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Preface

Prolegomena
The material in this book arises from several years of quantitative consult-
ing for management and executive decision makers across several industries
including government entities. Chapters and the flow of models derives from
teaching MBA courses at Manhattan College which form the content for an
eponymous focused one term, 3-credit graduate core course. As the title indi-
cates the primary goal is to model decisions organizations and their decision
makers face. The modeling approach is decidedly quantitative. The decisions
include hiring and laying off, making and buying, marketing, financing, procur-
ing, distributing, developing, and strategizing what and when to produce and
serve to customers, employees, investors, vendors, and, yes, regulators.

Spreadsheets?
The primary computer software platform is the Microsoft Excel 2019 spread-
sheet environment with the Solver add-in. The course platform consists of
companion workbooks. I do not recommend the use of Google Spreadsheets,
yet. They often do not support some of the more basic structures of Excel, in-
cluding the charting object (plots), the pivot table object, and macro recording.
There is the smallest amount of programming in Visual Basic for Applications
to automate the heavier computational loads of simulation. The goal, compu-
tationally, has been to use whereever possible what is native to the spreadsheet
environment without use the of external calls to vast computational environ-
ments where algorithms alas are behind the proverbial curtain.

Using this book
Here is a sample weekly schedule for a 7 week course.

xv
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FIGURE 1: Sample 7 week course schedule.

The book may be used to supplement much larger tomes devoted to the entire
span of management science and computing techniques. The approach taken
in this book is to titrate, curate, and focus students and practitioners on the
essentials of using spreadsheets carefully in developing rapid prototype models
of decisions in the field. The panoply of models that could have made the cut,
but did not, underscores the need for a principled focus on essential model
building and implementation in a spreadsheet.

A bottom line, or so
With the essentials in hand, and in practice, analysts will have a solid basis
to build prototypical models that can be expanded horizontally across other
model configurations and vertically through various decision making require-
ments. As such, for example, network models are not discussed but are used
to present the basics of a planning model. Also the range of Monte Carlo
simulation is barely touched, but its utility is exploited with an uncommonly
found model of a thick tail event distribution.
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Part 1 – Spreadsheet Engineering

Getting our arms around

• Design models with influence diagrams

• Deploy principles of good spreadsheet practice

• Use named ranges with INDIRECT, search with INDEX, MATCH, aggre-
gate with SUMPRODUCT

• Basic, non-probabilistic, sensitivity analysis with Data Table

• Basic, non-probabilistic, sensitivity analysis with VBA

• One variable optimization by grid approximation with Data Table

• Plotting to communicate with a simple dashboard

1





1
Tortuous Pie-making in the Sky

1.1 Spreadsheets? Really?
Yes, emphatically! George Gilder says we should waste transistors (that is
chips).1 Gilder makes the fairly obvious point that we must use transistors
(lots of them in an integrated circuit) or go out of business. They are ubiqui-
tous. And arrived everywhere in a very short amount of time to boot. If you
do not use them you lose control of your cost structure. Anything you build
will be too expensive, too heavy, too big, too slow, too lacking in quality.

The same idea goes with Michael Schragge builds on Gilder’s ironic hyperbole
about transistors and analogizes that we should “waste simulations.”2 If we
do not so-called waste prototyping, rapid development, simulating potential
problems, solutions, we will also go out of business. We must simulate until
we drop! The alternative is that we will miss the one opportunity to improve
or the one error that eliminates us. Of course the point he makes is that it
iss not a waste, rather we should never shy away from working the problem,
simulating the art of the possible.

So what is the value added of a prototype, which is simply a working model?
It is about information, and information is a surprise, a deviation from a
trend. Schragge believes that testing a hypothesis just gets us to the point of
saying we seem, in probability that is, to have a trend going on here. In the
world of growth, opportunity, error and ignorance, having a trend is barely
the beginning of our journey. It is the deviation from the trend that matters.

Are we still talking about spreadhseets? Schragge quotes Louis Pasteur:
“Chance favors the prepared mind.” Here the prepared mind is a product of sim-
ulations, the rapidly developed prototypes, Fleming used agar and discovered
penicillin – completely unexpected! Dan Bricklin developed the spreadsheet

1See Gilder’s comments here. He goes on to a further idea: build billions of 1-chip in-
terconnected systems (our mobile phones that are really computers) and waste chips that
way instead of manufacturing billion chip data centers. According to Moore’s law we will
eventually get to a near zero-cost chip.

2Here is a taste of Schrage’s points of view. He compiled the “wasting prototyping”
paradigm into this book a couple of decades ago.

3
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4 1 Tortuous Pie-making in the Sky

IBMDOS/Apple IIe program Visicalc.3 As a complete surprise this product
was able to be used by millions of people to rapidly simulate other products
and services. Steve Jobs credited Visicalc with the success of the Apple IIe
and the Macintosh in 1985. IBM credited it with the success of the PC. Now
people had a reason to buy the PC.

Using Visicalc we were able 40 years ago to build practical, plottable, usable
option pricing models which transparently allowed us to visualize the calcu-
lations directly. Financial analysts built interactive pro forma balance sheet,
income statements, and cash flow statements fed from managers’ expectations,
scenarios, and expert knowledge of markets. These models literally paid for
themselves in days, not years. The main criterion for innovation success has al-
ways been the customer’s payback, not the investors. How long did it take for
the customer to recoup her investment? That’s the innovation criterion. The
spreadsheet is a sophisticated scratchpad some have used to be a production
ready system.

But what is the most important message? A working prototype should be
a sandbox where everyone is willing to get in and play. It has at least to
be durable enough to get to the first slate of useful comments and sugges-
tions for further improvement. Development continues! Rick Lamers recently
open sourced his Grid Studio spreadsheet product with deep integration with
Python.

Yes, let’s play.

1.2 Questions, questions
Some questions come to mind as we begin.

• What will we use the spreadsheet for? We will rapidly prototype
decision support models for business.

• What’s a business? We will use a working definition: an organization of
resources to reach a common goal. Yes, there is more to it than that, but
it’s good enough for now.

• What’s a decision, you might ask? Again we will us a working defi-
nition for the moment: a commitment by people to deploy resources over
time and space in support of a common goal. Decisions work inside of
interconnected processes. They are the levers that allow, or refuse, inputs

3Here is a summary of his work. His innovation with Visicalc was to transform 20 hours
of work into 15 minutes, almost of play at the time. Visicalc first ran on the Apple IIe. Dan
is working on a web-based WikiCalc these days.

https://github.com/ricklamers/gridstudio?ref=hackernoon.com
https://github.com/ricklamers/gridstudio?ref=hackernoon.com
https://en.wikipedia.org/wiki/Dan_Bricklin
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to become outputs. All very abstract, but we are on course to build out
our use of a spreadsheet as a prototyping tool.

• What’s a model? Any model is a human being’s abstraction from real-
ity. We will not get into the cognitive, epistemological, ontological, or even
methodological questions that might arise from this definition. Even say-
ing a word like sweet is an abstraction of a perception, given experience
with tasting anything, and tantalizingly informed by furtive imaginations.
But one point must be made. A model is not reality. One more thing,
knowing is not just taking a look. After all that’s why we build mod-
els. But again a decision is the result of an affirmation, a judgment. Gosh,
it gets epistemological really fast. We need to visit the Philosophy Depart-
ment next and soon. Back to our geocentric way of thinking.

TABLE 1.1: Decision analytical process.

activity Inputs Outputs Decision
Pose Requirements Defined terms Objective

Hypothesize Terms Conjectures Choices
Sample Data Database Drivers
Model Relationships Distributions Choices | Drivers
Infer Plausibile hypotheses Most plausible hypotheses Range of optimal choices

\end{document}

We will use this paradigm extensively, and creatively, usually from the outside
in to ensure we achieve mission critical objectives given the contributions of
the many drivers of those objectives.

1.3 Count the errors of our ways
Spreadsheets are dangerous when in the wrong hands, with stubby fingers,
bad memories, lack of structure, ramshackle governance, in short, poorly engi-
neered. Here are some indicative horror stories from the European Spread-
sheets Risk Interest Group.

• Covid: Test error ‘should never have happened’: 2020-10-05. The health
secretary has said a technical glitch that saw nearly 16,000 Covid-19 cases
go unreported in England “should never have happened”. The error meant
that although those who tested positive were told about their results, their
close contacts were not traced. By Monday afternoon, around half of those
who tested positive had yet to be asked about their close contacts. The
error was the use of an old Excel format. Counts exceeded the number

http://www.eusprig.org/horror-stories.htm
http://www.eusprig.org/horror-stories.htm
https://www.bbc.com/news/uk-54422505


6 1 Tortuous Pie-making in the Sky

of rows in the spreadsheet. Labour said the missing results were “putting
lives at risk”.

• AG: State overpaid Stroudsburg PA nearly $500K: 29/07/2019. The dis-
trict used cumulative mileage totals rather than running calculations on
a sample average for vehicles, which resulted in the district significantly
over reporting total mileage data, causing the subsidy overpayments. In
some cases the spreadsheet was double counting total days for some of
the activity runs. -Emailed spreadsheet contained private data in ‘hidden’
columns: 22/2/2017. A company employee mistakenly emailed a spread-
sheet full of 36,000 coworkers’ personal details to his spouse in November,
2016, including Social Security numbers and dates of birth, all in hidden
columns.

• SolarCity adviser Lazard made mistake in Tesla deal analysis: 2016-09-01.
Lazard Ltd (LAZ.N), the investment bank that advised SolarCity Corp
(SCTY.O) on its $2.6 billion sale to Tesla Motors Inc (TSLA.O), made
an error in its analysis that discounted the value of the U.S. solar energy
company by $400 million, This was the result of a computational error in
certain SolarCity spreadsheets setting forth SolarCity’s financial informa-
tion that Lazard used in its discounted cash flow valuation analyses.

