it provide virtual machines via Amazon
EC2, it also provides online file storage via Amazon S3, content delivery via Amazon CloudFront, scalable
databases via Amazon RDS, and so on.

Here we’ll look at Amazon EC2, the VPS equivalent in AWS.
Pricing and Billing

Being part of a cloud platform, Amazon EC2 is billed hourly and thus requires a valid credit card. The pricing
is also somewhat complicated, with price differences not only on tiers and types of instances, but also on the
location of the data center.

https://www.digitalocean.com/pricing/
https://www.digitalocean.com/help/getting-started/setting-up-your-server/
https://www.digitalocean.com/community/tutorials/how-to-create-your-first-digitalocean-droplet-virtual-server
https://www.digitalocean.com/community/tutorials/how-to-create-your-first-digitalocean-droplet-virtual-server
https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/additional-recommended-steps-for-new-ubuntu-14-04-servers
https://www.digitalocean.com/community/tutorials/additional-recommended-steps-for-new-ubuntu-14-04-servers#create-a-swap-file
http://aws.amazon.com/ec2/pricing/

Deploying on a VPS 49

Per dollar, Amazon EC2 instances are more expensive than VPSs with similar specs and performance from
other providers. For example, the lowest tier, t2.micro is about as twice as expensive as DO’s $5 tier but can
sometimes be slower than the latter. It may not be financially sound for a beginner to use Amazon EC2 for
their small to medium-scale applications, especially if their application doesn’t use the other parts of AWS.

On the plus side, AWS provides a free tier for new sign-ups. This lets you use, among other things, a t2.micro
instance for 12 months, far longer than the free options from both Linode and DO.

Setting Up a Server in Amazon EC2

Amazon EC2 also has a Getting Started Guide as well as a Setting Up guide for steps to perform before
launching a new instance.

Connecting to the instance is slightly different as you cannot remotely log in using passwords or your own
public key. Instead, you have to let AWS generate the private-public key pair by following the Create a Key
Pair section of Setting Up guide and download the . pem file that you will use to log in later. You should also
follow the rest of the Setting Up guide especially the Create a Security Group section which will open the
SSH port for remote access.

For practice, choose to create a t2.micro instance running Ubuntu 14.04 LTS and use the newly created
“existing” key. After logging in as the ubuntu (not ec2-user which is Amazon Linux’s default user), you
can now continue following the steps in the previous chapters to set up your Rails server. You can also copy
over your personal public key on a new line at the end of .ssh/authorized_keys if you wish to connect
using your own private key.

Note that EC2 instances don’t have swap files by default due to the nature of the default storage (EBS). You
can create a swap file by following the steps in DO’s guide, but you should probably not do this since I/O in
EBS is billed. If you're hitting the memory limit, it’s better to get higher tiered instances with more memory
or tiers with Instance Store Volumes where you can put a swap file without being charged for I/O.

Setting Up Your Custom Domain

coming soon

http://aws.amazon.com/free/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html

	Table of Contents
	Introduction: Beyond Heroku
	Who is this book for?

	Practicing for Linux Deployment
	Setting up a practice VirtualBox Virtual Machine
	Additional Sever Setup

	Overview of Web Application Server Systems
	Serving Static and Dynamic Web Content
	How to Serve Content from Ruby Applications

	Installing Phusion Passenger
	Installing Ruby
	Installing nginx + Passenger

	Deploying Ruby Web Applications to Passenger
	A Quick Look at nginx Server Settings
	Deploying a Simple Sinatra App
	Deploying a Simple Rails App

	Redeploying Rails Apps on Passenger
	Modifying the Rails App
	Adding File Upload with Carrierwave
	Simplifying Deployment with Mina

	Deploying on a VPS
	Overview of Popular VPS Providers
	Setting Up Your Custom Domain

