DEPLOYING
PHP APPLICATIONS

BY NIKLAS MODESS

Deploying PHP Applications

Niklas Modess

This book is for sale at http://leanpub.com/deploying-php-applications

This version was published on 2022-06-15

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2014 - 2022 Niklas Modess

http://leanpub.com/deploying-php-applications
https://leanpub.com/
https://leanpub.com/manifesto

Tweet This Book!

Please help Niklas Modess by spreading the word about this book on Twitter!
The suggested hashtag for this book is #deployphpapps.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#deployphpapps

http://twitter.com
https://twitter.com/search?q=%23deployphpapps
https://twitter.com/search?q=%23deployphpapps

Contents

Introduction
Background
Whoit'sfor
Outside its scOpe
AsSSumptions.
Abouttheauthor
Code samples
Thanksto

1. Automate, automate, automate
1.1 One button to rule themall
1.2 Example of amanualstep
1.3 Timeis alwaysafactor

Introduction

Background

The PHP language is in an exciting phase right now. After lagging behind on the more traditional
software development practices for too long. Techniques that have been more or less considered as
given in other communities. Continuous integration, package management, dependency injection,
and adopting object-oriented programming to its full extent. But as of PHP 5.3 (released on 30 June
2009), there are no more excuses as to why you can’t write modern and clean code. The community
has risen up to the challenge. Many people have stepped forward, teaching and building tools for
accomplishing these practices.

Yet we seem to forget deployment in this. It’s time to bring it to the table for discussion. Great tools
and services are out there. But few resources are available on setting up, maintaining, and optimizing
your deployment process. I hope to shed some light on what is essential and how you achieve it in

this book.

Deploying is not about pushing changes to a production server but is an integral part of the software
development process’. You need to put thought into each step. Applications are often unique little
snowflakes, and you need to tend to their particular needs. When working in a team, you need an
excellent deployment process. The team should work in specific ways to enable the process to benefit
all parties involved.

Every software application has a life cycle that the deployment process supports and is necessary
for. You want to be able to maintain the application, roll out new features and do bug fixes without
constant pain and headaches while doing it. You should be able to manage your branches, push
your code, run the appropriate tests, migrate your database, and deploy the changes quickly and
confidently. It will be a breeze with a good deployment process and a workflow that enables this. If
you can do a fast and easy rollback, your confidence in pushing code will benefit greatly.

In a more agile software development world, being able to deploy is essential. Release cycles are
getting shorter and shorter, and some organizations even push it to the limit with continuous
delivery®. In an environment with short release cycles, the importance of the deployment process
intensifies. Not being able to deploy or roll back fast enough could slow down your entire
development process.

'http://en.wikipedia.org/wiki/Software_development_process
*http://en.wikipedia.org/wiki/Continuous_delivery

http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Continuous_delivery
http://en.wikipedia.org/wiki/Continuous_delivery
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Continuous_delivery

Introduction 2

Who it’s for

You are already familiar with PHP, and you’re not afraid of the command line. But you could also
be a manager of a software development team that is a part of deployment regularly.

Legacy is not solely a code issue but a process issue as well. Are you looking to streamline your
deployment process, or do you want to scrap your current one and start fresh? Then this book is for
you.

Outside its scope

I consider server provisioning an almost crucial part of deploying your application, but it’s too big
of a topic for this book. It could, without a doubt, be a book on its own. I also don’t want this book
to focus on any framework or tool but keep the content and name broad instead of something like
Deploying PHP applications to Amazon Web Services with Ansible.

The tools and commands used will be outside the scope unless it’s a deployment tool (then it will
have a dedicated section). I will make examples with Git, Composer, Grunt, PHPUnit, and other
tools. If you want to learn more about the tools, many books, screencasts, and blog posts are to find.
Google is your friend.

Assumptions

[know it’s not nice to make assumptions about people or software. But nevertheless, I'm still going
to do it to some extent in this book. I will make them when I approach examples, but I'll not judge
you, your team, or your application.

Where you deploy to

You will need a hosting environment that you are somewhat in control of. If you cannot install
software or run commands, it will limit what you can achieve. Whether it’s a hosted server, co-
location server, or a VPS does not matter. However, to use everything in this book, you need control
over it for installing software, changing configuration, etc.

Git

The base of some topics discussed will use Git as version control. Why? Because I think it enables
workflows that are best suitable for a good deployment process. There’s a chapter on Git for version
control and branching strategy for a good deployment process. I could’ve named it Git version
control. But I'll leave the name without Git in it since there are perhaps many things you can apply
to other version control systems. Other than Git, I have worked with Subversion and Perforce, but
when I found Git and started incorporating it into my workflow, I never looked back.

Introduction 3

Both ends

There will also be an assumption about your application that it’s not a pure backend application. If
your application is a REST API, for example, with no frontend, it will not matter, though. I will give
general examples of managing builds for your frontend, but all the commands used will be arbitrary.