• Report identifies lack of spreadsheet controls, pressure to approve, at JP
Morgan: 18 January 2013-01-13. See pages 131-132 of the JP Morgan Task
Force Report “…further errors were discovered in the Basel II.5 model,
including, most significantly, an operational error in the calculation of
the relative changes in hazard rates and correlation estimates. Specifically,
after subtracting the old rate from the new rate, the spreadsheet divided
by their sum instead of their average, as the modeler had intended. This
error likely had the effect of muting volatility by a factor of two and of
lowering the VaR.” As reported in [“A tempest in a spreadsheet”] (http:
//ftalphaville.ft.com/2013/01/17/1342082/a-tempest-in-a-spreadsheet/?)
Lisa Pollack comments that “On a number of occasions, he asked the trader
to whom he reported for additional resources to support his work on the
VaR model, but he did not receive any. Also it appears that he (had to?)
cut a number of corners, which resulted increased operational risk and
artificially low volatility numbers … pressure was put on the reviewers to
get on with approving the model.”

Could many of thesse errors have been performed in a programming language
like Visual Basic for Applications (underlies Excel spreadsheets), or R, or
Python? Sure and they have. What they share in common are violations of
basic software engineering design principles and practices, let alone well known
and implemented risk management and governance.

Of course Dilbert might calm us all down a bit. Then again, maybe it isn’t

https://www.poconorecord.com/news/20190729/ag-state-overpaid-stroudsburg-nearly-500k
https://www.theregister.co.uk
https://www.theregister.co.uk
http://www.reuters.com/article/us-solarcity-lazard-idUSKCN11635K
http://files.shareholder.com/downloads/ONE/2261602328x0x628656/4cb574a0-0bf5-4728-9582-625e4519b5ab/Task_Force_Report.pdf
http://files.shareholder.com/downloads/ONE/2261602328x0x628656/4cb574a0-0bf5-4728-9582-625e4519b5ab/Task_Force_Report.pdf
http://ftalphaville.ft.com/2013/01/17/1342082/a-tempest-in-a-spreadsheet/
http://ftalphaville.ft.com/2013/01/17/1342082/a-tempest-in-a-spreadsheet/
https://dilbert.com/strip/2009-05-21
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the spreadsheet after all, but the strange idea about ant farms that someone
might come up with in the first place.

1.4 Prevailing recommended practices
We might refrain from using the term best practices as that means, literally,
there are no possibilities of improvement. At best, then, we might see some
aspirational leading practices. here are some at least recommended practices
for our consideration. They are based on this selection.

• Susan Allen’s work at Lloyds Bank

• Payette’s documenting spreadsheets,

• Various guidelines compiled by Raffensperger

• An all time favorite still Read and Batson’s IBM spreadsheet modeling
design practices from way back in 1999.

1.4.1 Do not ever do this
1. Hard code data in a formula

2. Take the word spread in spreadsheet literally

3. Put more than one major task or component on a worksheet

4. Guess the length or dimensions of any array, and everything in a
spreadsheet is an array;

5. Use more than 3 IF-THEN-ELSE’s nested in a single formula

6. Calculate parameters inside a chart or presentation table

7. Use Excel as the standard system of record database

8. Pretend you don’t know what a named range is.

1.4.2 Instead practice these
1. Work flow. Paper and pencil the work flow for a model first. Docu-

ment the scope, timing, user and system requirements, testing cri-
teria first. Put data in one worksheet, task 1 in another, task 2,
in another, and so on, plot set-up, table set-up in other separate
worksheets, end-user presentation in another worksheet. Treat the
spreadsheet model like a 3rd normal form data base. But for good-

https://dilbert.com/strip/1995-08-13
https://dilbert.com/strip/1995-08-13
https://arxiv.org/ftp/arxiv/papers/0909/0909.2452.pdf
https://arxiv.org/ftp/arxiv/papers/0803/0803.0165.pdf
https://arxiv.org/ftp/arxiv/papers/0803/0803.0165.pdf
http://www.eusprig.org/smbp.pdf
http://www.eusprig.org/smbp.pdf
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ness sake avoid using Excel as a system of record data base if you
can!

2. Definitions. Use named ranges to refer to any cell or array by name.
Refer to cells and arrays where appropriate with INDIRECT(). This
is what programming languages do. Each object has a unique name
and scope of operations (e.g., integer, floating point, character data,
class, slot) with descriptions in comments, Named ranges has some
of this capability to document what the cells are and a bit of what
they are meant to do. Named ranges are effectively row and column
absolute addresses where cell data resides in worksheets. Attributes
of cells include value, format, data type.

3. Testing. Be ready to test the model. Paper and pencil calculations
should yield the same calculations for bits of the model, often called
a unit test. But does the whole model stand up to scrutiny? A testing
plan would stretch every assumption even to the breaking point of
the model. Such stress testing and system testing are critical to the
credibility both of the model and the model-builder in the eyes of
the consumer of the model’s results. The resiliency of models to
changes in assumptions can be tested by installing form controls to
sensitize results to those changes.

4. There are many more good practices, and even more bad ones. We
should keep working, testing, improving, and communicating with
one another about our various attempts at implementation. Per-
haps a step in the right direction is the extensive use of FORMU-
LATEXT() to display formulas in cells. Documentation can lead to
immediate improvements.

1.5 Pie-in-the-Sky
Simone Tortiere makes pies: gluten-free, vegan, full of micro-nutrients. She
targets a highly under-served niche market: nutritarians. She has a dilemma.
She would like to expand her business. The problem is what price should she
charge? Simple economics usually indicates the price that yields the highest
profit.

Here is some data at hand Tortiere finds credible enough to use along with
some questions to which she wants answers.

• Value capture. Make-A-Pie Co. generates profit by combining two pur-
chased ingredients (fruit and dough) into pies, processing the pies (cooking,
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packaging, & delivering), and selling them to local grocery stores. What
are the determinants of profit?

• Processing. Make-A-Pie keeps track of weekly processing costs. The table
below shows expense for various output levels. What is the relationship
between output volume and expense?

FIGURE 1.1: Pie volume-cost relationship

• Demand. Make-A-Pie has also experimented with demand elasticity. At a
price above $12, there will be no demand for her pies, but demand increases
by about 4,000 pies per week for each dollar price decrease below $12. For
example, at a price of $10 Make-A-Pie could expect demand of 8,000 pies.
What is the average relationship between price and revenue?

• Price. Savory vegetable filling costs $3.48/pie, and sprouted flour dough
costs $0.30/pie. Overhead expenses are $12,000 per week. At what pie
price will Make-A-Pie maximize profit? At what price will Make-
A-Pie break even?

• Sensitivity. Tortiere believes in her estimates, but she well knows that
markets, property tax assesssments, customer sentiment, and supplier costs
can change. How sensitive is weekly profit when any of the drivers
of cost and revenue change?

Tortiere muses further. She needs to understand if her business is profitable
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over the next few years and at what very sticky price should she charge her
customers. She has already invested $2.5 million.

• Multi-period value. Suppose that savory vegetable filling cost rises by 7%
per year, and sprouted dough rises (pun included) by 5%. Overhead expenses
rise by 2% per year. Prices will also rise by 2% per year. At what year 1
pie price will Make-A-Pie maximize profit across a 3 year horizon
if the business is worth $2,500,000 today?

Tortiere hires us to help her with her analysis. She asks us what is the first
thing we should do?

1.6 Where’s the paper and pencils?
First and foremost we map the requested analysis. We use a decompositional
technique called an influence diagram, as developed by Howard and Matheson.
The diagram extends the ideas behind a similar structure called a decision tree,
both of which are examples of directed acyclic graphs and causal inference,
e.g., Judaea Pearl’s work Software such as dagitty can greatly aid visualization
of causal relationships among decisions (e.g., price), criteria (e.g., profit), and
drivers (e.g., unit costs). After all of that consideration here we will simply
use boxes and arrows.

FIGURE 1.2: What influences profit?

We identify the decision as price in the yellow box and the decision criterion
profit in the blue box. Price, unit and fixed costs are somehow exogenous since

http://www.cs.ru.nl/~marinav/Teaching/BDMinAI/influencediagrams05.pdf
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://escholarship.org/uc/item/6gv9n38c
https://escholarship.org/uc/item/6gv9n38c
http://www.dagitty.net/
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they do not depend on any variable, but they do determine other variables.
Unit and fixed costs will be assumed and thus condition the rest of the vari-
ables. Price on the other hand is the one variable for which we solve. Literally
we will pick a price and see what happens to profit.

Tortiere agrees with our approach and analysis. She sees that her efforts to
understand how the demanded volume of pies sold depends on her pricing
decision. But she wants to get at how volume influences, conditions, cost. We
move to the next task, the cost structure.

1.7 Cost and volume
Make-a-Pie’s experience with expense and volume provides some inside into
the way volume, as determined by number of pies sold, will influence, condition,
cost. Here is a scatter plot with linear and quadratic lines fit to the data.4

FIGURE 1.3: Pie cost driver plot

Right-clicking one of the blue observations will reveal a dialogue box with a
Trendline feature. This produced the lines and the equations. We can check

4See Winston (2019), Chapter 54 Charting Tricks is a one-stop destination for a variety
of charts, including the scatter plot here.
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these results by hand, but let’s use the LINEST array function instead in the
cost worksheet.5

The FALSE setting in LINEST sets the intercept to zero in the Ordinary
Least Squares (OLS) estimation. Predicted costs will be used in the profit
calculation using volume demanded as an input to the quadratic cost struc-
ture. We also use the INDEX-MATCH combination to wrangle coefficients
for use in the SUMPRODUCT calculation.6

1.8 Demand analysis
Tortiere’s experiments with pricing provide valuable windows into customer
preferences. Even a simple change of price can reveal a conjecture about the
range of preferences. In this situation we need to anchor the demand analysis
around two important points:

• the give-away price and volume, and

• the no-show price where volume is just zero.

The give-away price is zero at least. The volume associated this lowest price

5Winston (2019) discusses several array functions and formulas in Chapter 91 and
LINEST at page 578. LINEST is discussed here as well along with references to array
functions. To enter an array function: 1. Select a results range. Some functions require the
results range to contain a certain number of columns or rows. A an abridged results range
will not show all of the function results; a results range that is longer than the function’s
capability will display error messages in some cells. Check the documentation on the spe-
cific function for information about the required size and shape of the results range. 2. In
the results range you selected, type in the equals sign, the array function keyword, and
the argument(s) or argument range(s), in parentheses. 3. To enter the function DO NOT
PRESS ENTER! Instead press SHIFT and CONTROL together and while they are pressed
down then press ENTER. (If you simply press ENTER, the array function will return the
#VALUE! error.)

6See Winston (2019) Chapters 4 and 5 for INDEX-MATCH and Chapter 59 for multiple
regression.

http://www.mit.edu/~mbarker/formula1/f1help/04-g-m60.htm
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becomes the intercept of a down-ward sloping straight-line demand curve in
price. The increment downward is estimated using a simple rise-over-run rate
of change of volume with respect to price.

FIGURE 1.4: Pie demand estimation

At a price above $12, there will be no demand for her pies, but demand
increases by about 4,000 pies per week for each dollar price decrease below
$12. For example, at a price of $10 Make-A-Pie could expect a demand of
8,000 pies in a week. The intercept is then 12 × 4000 = 48000. The formula
in D9 confirms the negative slope −4000. Thus we have a demand equation
which serves as a schedule that will feed both revenue and processing cost.7

1.9 Weekly profit
Weekly profit is only a snapshot of performance. It is defined as total revenues
minus total costs with various drivers defined mapped in the influence diagram.
The calculations depend on assumptions provided by another worksheet, the
finale of the model, the dashboard. Cost and demand volumes derive from
estimated algebraic relationships we already peaked at.

Price comes from a sensitivity analysis we have yet to review and is an input
from that analysis of the profit maximizing price. Three unit and fixed cost

7Winston (2019) Chapters 87 and 89 provide further approaches to demand analysis.
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FIGURE 1.5: Weekly profit model

assumptions also wander in from the dashboard. The user moves slide bars to
choose those levels.

1.10 Profit sensitivity to price
Perhaps the most important activity in the building of a model, and the
reason for a model in the first place, is to understand how model elements are
sensitive to one another. Not emotionally of course as our models are robots
and golems. BUt really there is no one so-called right answer! It is a range
of answers dependent on the instructions we gave to our spreadsheet robots.
Yes, the decision maker has to sign the contract, write a cheque, hire (or fire)
a designated vendor, employee, partner. But before these decisions are cast
in stone, we owe it to ourselves to waste simulations, again to recall George
Gilder and Michael Schrage’s ironic hyperbole.

In this graph we use data tables (Data > What if > Data Table) to take the
column of possible prices and run them against the profit model. For each
price (yes this is a for loop) the data table calculates a new profit.8

8Winston (2019) Chapter 17 deftly covers this vast topic. I do not like to use data
tables too extensively and without further some thought. They are dynamic. Whenever you
change a cell, the table recalculates. That’s fine for as simple data table as we have here.
The problem is when we have a 10000 by 100 table. It simply take a while to update. The
easiest way to change the calculation mode is on Excel’s Formula ribbon. In the Calculation
grouping, on the right side of the ribbon, is a drop-down button for Calculation Options.
We choose an option that works best for the current file. There are two other important
buttons in the Calculation grouping. Calculate Now (equivalent to pressing function key
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FIGURE 1.6: Pie price profit sensitivity: gateway to optimization.

A plot of price and profit is more than a little instructive. Here is a setup
worksheet with titles, additional calculations and lookups. Shown only is the
sensitivity table setup. Any other plots in this workbook have a setup grid
devoted to their charts.

F9) updates the entire workbook. Calculate Worksheet updates only the current sheet,
which is much faster in a large file.
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1.11 Lo and behold
This is what we have been waiting for. We must first notice the modular nature
of this spreadsheet application. The dashboard worksheet interacts with all
but the questions worksheet, at least in this iteration of the application. All
Simone Tortiere needs to do, after paying our invoice, is to put the cursor
on the slide bars that help her understand how the profit maximizing price
changes with changes in the unit and fixed cost assumptions.9

FIGURE 1.7: Interactive profit dashboard

Is there too much in this dashboard? Perhaps the cost and demand equations
could be left to their respective worksheets. We might replace those with the
underlying assumptions of both structures. We leave that for another day and
week.

What price is best? All we have to do is live with whatever assummptions we
make and read the dashboard.

9Winston (2019) Chapter 27 has a discussion on the implementation of user form controls.
These are located on the Developer ribbon at the Insert button. Here are directions to show
this ribbon in your workbook.

https://support.microsoft.com/en-us/topic/show-the-developer-tab-e1192344-5e56-4d45-931b-e5fd9bea2d45
https://support.microsoft.com/en-us/topic/show-the-developer-tab-e1192344-5e56-4d45-931b-e5fd9bea2d45
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2.1 How many?
According to the Irish Technology Review and quoting Microsoft over 750
million users enjoy (?) Excel. I am enamored of points 3 and 4. I first ran into
Excel with Martha Grabowski at LeMoyne College in 1989. I enjoyed Lotus
1-2-3, used Visicalc, and Supercalc since 1981. I was not yet convinced about
Excel. I learned C by building a very stripped down version of Borland’s
Quattro Pro with the idea of building option pricing models from finance
directly into the DNA of the spreadsheet. We already knew that spreadsheets
would inhabit if not infect the earth. My first balk was the use of the Excel =
instead of the @ of Lotus formulae. Easy to overcome, but still the @ (shift-2)
is in my fingers’ muscle memory.

I say all of this because we will see many changes in the expression of tech-
nology over the life cycle called our careers. Prepare Ye For The Changes To
Come! I have experienced a lot of software products (not an expert at all
and mostly a dilittante!) from very simple machine language to assembler to
FORTRAN (with IMSL, LINPACK, EISPACK) to APL, APL2 (data shap-
ing on steroids!), PLI and SAS, very early stage Matlab on DOS, S, S-Plus,
LISP, PROLOG, BASIC, VBA (skipped Visual Basic interface with Oracle!),
JavaScript (also skipped Java), C, C++, now R, Python, and, my almost fa-
vorite, Julia. Anything that works! Among all of these, spreadsheet products
seem to have passed muster and kept going strong for the past 4 decades.

I must mention separately, Arthur Whitney’s kx, A+ and Shakti as the RISC
(reduce instruction set computing) version, and maximizing time series vectors
with relational databases and SQL (think vectoring FORTRAN). This is in
the avant-garde of analytics. What a list of developments over the past several
decades that lead us to the mixmaster and symbiosis of technology, technique,
and skills we call analytics.

APL2 taught me data shaping. Whatever heuristics and algorithms within
algorithms we devise in Excel are completely influenced by the shaping ca-
pabilities of array-driven technology like APL2, whether overtly or covertly.
Unfortunately for a mathematically and numerically challenged population of
analysts, APL2 is about to be deprecated. Yes a historically interesting, but
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https://irishtechnews.ie/seven-reasons-why-excel-is-still-used-by-half-a-billion-people-worldwide/?__cf_chl_jschl_tk__=eae1fe306ae27d3c9013b3704732878b80fc40f3-1616828018-0-AT1moxdZF6mKZLmtRhwzMYiVaKyU0bEe2Kz5ftdXTKKKtNdWjF6EH2e2blKxl4oVSpuFZbzH-mNHukGtzFU29btUpDwqUKJvi9xyIjQO2DmcXQ5OgccXl-AuKvdAhk9DltuuYjjrNzeh4fVzX8UvaT5nwAEAgONZ3H3GSh31P4tILL2x5OQsLXC2YFwcpthCsLENuLjGg0zZErvhaeOTbXpwVuKHBHPkZV5sZEq0wRZS6dIlxtzhO-g07UukzOtBi6GlAF_ctySgFuZ0yOwH7cFr8CzWiAUsP_GHqca5nOzJ-rbPuRMi9oc60Cb7cs7XlwM5cpxrwszbftEeCzYOV3QYkxFFKt8coSEzj5fetcnep_Fh7kEyR7xtuS5cXK_mZs8f8OkanlEyk7HesLVi0KxvIEmxk4XG1qZz8gH0DFdXYhQ2oFcLXdh4G-8gKYcwaDuvC4Ykkn2ybSU-sfazfgMLzKKIzAYgw-4r_gYvo2XG
https://www.efinancialcareers.co.uk/news/2019/11/shakti-arthur-whitney
https://www.ibm.com/products/apl2
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practical issue exists? And yes, again, it does. we will develop analytically-
based and at least influenced career paths that are really modeling with data
paths. Musa Jafar keeps saying that there is a a 10-15 year cycle of software
hegemony. I agree. The issue for us analysts is to develop capacities, not just
skills in specific environments, which are agnostic to software platforms. In
computing jargon, our minds must be interoperable across the platforms that
enable us to inject data and interpretable analysis into our analytical products
for consumption by decision makers.

Enough for this bully pulpit! The key take-away, so to say, is that we must
begin with mind, go to data, and end up with mind. The mind has the thinking
faculties that dicate what data is or is not important, credible, useful to the
mind’s view of the next horizon, whatever the technological platform.

2.2 What’s new?
Simone Tortiere liked the model but furrowed her brow. Supply costs are
sky-rocketing and customer demand is flagging. She is thinking about refi-
nancing, perhaps even selling the business to a company with more capital
resources. In fact she is in contact with a ;Special Purpose Acquisition Com-
pany (SPAC).](https://www.investopedia.com/terms/s/spac.asp) Top of
mind for her is three year plan. But first she wants to traverse the demand
and cost terrain she might face. At risk is her $2.5 million investment. She
asks us to help her to revisit the pricing decision in this context.

2.2.1 The costs they are a-changing
Make-A-Pie is experiencing much more volatile changes in its processing costs.
These represent everything from capital (think ovens) to labor (think bakers)
and supporting infrastructure (think fixed costs here though). Here is a revised
schedule of processing cost against volumes in thousands of pies produced in
an average (actually a median) week.

The previous schedule appears for comparison purposes. All of this calls for
a new estimation of the way cost varies with pies demanded, and sold. So far
storage is not an issue, yet.

There is a new kid in this block of numbers. Columns F and G calculate lower
𝐿 and upper 𝑈 95% probability interval bounds. Make-a-Pie’s policy is not to
tolerate any more than 5% errors in any given week. This rendering helps to
explain the policy.

We might observe costs distributed symmetrically about a proposed future,
or even actual, value. If the distribution is Gaussian, also known as normal

https://www.investopedia.com/terms/s/spac.asp
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FIGURE 2.1: Pie cost data - again.

FIGURE 2.2: Pie cost estimation with LINEST().