About the author

I have been developing PHP applications for over 15 years now. During this time, I've created and
deployed various applications. The scale of these applications has been from a few hundred users to
over 250 million users.

Oh, by the way, I'm from Stockholm, Sweden. That means I'm writing a book in my second language,
and I would appreciate all the help I can get regarding spelling and grammar. If you find anything,
please create an issue in this repository’ or fork it, fix it and send me a pull request. Thank you!

Code samples

In the repository on github®, you can find code samples structured by chapter. Any substantial
amount of code used in the book is available for reference and use.

Thanks to

My friend and talented designer extraordinaire Joakim Unge, for the awesome cover image.
Look at it. It’s a fucking rocket ship! Nowadays, he’s a developer, and you can find him at
https://joakimunge.se/’.

My sister Jenny Modess, the talented copywriter, for proofreading from a non-technical perspective.
Keeping my spelling, grammar, and storytelling in check!

*https://github.com/modess/deploying-php-applications
*https://github.com/modess/deploying-php-applications
*https://joakimunge.se/

https://github.com/modess/deploying-php-applications
https://github.com/modess/deploying-php-applications
https://joakimunge.se/
https://github.com/modess/deploying-php-applications
https://github.com/modess/deploying-php-applications
https://joakimunge.se/

1. Automate, automate, automate

I want to get this off the bat right away. The most crucial ingredient in your deployment process
should be to automate everything to minimize human errors. If your deployment process involves
manual steps, you will have a bad time, and shit will hit the inevitable fan. Nobody is perfect. People
can, and will, forget if they need to remember.

An automated deployment process will boost the confidence of the person deploying. Knowing that
it will take care of everything is a significant contributor to feeling safe during a deployment. Of
course, other unexpected issues can arise, but with a flexible process with logging and notifications,
you can relax and figure out what went wrong.

1.1 One button to rule them all

You should have a one button to push or one command to run to deploy your application. If
you don’t, something is wrong, and you should automate all steps. Perhaps the single manual
intervention I would consider okay is “Are you sure? This will push stuff to production. [N/y]”. This
might be a bold statement, but I truly believe in it.

Even if you're the sole developer on a project and deploying the application each time, I still say
it’s terrible to have manual steps. When it comes to teams, it becomes a lot worse. If not all team
members are familiar with the deployment steps, they won’t be able to deploy. Team members come
and go. Whenever a new team member arrives, they will need to learn how to deploy correctly. Sure
there can be documentation for it. But whenever someone is familiar enough with it, they will start
to deploy without it.

1.2 Example of a manual step

Let’s take an example of a revision number for your assets in code. First, I would say something along
these lines is relatively common practice. I sure have seen something like this way too often. This
revision number handles cache busting, so browsers do not keep serving old assets after deploying.

This is a constant in a class somewhere for managing static assets versions.

O O B W N

1. Automate, automate, automate 5

class Assets

{
const REVISION = 14;

/7]

Then it’s applied to serving the static assets.
<link rel="stylesheet" type="text/css" href="style.css?v=<?=Assets::REVISION?>">

This is truly as bad of a manual step as you could have. It’s easy to forget since it requires a code
change. It might break the users’ experience serving cached and outdated assets if it’s forgotten. A
manual step where you have to run a command connected to the deployment would be better since
it would be easier to remember. When you already have the command line in front of you, you will
be more prone to remember it.

Since it requires a code change, another issue will occur. That is when you remember the step in
the middle of the deployment before pushing changes to production. You stop before pressing the
button, screaming, “Shit, the assets revision number!”. You have to deal with changing the code,
committing it, and pushing the code through a new deployment. In a perfect world, you would’ve
already merged a release branch and tagged it (discussed in chapter 2), so how would you approach
that now? Reset your repository, remove the tag, commit and create the release branch again? Or
would you commit and push, knowing that it will break traceability® for this specific deployment?
This is a problem that goes away with automation.

1.3 Time is always a factor

You might say that you don’t have time to automate all the trivial steps or commands. For example,
if you spend one hour automating a command that takes one second to run, you would have to run
that command 3601 times before you have saved time on it. Yes, I did the math. While this is true, I
would say that it isn’t the whole truth.

We need to consider the time spent on dealing with issues arising when forgetting it. Time spent on
cleaning up. Can you measure terrible user experience when your application breaks or behaves
incorrectly? You can’t. In the previous example, you can’t tell how much time you will spend
correcting that error. Neither can you tell the impact on the users? If the problem isn’t caught in
time, it could persist for a long time.

°http://en.wikipedia.org/wiki/Traceability#Software_development

http://en.wikipedia.org/wiki/Traceability#Software_development
http://en.wikipedia.org/wiki/Traceability#Software_development

	Table of Contents
	Introduction
	Background
	Who it's for
	Outside its scope
	Assumptions
	About the author
	Code samples
	Thanks to

	1. Automate, automate, automate
	1.1 One button to rule them all
	1.2 Example of a manual step
	1.3 Time is always a factor