(though there is nothing that normal about it!), then we can use Excel to
calculate the lower and upper bounds of cost using the number of standard
deviations 𝑧 from the model mean of costs we estimated and the standard
error of the model 𝑠𝑒.

𝐿 = 𝜇 − |𝑧0.025|𝑠𝑒 (2.1)
𝑈 = 𝜇 + |𝑧0.975|𝑠𝑒 (2.2)

For some mean 𝜇 and standard deviation 𝜎 of observed outcomes 𝑋 we can
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FIGURE 2.3: Probability intervals illustrated.

first first find the deviations of the outcome from the mean, 𝑋 − 𝜇. Then we
can calculate the number of deviations per standard deviation 𝜎.

𝑧 = 𝑋 − 𝜇
𝜎

We use Excel’s NORM.INV() to calculate the 𝑧 values with a mean of 0
and standard deviation of 1 at lower bound 2,5% cumulative probability and
upper bound 97.5% cumulative probability. This produces the 97.5 - 2.5 = 95%
probability interval. All 𝑧 distributions have this standard mean and standard
deviation. That is very convenient.1

Of course some errors, we might call them, are intolerable, such as breaches
of legal requirements and non-compliance with regulations such as food han-
dling. The bounds are calculated around each actual, as opposed to predicted,
processing costs. A picture is much in order.

1Winston (2019) Chapter 69 is a good and very basic introduction to random variables
and Chapter 72 is a decent brief on the normal (Gaussian) distribution and z scores. We
might skip ahead to Chapter 74 where he discusses the use of probability in making fore-
casting statements.
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There is a wide enough variation to cause further identification and assessment
of root causes and potential failure modes in the operation.

2.2.2 Demand takes a step back
Make-a_Pie customers buy the pies from grocery stores. Tortiere plans to set
up a program with restaurants and schools as well. But we will wait for that
later. Suffice it to say, such a plan will garner increased regulatory scrutiny
anda requirements, all the more so-called overhead.

Recent store surveys reveal that there will be no demand for prices above
$10, but demand increases by about 4,500 pies per week for each dollar price
decrease below $10. For example, at a price of $8 Make-A-Pie could expect
demand of 9,000 pies. Here are the calculations.

FIGURE 2.4: Linear pie demand.
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The new conditions yield lower than previously thought volume intercept and
steeper slope to meet the zero demand price of $10. Consumers are definitely
feeling the pinch in their household budgets. Grocery stores, responsible for
handling, storage and insurance have increased their markups as well.

2.2.3 A new profit dawning
All of this yields a new weekly profit calculation and sensitivity analysis.

FIGURE 2.5: Weekly pie profit.

Cells drive in from source worksheets. Notably the C3 price comes from the
price sensitivity analysis worksheet.

FIGURE 2.6: Pie profit sensitivity.

With these settings, Tortiere smiles at the weekly profit. But she knows full
well this is not the whole story.
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2.3 An algebra of pie
The rest of the story boils down to the relationships among variables of in-
terest to Tortiere. She faces increased supplier costs and volatility of costs
and consumer preferences. She believes her business is going under. Decisions,
pricing, resources, timing, investment, must agily respond. She hunkers down
with us, her analytical trusted advisors, to understand the breadth and depth
of the situation.

2.3.1 A little lite algebra
First, she likes the influence diagram. Second, she wants to extend the ideas in
the diagram across three years. She thinks this is a reasonable planning period.
It can roll forward to future three year intervals. In her experience, three years
is a cycle in her industry: feeding the hungry. The influence diagram generates
this algebraic model of key relationships.

𝑝𝑟𝑖𝑐𝑒𝑖 = 𝑝𝑟𝑖𝑐𝑒𝑠𝑒𝑡(1 + 𝑝𝑟𝑖𝑐𝑒𝑔)𝑖−1 (2.3)
𝑑𝑒𝑚𝑎𝑛𝑑𝑖 = (𝑎0 + 𝑎1𝑝𝑟𝑖𝑐𝑒𝑖) ∗ 52 (2.4)
𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑖 = 𝑝𝑟𝑖𝑐𝑒𝑖𝑑𝑒𝑚𝑎𝑛𝑑𝑖 (2.5)
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖 = (𝑏1(𝑑𝑒𝑚𝑎𝑛𝑑𝑖/52000) + 𝑏2(𝑑𝑒𝑚𝑎𝑛𝑑𝑖/52000)2)(52)(1000) (2.6)

𝑑𝑜𝑢𝑔ℎ𝑐𝑜𝑠𝑡𝑖 = 𝑑𝑜𝑢𝑔ℎ0𝑑𝑒𝑚𝑎𝑛𝑑𝑖(1 + 𝑑𝑜𝑢𝑔ℎ𝑔)𝑖 (2.7)
𝑓𝑖𝑙𝑙𝑖𝑛𝑔𝑐𝑜𝑠𝑡𝑖 = 𝑓𝑖𝑙𝑙𝑖𝑛𝑔0𝑑𝑒𝑚𝑎𝑛𝑑𝑖(1 + 𝑓𝑖𝑙𝑙𝑖𝑛𝑔𝑔)𝑖 (2.8)
𝑓𝑖𝑥𝑒𝑑𝑐𝑜𝑠𝑡𝑖 = 𝑓𝑖𝑥𝑒𝑑0(1 + 𝑓𝑖𝑥𝑒𝑑𝑔)𝑖 (2.9)

𝑐𝑜𝑠𝑡𝑖 = 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖 + 𝑑𝑜𝑢𝑔ℎ𝑐𝑜𝑠𝑡𝑖 + 𝑓𝑖𝑙𝑙𝑖𝑛𝑔𝑐𝑜𝑠𝑡𝑖 + 𝑓𝑖𝑥𝑒𝑑𝑐𝑜𝑠𝑡𝑖 (2.10)
𝑝𝑟𝑜𝑓𝑖𝑡𝑖 = 𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑖 − 𝑐𝑜𝑠𝑡𝑖 (2.11)

𝑝𝑣𝑖 = 𝑝𝑟𝑜𝑓𝑖𝑡𝑖 + 𝑝𝑣𝑖+1/(1 + 𝑟𝑎𝑡𝑒)1 (2.12)

The insight here is that the set price, 𝑝𝑟𝑖𝑐𝑒𝑠𝑒𝑡, gets the ball rolling. When
chosen, price feeds demand, which, in turn, drops into the determination of
processing cost, filling and dough costs as well. Total revenue is price times
demand. Total cost is the sum of all component costs. Profit is revenue minus
cost. All of these elements are tracked from year 𝑖 = 1 … 𝑇 . In our case Make-
a-Pie has a 𝑇 = 3 year horizon.

Several variables grow across this horizon. If we set price in year 𝑖 = 1 to
𝑝𝑟𝑖𝑐𝑒𝑠𝑒𝑡 = 𝑝𝑟𝑖𝑐𝑒1 = 9.00 and grow the price at 𝑝𝑟𝑖𝑐𝑒𝑔 = 0.02 per year, then
by end of year 𝑖 = 2 𝑝𝑟𝑖𝑐𝑒2 is
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𝑝𝑟𝑖𝑐𝑒2 = 𝑝𝑟𝑖𝑐𝑒1(1 + 𝑝𝑟𝑖𝑐𝑒𝑔)2−1 (2.13)
= 𝑝𝑟𝑖𝑐𝑒1(1 + 𝑝𝑟𝑖𝑐𝑒𝑔)1 (2.14)
= 9.00(1 + 0.02)1 (2.15)
= (9.00)(1.02) (2.16)
= 9.18 (2.17)

In contrast we set 𝑓𝑖𝑙𝑙𝑖𝑛𝑔0 = 3.50, at 𝑖 = 0, with growth rate 𝑓𝑖𝑙𝑙𝑖𝑛𝑔𝑔 = 0.07
the initial 3.50 would grow to 3.50(1 + 0.07)1 = 3.57 by the end of year 𝑖 = 1.
This amount will compound to 3.50(1 + 0.07)(1 + 0.07) = 3.50(1 + 0.07)2 =
4.0072 by the end of year 𝑖 = 2. And as they often say in Leipzig und so
weider, and so on with the other calculations subject to growth rates.

2.3.2 PV’s last stand
THe last equation builds, even better, accumulates value from one yeat to
another. Here is a simple example for a two period cash flow process. We can
extend it to any number of forward periods. We can also think of periods
as seconds, minutes, days, weeks, months, quarters, years, decades, centuries,
and we get the idea! We conceive of getting or giving out cash flows (profits?
losses?) right now, date 0, next period, as of date 1, and the following period,
as of date 2.

This drawing depicts the process.

FIGURE 2.7: Drawing present value.

Panel (1) depicts three cash flows, -20, 10, and 15 occurring at the end of each
periods with dates 0, 1, adn 2. Panel (2) uses directional arrows to animate the
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conversation a bit. These directional arrows are frequently used in financial
engineering applications and are part of the influence diagram tool-kit.

The next panel displays the calculation of the more or less obvious result that
the present value of -20 paid out today is just that, -20.

FIGURE 2.8: Just one calculation, many times over.

We notice the discounting mechanism at work here. We calculate −20/(1 +
0.10)0 and realize that anything raised to the zero power is just 1 and a thing
times 1 is just the thing itself. Very philosophical.

This next panel shows a calculation of the present value of a cash flow in
one period. In fact this is the kernal of all discrete cash flow present value
calculations. It is all we need to know for any number of cash flows. Here it
is.

FIGURE 2.9: Yet another present value calculation.

We discount 10 by 10% as 10/(1 + 0.10)1 to get 9.09. The N.B (that is, note
well) comment works the process in the other direction. Post 9.09 bail at date
0 and receive 10% return of 0.91 and the return of principal of 9.09 to get
10.00 at the end of the next period at date 1. Discounting and growth are
inverse processes.
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The next, and thank goodness, last panel shows that all we need is the one
period present value. The tally so far includes present values of -20 and 9.09.
One more plank to walk down and we are done.

FIGURE 2.10: Altogether now.

A cashflow occurring at the end of two periods at date 2 is first discounted at
10% to date 1 for a date 1 value of 13.64. Then, and if all goes well (and the
creek doesn’t rise!), 13.64 discounts to 12.40, again at 10%. The PV tallies
to 1.49. This is, finally, and forever more in our minds, net present value
(NPV). NPV is just the present value of all cashflows, including today’s cash
flow.

Now we can add one more equation to the mix.

𝑝𝑣𝑖 = 𝑐𝑓𝑖 + 𝑝𝑣𝑖+1
(1 + 𝑟𝑖,1+1)1

Any date 𝑖 present value equals the cash flow occurring in date 𝑖 plus the
discounted present value at the next date 𝑖 + 1 at a rate of return that is
expected to occur from date 𝑖 to date 𝑖 + 1. This is powerful medicine for
multi-period planning models. We will come back to this when we attempt
to optimize a multi-period pricing structure for Simone Tortiere in the not so
distant future.

2.3.3 The model in the mist
We will let this picture of the multi-period model begin to speak for itself (so
to spreak).

Two things we should notice. First, the model simply is a the profit model



2.3 An algebra of pie 27

FIGURE 2.11: Net Present Value, in all its glory.

with growth in filling, dough, and fixed costs, and let’s not forget, a first year
price that grows (or we can let decline). The algebraic representation maps
directly into the formulae on the right. Also the price for the profit model can
be set manually or comes from the sensitivity analysis worksheet.

Second, the calculation of discounted profits (really cash flow, we will have to
consult with the accountants here), happens in two steps. We first calculate
the discounted profit for each year. Then, second, we sum up all of the present
values of cash flows (oops, profit) to arrive at the multi-period profit (cash-
flow) criterion we called net present value in cell C27. We do not use Excel’s
NPV() function for expositional reasons (showing off the full calculation) and
to eliminate any confusion about the calculation.2

2.3.4 How sensitive?
The model computes profit sensitivity again. Here is the setup to refresh our
memories of days past.

The Data > What if > Data Table feature comes to our aid again. We use
INDEX-MATCH to locate the profit maximizing price. We plot the results for
human consumers of the analysis. Here is the setup for the plot.

2Winston (2019) Chapter 8 has many interesting details about the NPV() (and also the
IRR()) functions in Excel. But if we calculate the =NPV(H26, C26:F26) we get the wrong
answer, about -1,840,000. This is because Excel considers the first cash flow to occur in the
first period and thus discounts the first flow by the discount rate, here 10%. Many have done
this, and some have paid the price of operational error. So why not call the NPV function
the PV function? Someone at Microsoft did this a long time ago but for cash flows of even
amounts, sometimes called an annuity.
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FIGURE 2.12: Another shot at pie profit sensitivity.

FIGURE 2.13: Proit-price plot settings.

We locate the plot in the dashboard worksheet. This is familiar to us from the
last time we met the model with only weekly profits.

Done.

Well, almost done. What about NPV? We perform the same tasks as we did
for profit maximizing price. We use a data table to create the for loop of
replacing prices in the npv worksheet with prices from the data table, and for
each price calculate a new NPV. Here is the table.

Of course we want to plot it. Plotting produces one more bit of information
than the table: it makes very explicity the non-linear shape of profits, and
multiperiod profits here labeled net present value.
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FIGURE 2.14: The plot thickens.

FIGURE 2.15: NPV price sensitity using Data Table



30 2 Chaotic Pie-making in the Sky”

Oh, and one more thing, this plot dramatically shows that Make-a-Pie is under
water, a quaint trope that more than suggests a uniformly, across the range of
prices and for three years, a loss in the value of the enterprise. Simone Tortiere
definitely furrows her brow over this rendering.What to do next?

2.3.5 One way or the other
We now venture into the world of a 2-way sensitivity analysis.3 We brace
ourselves and strap in. First, of course, we set up a grid. This time two are
two lists, here for price, and also for a variable of interest, filling cost per
unit. Second, we make a grid and supply the reference for the npv calculation
(from a separate npv-sensitivity worksheet to avoid possible calculation con-
flicts, oh my!). The references for the price and filling cost per unit on in the
same worksheet as the data table. The npv sensitivity(2) worksheet does the
calculations for the 2-way sensitivity table.

We call up Data > Table > What if, the row-column dialogue box appears.
We choose price for the row and filling cost per unit for the column.

FIGURE 2.16: NPV price x filling cost 2-way Data Table setup.

We press OK and see this table.

This took 5 seconds to run. That’s too slow for a production model as we are
often a bit impatient for results when under the track referee’s gun to start
the race! One way around this is to create our own model in Visual Basic for
Applications. Here is a picture of such a model in the Developer ribbon.

The user-defined function (UDF) is NPV_pie. It calculates the same value as
the npv worksheet and is a good quality control check on what turns out to
be a fairly complex model. The VBA function employs a FOR-NEXT loop.

3Winston (2019) Chapter 17 shows us how to construct one-way and two-way data tables
in good detail. We must always be sure to have data table reference cells in the same
worksheet as the data table. In Chapter 93 he performs a many-way data table. This is a
technique that easily lends itself to a spider-plot. Microsoft Office help has this to say about
2-way data tables.

https://docs.microsoft.com/en-us/office/troubleshoot/excel/create-two-input-data-tables
https://docs.microsoft.com/en-us/office/troubleshoot/excel/create-two-input-data-tables
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FIGURE 2.17: NPV price x filling cost 2-way Data Table results.

FIGURE 2.18: A faster way? VBA user-defined function (UDF).

When we build grids like price and filling cost per unit we are implicitly using
a for loop structure. We have an initial value like the minimum price. We then
in the next cell increment the previous cell’s value and then move to the next
cell until there are no more cells to go to.4

Here is an illustration how we can use a function, or for that matter any
formula, in a two way table (simply two inputs to the formula or the function).
Suppose that we have the normal distribution describe cost behavior. We
propose several values of the mean 𝜇 and standard deviation 𝜎. We want to
relate a mean with a standard deviation as if a scenario, just like a price
and filling cost per unit combination. The formula for the Gaussian (normal)
distribution is this beast.

𝑃𝑟(𝑥 ∣ 𝜇, 𝜎) = 1
𝜎

√
2𝜋 𝑒− 1

2 ( 𝑥−𝜇
𝜎 )2

4The logical thinking behind the spreadsheet seems more like the do-done logic in macro-
assembler languages that underly Excel, VBA, C++, FORTRAN, APL2. Here is an IBM
reference for examples. Cell by cell calculations also seem analogous to the addresses in
processor memory registers. Here is an example for x86 Intel processors.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.bpxa400/bpxug193.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.bpxa400/bpxug193.htm
https://www.cs.virginia.edu/~evans/cs216/guides/x86.html
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where 𝑑 is some sort of data we are considering, say, 𝑑 = 9. We ask this
question: How plausible is it to observe a price that is $9.00 per pie
when when the mean and standard deviation are different values,
and, this is crucial, we believe that price observations in general
follow a Gaussian (normal) distribution?

A data table comes to mind, of course! We set up 𝜇 and 𝜎 grids, reference
this beast of a formula, copy and paste into cells in Excel’s memory caches,
for example, like this rendering.

FIGURE 2.19: Gaussian probabilities (aka Noram Distribution)

Instead of the Gaussian beast, we could have used the Excel NORM.DIST()
function (with the last parameter set to FALSE for the probability mass cal-
culation for which we clamor.) And instead of that we use our own, bespoke,
NPV_pie() function.

FIGURE 2.20: The wonderful world of color.

And oh yes we selected the table results and at the Home > Conditional
Formatting button selected Color Scales > Green-Yellow-Red. We have the
notorious heat map. Use of heat maps for performance and heat map discus-
sions are notorious because some believe them to be misleading and not good
practice, as in this article by Osama Salah. He references the risk management
international standard ISO 31000 for support. We can, and should, have some
debate over this topic.

https://www.fairinstitute.org/blog/heat-maps-dont-support-iso-31000
https://www.iso.org/iso-31000-risk-management.html
https://www.iso.org/iso-31000-risk-management.html
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2.4 Lo and behold yet again
This is what we have been waiting for, agina. We modified the modular nature
of this spreadsheet application extensively. The dashboard worksheet interacts
with all but the questions worksheet, at least in this iteration of the application.
All Simone Tortiere needs to do, after paying our invoice, is to put the cursor
on the slide bars that help her understand how the profit maximizing price
changes with changes in the unit and fixed cost assumptions.5

Is there too much in this dashboard, a question we shouldl ask Simone
Tortiere? Are the colors of the heat map misleading? Only if they do not
lead to a rational discussion of the lack of value in the organization, based on
all of the assumptions of this analysis.

What price is best? All we have to do is live with whatever assummptions we
make and read the dashboard. Using this and our beliefs about the credibil-
ity and plausibility of our results we ponder further. If enough political and
emotional capital are present for a change, then change we must.

A break-even price is not even possible in this environment. If we went back to
high school and solved the equation quadratic in prices that is the net present
value equation we would get complex number solutions. Why? Because the
NPV iceberg is entirely under water, it is negative. We would have to do some-
thing much more radical like change the structures behind the assumptions
to float NPV back up to more solar energy.

5Winston (2019) Chapter 27 has a discussion on the implementation of user form controls.
These are located on the Developer ribbon at the Insert button. Here are directions to show
this ribbon in your workbook.

https://support.microsoft.com/en-us/topic/show-the-developer-tab-e1192344-5e56-4d45-931b-e5fd9bea2d45
https://support.microsoft.com/en-us/topic/show-the-developer-tab-e1192344-5e56-4d45-931b-e5fd9bea2d45




3
Case: Salmerón Solar Systems LLC

FIGURE 3.1: The solar system - package version.

3.1 Photovoltaic systems
With 50 packaged small scale photovoltaic systems already leased to indus-
trial operators, Toni Salmerón would like to offer her US based solar leasing
company for sale at a price of $1,000,000 before the beginning of next year’s
operations. Tomi and her partners have built up the business over the past five
years using their savings and good old-fashioned sweat equity. They hold key
patents on battery, control, and manufacturing technology that they intend
to retain. Toni wants us to develop a three-year economic analysis to evaluate
buyers’ tenders for the company.

35
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3.2 The particulars
The company’s property taxes are $35,000 per year and are expected to grow
at an annual rate of 4%. Toni currently spends $4,800 per year per system to
maintain and administer the fleet. Administrative and maintenance costs are
expected to increase by 7% per year.

Currently, Toni leases her systems for $1,000 per month each. She leases 60% of
the systems each month. Toni believes demand for her systems is highly elastic.
Her market surveys and pricing experiments indicate that the percentage of
the fleet leased each month increases by 7% for each $100 per system per
month reduction in the lease price. For example, at $600 per month, she
expects that 88% of her systems would be rented. She also believes lease
prices can be increased 9% in years two and three without affecting the fleet
lease percentage established during the first year.

At the end of three years, Toni assumes for the purpose of the assessment that
the buyer will resell the business for three times the revenue earned in year
three. Until the end of the third year, the fleet size will remain constant so
that no systems will be bought or sold.

3.3 Some definitions are in order
Toni defines cash flow simply as revenue minus expenses, and for this assess-
ment will ignore depreciation and income taxes. After all, that is on the buyer
in any case. She assumes that cash flow in year three includes the proceeds
from the sale of the business at the end of the year and that year one’s cash
flow does not include the purchase price as this transaction will have happened
prior to the first year in the analysis. She also defines overall investment profit
as the net present value of the cash flows over the forecast horizon, assuming
a discount rate of 10%.

3.4 Requirements
1. We construct an influence diagram for our analysis, labeling the de-

cision variables, the key parameters, and the performance measures.

2. We then use the influence diagram diagram to construct an Excel
spreadsheet. We label the cells containing the key problem param-
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eters and constants. Our design and implementation uses named
ranges, and no hard coding of constants anywhere.

3. We use a data table to determine the system lease price that
achieves the highest overall investment performance. A graph builds
on our ability to communicate results.

4. We then construct a 2-way data table to analyze the sensitivity
of overall investment profitibility to at least one of following pa-
rameters: purchase price, annual maintenance cost/system, annual
property taxes, and/or lease price growth rate.

5. We deposit results in a dashboard to summarize and focus a discus-
sion around this organization/s value.





Part 2 – Optimization

Getting our arms around

• Designing models with influence diagrams, again

• Identifying the key business questions

• Identifying decisions, formulating objectives, and developing constraints

• Collecting data relevant to the decision framework which helps to answer
the business questions

• Implementing model as a linear or non-linear program

• Analyzing sensitivity of results with respect to changes in decision and con-
straints parameters

39





4
Bringing Pie to Earth

4.1 It all started here
The first centuries of Islam saw the confluence of Hindu, Persian, and
Mesopotamian science and mathematics. It is the algorithms that concern
us here. The Latinized (translated, that is) name of Persian mathemati-
cian Muḥammad ibn Mūsā al-Khwārizmī (Persian: ���� �� ���� ,������� romanized:
Moḥammad ben Musā Khwārazmi; 780 – 850 CE) is Algorithmi- from the
Arabicized al-Khwarizmi and formerly Latinized as Algorithmi. He led the
research and teaching programs at Baghdad’s Beit-al-Hikima, the House of
Wisdom.

Central to our purposes, Al-Khwarizmi wrote and compiled a procedure in The
Compendious Book on Calculation by Completion and Balancing, 813–833 CE
(ibn Mūsā al Khwārizmī (1881)) which we still use today to systematically
solve linear and quadratic equations. We come across both in our work: net
present value and profit both are quadratic in price, or volume. He employed
both reduction and balancing (whatever we do to one side of the equation
be must do on the other side). The algorithms we use to solve for optimal
decisions depend explicitly on the procedures developed and taught, As did
al-Khwarizmi, we too will use algebra and the geometrical representation of
equations to describe, explain, and interpret our results.

This page from al-Khwarizmi’s work describes his procedure to find the largest
square of 8, and of course it is 64. We will use equations, drawings, and graphs
to perform much the same tasks for this menagerie of models.

• allocation models

• covering models

• blending models

• network models

As we should always, we begin with a simple, but instructive, and even useful
model for a decision maker.

41
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FIGURE 4.1: Origins of algebra.
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4.2 From humble beginnings
Allocation modela choose mixes and compositions typically of competing de-
cisions to optimize an objective (often some sort of cash flow or profit) subject
to less-than or equal to constraints on capacity and availability of a resource.
Examples include product and sales mix, vendor mix, and team member com-
positions. Resource constraints often dictate a trade off among alternatives.

Make-A-Pie (MAP) produces two kinds of pies: savory and fruit. Each prod-
uct requires some labor in procurement of ingredients, assembly of pies, and
baking. MAP sells pies through a local distributor as well as by contract to
grocery store chains. These marketing channels estimate maximum potential
sales for each product in the coming quarter. The MAP accounting depart-
ment calculates profit contributions for each product. The decis **ion problem
is to determine the product mix which maximize MAP”s profit for the quarter
by choosing production quantities for the savory and fruit pies.

We ask three questions.

1. What are we deciding? We need to set product mix. These are
the volume of pies to be produced. There will be many possible,
feasible alternatives from which to choose. For MAP the decisions
are just the number of savory pies and number of fruit pies.

2. What is success? We next define a performance criteria against
which we measure the impact of our decision alternatives. In many
organizations, the criterion is profit, or net cash flow, or net present
value of benefits, costs, and risks to performance. At the least we
will need to know the contribution of decisions to profit. To that
end we ask the management accountants to render profit per pie.
This number when multiplied by the decision number of pies will
yield the total profit of the decision alternative. We are not yet done.
Our criterion is maximize profit.

3. How is success constrained? First of all, the decision variable
themselves may have minimums and maximums. Contracting with
grocery chains may require minimum volumes of on-time and in-full
delivery of pies to maintain the marketing channel. Second, each
process will have only so many hours of operation in a given week.
The time frame of a week, of the limitations of work force, mate-
rials, and even square footage of floor space to produce all present
themselves as candidates to constrain the feasible combinations of
fruit and savory pie production volumes. Then there is potential
demand which requires a number of fruit and savory pies.
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We have additional information from Tortiere and her CFO Marta Fazi. Ad-
hering to good spreadsheet engineering practices we store this first report in
a separate worksheet called margin.

FIGURE 4.2: Product margin calculations.

Marta believes that the savory line of pies is very unprofitable from a pure
accounting model of value. However, she knows that allocated fixed costs must
be incurred given a capacity to produce a range of the volume of pies. These
expenses include environmental, health, and safety costs, general maintenance
of equipment and work spaces, and even long-term employee benefits. Thus,
she produced a marginal revenue, variable cost, and materials report.

We work with Marta to develop a further understanding of the business. We
ask about the production process, its sub-processes, resource requirements per
pie per pie line, and the availability of resources. Critical to this understanding
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is the way the decisions to produce pies winds its way into the underlying
production processes and material availability.

FIGURE 4.3: Product availability drivers.

Marta likes the documentation using FORMULATEXT() as she trains, and
educates, analysts to think through the work flow. We agree that the minutes
it takes to procure, assemble, bake, and package pies is a unit of productiv-
ity measure of importance. Labor is key to the operation. The available labor
minutes by activity constrains the production of pies. Adhering to good spread-
sheet engineering practices we store the report in a separate worksheet called
availability. Labor minutes of availability across pie lines is infuenced by
the full time equivalent work force, number of shifts (maximum of 3 8 hour
shifts), number of days (7 in a week), minutes in a day run through hours.

We model material availability through inventory. We start with beginning
of the week inventory at the end of the previous week. During the week we
procure ingredients thus adding to the beginning of week inventory. Then we
start to use the ingredients in some proportion that is possibly different for
each pie line. At the end of the week we tally up additions and subtractions
to arrive at the end of week inventory. We then define material availability as
beginning of week inventory plus additions to inventory procured during the
week, but in advance of a production run in any shift.

4.2.1 1. Decisions, decisions
We attend to our first question, first. What are we deciding? We know we
need to set the product mix. These are the volume of pies to be produced.
There will be many possible, feasible alternatives from which to choose. For
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MAP the decisions are just the number of savory pies and number of fruit
pies.

Here is a 2 dimension mapping of the decision space of all volumes of fruit
and savory pies.

FIGURE 4.4: Bounds on product decisions.

First, we notice that we define decisions only in the positive quadrant of
all possible combinations of fruit 𝑋 and savory 𝑌 pies. Both decisions are
continuous on the positive real number plane.

𝑋 ≥ 0 (4.1)
𝑌 ≥ 0 (4.2)

Not only this constraint, but we also observe that there are minimum and
maximum boundaries for the decisions.

6000 ≤ 𝑋 ≤ 9511 (4.3)
300 ≤ 𝑌 ≤ 9159 (4.4)

Both a graph and and algebraic expression help us describe the decision space
of possiblities.

4.2.2 2. Resources they are a’constraining
Perhaps borrowing too liberally from the Bob Dylan verse, we proceed to
the second modeling question What is success? We now work with Marta
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and her MAP analysts to define a performance criteria against which we can
measure the impact of our decision alternatives. In many organizations, the
criterion is profit, or net cash flow, or net present value of benefits, costs,
and risks to performance. In general this measure is multi-faceted for example
when removing snow in Montreal PQ, there are competing objectives of cost
and environmental impact minimization (Labelle et al. (2002)).

At the least we will need to know the contribution of decisions to profit. To
that end we review Marta’s profit per pie report. These marginal profits when
multiplied by the decision number of pies will yield the total profit of the
decision alternative. We are not yet done. Our criterion is then to maximize
profit.

This graph depicts the family of equal-profits combinations of 𝑋 = fruit pie
volume and 𝑌 = savory pie volume, known affectionately as iso-profit curves.
We can compactly express these curves using this equation.

𝑎𝑋 + 𝑏𝑌 = 𝑐 (4.5)

We already know what 𝑋 and 𝑌 are. Coefficient 𝑎 is the profit contribution
per unit of decision 𝑋 units (fruit pies!). Coefficient 𝑐 is the profit contribution
per unit of decision 𝑌 units (savory pies!). These add up to 𝑐 total profits.

For example if we produce 𝑋 = 10 fruit pies and 𝑌 = 5 savory prices, and
𝑎 = $2.00 marginal profit per fruit pie produced and sold and 𝑏 = $3.00
marginal profit per savory pie produced and sold, then we can compute total
profit 𝑐.

𝑎𝑋 + 𝑏𝑌 = 𝑐 (4.6)
(2.00)(10) + (3.00)(5) = 𝑐 (4.7)

20 + 15 = 𝑐 (4.8)
35 = 𝑐 (4.9)

Yes, it is as simple as this. The hard thing we had to do was come up with the
right decisions and the marginal profits. We will use this formulation through-
out our modeling work flow. We will also produce plots that will depend on
the solution of 𝑌 , on the vertical axis, the ordinate, in terms of 𝑋 on the hor-
izontal axis, the abscissa, of the plot. In homage to al-Khwarizmi, we balance
and reduce terms to arrive at the solution.
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𝑎𝑋 + 𝑏𝑌 = 𝑐 (4.10)
𝑎𝑋 − 𝑎𝑋 + 𝑏𝑌 = 𝑐 − 𝑎𝑋 (4.11)

0 + 𝑏𝑌 = 𝑐 − 𝑎𝑋 (4.12)
𝑏𝑌 = 𝑐 − 𝑎𝑋 (4.13)
𝑏𝑌
𝑏 = 𝑐 − 𝑎𝑋

𝑏 (4.14)

(1)𝑌 = 1
𝑏 (𝑐 − 𝑎𝑋) (4.15)

(1)𝑌 = 𝑐
𝑏 − (𝑎

𝑏 ) 𝑋 (4.16)

𝑌 = 𝑐
𝑏 − (𝑎

𝑏 ) 𝑋 (4.17)

Where we used the algebraic facts that 𝑎𝑋−𝑎𝑋 = 0, 𝑏/𝑏 = 1, and the distribu-
tive property of multiplication over addition. The term 𝑐/𝑏 is the intercept and
the term −(𝑎/𝑏) is the slope of the straight-line (often called linear) equation
of decision 𝑌 in terms of decision 𝑋. In all of its glorious detail.

After all of that algebra in all of its glorious detail, we deserve to see our
handiwork.

FIGURE 4.5: Iso-profit analysis.

We parameterize the iso-profit curves with three levels of profits, $20,000,
$40,000, and $60,000, color coordinating the equations and the dashed iso-
profit lines. An increase in profits shifts the iso-profit lines to the right. Not
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only that, but increased profits require, of course, more sales and production
of pies. The slopes of each of the iso-profit curves are the same. This means
they are parallel to one another, they cannot ever cross in this slice of the
decision universe.

We can measure the profit tradeoff between savory and fruit pies directly
through the slope. While we might have avoided calculus in our analytics
journey, or perhaps not encountered it officially at all, we can use it to think
through the marginal profit tradeoff. We start with the total change in profit
𝑑𝑐 = 𝑎 𝑑𝑋 + 𝑏 𝑑𝑌 , that is the sum of the change in profit due to a change in
volume of fruit pies, 𝑎 𝑑𝑋, and the change in profit due to a change in volume
of savory pies, 𝑏 𝑑𝑌 .

These are lovely mathematical and linear operators at work. Without the fuss
of knowing exactly what all that entails, but because they are linear (and by
the way smooth) operators, we can solve for the ratio of 𝑑𝑌 /𝑑𝑋, the vauntedY
profit tradeoff, when, and this is key, the change in profit is stable, that is, 0,
𝑑𝑐 = 0.

𝑑𝑐 = 𝑎 𝑑𝑋 + 𝑏 𝑑𝑌 (4.18)
0 − 𝑎 𝑑𝑋 = 𝑎 𝑑𝑋 + 𝑏 𝑑𝑌 − 𝑎 𝑑𝑋 (4.19)

−𝑎 𝑑𝑋 = 𝑏 𝑑𝑌 (4.20)
𝑑𝑌
𝑑𝑋 = −𝑎

𝑏 (4.21)

In our case 𝑎 = 2.98 and 𝑏 = 2.95. The two pie lines are literally neck-to-neck.
The tradeoff is evidenced in the negative slope. A (very small) increase in fruit
pie volumes reduces profit by 2.98/2.95 = 1.01, just a bit over a dollar. This
tradeoff is the same for any level of profit, thus the 𝑑𝑐 = 0 assumption. Phew!

Let’s overlay the minimum and maximum decision contraints on the iso-profit
curves to get some perspective and maybe another insight or two.

The low profit regime ($20,000) just seems to makes it into the feasible rect-
angle of minimum and maximum pie requirements. The high profit regime
($60,000) does not at all. The decision core will be somewhere within the
feasible rectangle. One such profit is a mid profit regime of ($40,000). Is this
the optimal profit? Not yet! By shifting the iso-profit lines we must see that
there is one (1) optimal, that is, maximizing profit, fruit and savory volumes
solution. This plot depicts the situation.

That’s right, the maximizing profit decision is to produce and sell the max-
imum number of fruit and savory pies. This yields a profit of $55,378. We
simply moved the high profit regime line to the left to land on the northeast
vertex (also known as a corner) of the four-sided polytope (also known here
as a variant called a rectangle) that describes the region of feasible decision
combinations. Again PHEW!
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FIGURE 4.6: Bounds meet iso-profits.

FIGURE 4.7: A solution?
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4.2.3 3. Not without constraint
We reach our third modeling question how is success constrained? First
of all, the decision variable themselves may have minimums and maximums.
Contracting with grocery chains may require minimum volumes of on-time
and in-full delivery of pies to maintain the marketing channel. We know that
this is sufficient to get at a notion of an optimized objective.

Second, each of the procuring, assembling, baking, and packaging processes
will have only so many posible hours of operation in a given week. The strict
time frame of a minute, an hour, a day, a week, of the limitations of work force,
materials, and even square footage of floor space to produce all present them-
selves as candidates to constrain the feasible combinations of fruit and savory
pie production volumes. Then there is potential demand which requires a num-
ber of fruit and savory pies. Even here markets, competition, communication
create further constraints.

Again, we attempt an algebraic description. For the decided upon volume of
𝑋 = of fruit pies and 𝑌 of savory pies, we have four (4) process resource
constraints.

𝑠𝑡𝑎𝑔𝑖𝑛𝑔 ∶ 𝑋 + 𝑌 ≤ 20160 (4.22)
𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑖𝑛𝑔 ∶ 2𝑋 + 1.5𝑌 ≤ 20160 (4.23)

𝑏𝑎𝑘𝑖𝑛𝑔 ∶ 9𝑋 + 10𝑌 ≤ 100800 (4.24)
𝑝𝑎𝑐𝑘𝑎𝑔𝑖𝑛𝑔 ∶ 𝑋 + 𝑌 ≤ 13440 (4.25)

Here are two (2) materials constraints. We might call these process input
constraints as well.

𝑓𝑖𝑙𝑙𝑖𝑛𝑔 ∶ 0.6𝑋 + 0.5𝑌 ≤ 7150 (4.26)
𝑑𝑜𝑢𝑔ℎ ∶ 0.4𝑋 + 0.5𝑌 ≤ 6160 (4.27)

With the same results we developed for profit curves, we can find intercepts
and slopes and plot these relationships. Here are the constraints for the four
processes. We leave out the profit relationship for now.

We seek only the most constraining of these curves. We immediately see that
both staging and packaging outstrip the assembling and baking processes. To
the left of the assembling and backing process constraints lies a potential set
of feasible decisions. Also we note that the slopes of the staging and pack-
aging process constraints are the same. This adds to their irrelevance and
redundancy. It is not that they are unimportant. Not at all, just not help-
ful in identifying the region within which decisions can be found feasibly. By
feasible we then mean the decision space that fits all of the constraints. This
criterion is then met only by the most constraining of the processes here.

And here are two ingredients for the material group of constraints.
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FIGURE 4.8: Product and process together at last.

They intersect at around 𝑋 = 5,000 fruit pies and 𝑌 = a little under 9,000
savory pies. To the left of the kinked boundary at this point we may, just
maybe, an optimal decision.

We now put the material constraints together with the relevant assembling
and baking constraints.

Wow, both of the material constraints are cut away by just the assembling
and baking process constraints. Those two are the most constraining of the
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FIGURE 4.9: The principle of parsimony at work.

suite of six constraints. They alone define, along with the demand constraints,
the feasible set of decisions.

FIGURE 4.10: Keeping it simple.

That point at which the assembling and baking processes lies well within the
minimum and maximum boundaries of the demand requirements. We arrive
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at the feasible decision space. Just one more step will get us to our goal of
maximizing profit with pies!

4.2.4 Let us eat pie
And produce and sell it. Our sponsor Simone Tortiere and colleague Marta
Fazi have followed us through this intense analysis. We are now ready to
uncover the answers which we seek in this case. Here is the the final overlay
of an iso-profit line through the intersection of the assembling and baking
constraints.

FIGURE 4.11: Process yielding profit solution.

The iso-profit line registers a maximizing profit of $55,376 against optimal
7,764 fruit and 3,102 savory pies. How can be know this is the best choice?
First, any pie decision greater than this will be infeasible, will not honor the
assembling and baking process constraints. Second, any iso-profit to the right
of the dashed line will surrely be at a greater profit but then will evoke deci-
sions that are infeasible. Any iso-profit to the left will enlist feasible decisions,
but will be less profitable than the profit at the dashed line. We have found
an optimizing solution, the hard way!
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4.3 An easier way?
We can use the algebra of al-Khwarizmi to solve consecutively, much like the
process we just followed, by eliminating, balancing, reducing constraints until
we get to that one, or two, or three, or more feasible decision points. At those
points we can move in the direction of increasing profit, moving the iso-profit
curve to match the feasible decision point, all very geometric, in an algebraic
sort of way. George Dantzig (1949) developed such an algorithm, the Simplex
algorithm of linear programming.1

We use the Solver add-in from Excel to help us solve this problem algebraicly.
We check that Excel has enabled the Solver add-in using the instructions at
this site. There are instructions for Windows, Mac-OS, and other operating
systems. We find the Solver add-in in the Analysis group in the Data ribbon
(way to the right!). Frontline Systems gives us this tutorial for using the Solver
add-in, replete with examples and spreadsheets.

We set up a separate worksheet for our decision optimization. Here is the
setup.

FIGURE 4.12: Solving with Solver.

1Here is the abstract. “Activities (or production processes) are considered as building
blocks out of which a technology is constructed. Postulates are developed by which activities
may be combined. The main part of the paper is concerned with the discrete type model
and the use of a linear maximization function for finding the ‘optimum’ program. The
mathematical problem associated with this approach is developed first in general notation
and then in terms of a dynamic system of equations expressed in matrix notation. Typical
problems from the fields of inter-industry relations, transportation nutrition, warehouse
storage, and air transport are given in the last section.”

https://support.microsoft.com/en-us/office/load-the-solver-add-in-in-excel-612926fc-d53b-46b4-872c-e24772f078ca#:~:text=Load%20the%20Solver%20Add-in%20in%20Excel.%201%20In,the%20Analysis%20group%20on%20the%20Data%20tab.%20
https://support.microsoft.com/en-us/office/load-the-solver-add-in-in-excel-612926fc-d53b-46b4-872c-e24772f078ca#:~:text=Load%20the%20Solver%20Add-in%20in%20Excel.%201%20In,the%20Analysis%20group%20on%20the%20Data%20tab.%20
https://www.solver.com/tutorials
https://www.solver.com/tutorials
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We color decisions yellow, criteria blue, and constraint usage green. Exten-
sively SUMPRODUCT comes to our aid. We see the technology of pie making
through the process and material constraints. The proportions of material fill-
ing and dough and the processing of the materials into pies evoke the design of
each pie. We express labor and capital supply and demand, customer supply
and demand through costs, availability, capacity values and constraints. This
worksheet refers to other worksheets like availability and margin for values
from reports and analysis.

We are ready to use Solver.

FIGURE 4.13: More from Solver.

Let’s look at one of the constraints, actually all four of the processing con-
straints. Here is how we enter and edit a constraint.

Constraint arrays can be chosen without the need to put each constraint sepa-
rately. Thus the way we set up the problem with constraints in rows together,
decisions in columns together, allow us this succinct way to implement the
model. We press OK and go back to the main Solver dialogue. If we think we
have loaded all of the data into Solver, we then press Solve.

This dialogue asks if we want to use the new solution. If yes, this will wipe
out the previous solution. We also can write other reports to worksheets. Sen-
sitivity analysis is one such report we will need. Press OK to see the solution
deposited into our model.

All of this is very mechanical. Our design of worksheets definitely has that
character. But design is born of principles and practice. These spreadsheets
follow the logic of the algebraic model. The model and its inputs in turn follow
the scope of Tortiere’s and Fazi’s requests, born of the need to understand the
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FIGURE 4.14: Solver constraints.

FIGURE 4.15: Solver gets a feasible and optimal solutions!

technology, markets, and competition in the markets all around pie making
and feeding others.2

2We can visit Winston (2019) for several of the tricks up his sleevers. Chapter 29 is an
introduction. He follows this with chapters 30-35 for various examples of linear programming
of many business problems. Other chapters in his book reveal further examples.





5
Expanding horizons

5.1 Dido’s bullhide

FIGURE 5.1: Dido’s bullhide; getting the most out of a surface.

Queen Dido fled the tyrannical ruler of Tyre to found the city of Carthage.
Rome later razed it to the ground, salted the earth, and to this day, the site in
Tunisia is inarable. Virgil at about 21-19 BCE regaled the ruling class of Rome
with its origin story, that of Aeneas, Greek veteran of the Trojan War. Aeneas
landed at Carthage and into Dido’s arms. Star-crossed lovers were not blessed
by gods or humans, all ending in tragedy for Dido and Carthage, eventually,
and the establishment of Rome by myth.

59
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Wonderful story, but here is a formal optimization problem solved by Dido
which resulted in her, and her retinue, founding of Carthage. They solved the
problem of finding the figure bounded by a line which has the maximum area
for a given perimeter. The solution is a semicircle. Here is a statement of the
problem in Virgil’s Aeneid, of course, with an engaging back story up front to
keep up at the end of our seats.

“The Kingdom you see is Carthage, the Tyrians, the town of Agenor; But the
country around is Libya, no folk to meet in war. Dido, who left the city of
Tyre to escape her brother, Rules here–a long and labyrinthine tale of wrong
Is hers, but I will touch on its salient points in order….Dido, in great disquiet,
organised her friends for escape. They met together, all those who harshly
hated the tyrant Or keenly feared him: they seized some ships which chanced
to be ready… They came to this spot, where to-day you can behold the mighty
Battlements and the rising citadel of New Carthage, And purchased a site,
which was named ‘Bull’s Hide’ after the bargain By which they should get as
much land as they could enclose with a bull’s hide.”

Well, we suppose they took the largest bull they could find and produced the
longest length of leather thong they could and enclosed land area within the
semicircle of leather lacing. Well, that’s an optimization problem, solved!

Around 300 BCE Euclid wonders about the minimal distance between a point
a line, and proves that a square has the greatest area among the rectangles
with given total length of edges. About 100 BCE Heron proves that light trav-
els between two points through the path with shortest length when reflecting
from a mirror. This last optimization had psychological and metaphysical im-
plications since the reigning theory from Plato was that light emanates from
our souls outward into the world and what we see is what is reflected back to
us.

Here we go this time with part two (ni in Japanese this time). In mathematical
finance, the idea of maximising a profit is, of course, very important, but it’s
modulated by the need to simultaneously manage the risk of loss. This all
boils down to a sophisticated version of the very everyday idea of not putting
all your eggs in one basket, also known as diversification.

Cervantes wrote Don Quixote in the 1600s. Here’s a useful quote.

“It is the part of a wise man to keep himself today for tomorrow and not
venture all his eggs in one basket.”

Not only is diversification involved here, but also the beginnings of the notion
of delayed consumption. The idea is that we might need to save for the future.
Inventory is a sort of delayed consumption as well. Cervantes almost gets it.
Another quote from Shakespeare expands on Cervantes (although backward
in time!) the more sophisticated idea. In the Merchant of Venice, Shakespeare
cleverly diversifies the asset structure of a whole estate, the portfolio, across
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time, when Antonio, in a conversation with his friends, told his friends he
wasn’t spending sleepless nights worrying over his commodity investments,
and he says:

“My ventures are not in one bottom trusted, nor to one place, nor is my whole
estate upon the fortune of this present year, therefore my merchandise makes
me not sad.”

Hidden in there is this idea of thinking about having a balance between the
near future and the rather more distant future in terms of the return on a
portfolio of investments. Very nice, but how often should we diversify? Here
is a heuristic from Rabbi Isaac bar Aha, in Aramaic. It’s the simple equal
allocation strategy, and what you should do with your wealth, you should
hold a third in land, a third in merchandise, and a third, as he put it, “at
hand”, which means in cash. That is the so-called one over 𝑛 strategy. If you
have 𝑛 assets, you put an equal amount into each one. If you keep doing that,
you’re not necessarily turning over your portfolio very frequently when you
move from one allocation to the other over time. Is there a Confucian version?
Not necessarily, but Confucius did say that we who will not economise will
have to agonise. We might think of that when we refinance, especially in tail
events like the current pandemic - recession - whatever.

It is interesting that profit in prices in the NPV calculation we performed
with Make-A-Pie is quadratic. When we go from the quadratic total profit
to the marginal profit per unit we move to the linear. That was the big idea
in optimization introduced in the 1870’s by Walras. What is new now? Life
is truly not quadratic! Normal (Gaussian) distributions are quadratic. Mar-
kets are not. They are not symmetric, nor are our profit decisions. They are
skewed, they have outliers. We could use this for inspiration here here as we
expand our horizons and dialogue with Robert Hamilton in his Introduction
to Merchandize (Hamilton (1777)).
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We have to remember when this was published! In this book are complete
systems of trade, book keeping (double entry is the Italian approach used by
Genovese bankers), probability (for annuities, pensions, forecasting), and, of
course, solutions of simultaneous equations. Our task remains to build on this
foundation. Our first stop will be Make-A-Pie’s inventory.

5.2 Making dough
There are two outputs from the production of Make-A-Pie pies, fruit and
savory pies. Our clients Toriere and Fazi want to be sure they can meet changes
in demand, hold down storage and replenishment costs, save on space, and
not invest too much in inventory. Quite an ask! Here is the set up.

1. Decisions. Managers need to know how many fruit and savory pies
to hold on hand to buffer changes in demand per week. If demand
booms and production did not make enough pies, then inventory
smooths the spike. If demand flags and there is too much inventory
on hand, scarce short-term investment, and its financing, erodes
costs and threatens profitability. With profitability threatened, plow
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back of earnings into the business for improvements and corrective
maintenance is impaired. Is it possible to have negative and positive
levels of ordering decisions? Why not, if it is possible to accept and
not accept pies into inventory.

2. Criteria. Executives (Tortiere and Fazi) determine that the ap-
propriate incentive for materials managers is the minimization of
cost, without sacrificing quality of course, and numerous other con-
straints we will soon mention. There are several costs here. They
usually are part of the cost of carry.

• Production cost, is assessed per unit here simply the number of pies, both
fruit and savory. Working backward into the production process there would
also be dough is in pounds and fillings in gallons. Make-A-Pie learned long
ago to separate materials production from pie production. In fact, they own
the copyrights and patents to the production of their proprietary dough and
pie fillings. They then designate contract manufacturers to produce the re-
quired ingredients. Of course, Make-A-Pie audits quality daily sometimes.
For our purposes, and to answer Fazi’s question, we will focus on the inven-
tory of pies.

• Storage cost, also called holding cost, is also in fruit and savory pie units
both per unit of time, a week in this case. What’s involved in storage? Space
in square footage, walk-in refrigerators, shelving, temperature and humidity
control, daily maintenance and cleaning, among others, all contribute to this
cost. We also should include insurance and factoring costs, both financial.
There is labor too, administrative tracking, maintenance of storage facilities,
cleaning, inspection.

• Replenishment cost occurs with any order whatever the size and is fixed
per order. When inventory gets down to a safety stock level a **reorder
point* triggers production of more pies. Demand for pies drives this cost.
The demand rate is the ratio of demand to the order size, also known as the
lot size.

3. Constraints are legion! At first we will not use any explicit con-
straints to get the classic economic order quantity (EOQ)
model. But they will exist. One certainly is the inter-holding period
constraint where we have beginning inventory, add to the inventory
and use the inventory during a holding period, and net out the level
of ending of period inventory. Other constraints will arise from re-
ceiving (load dock comes to mind) and storage capacities including
walk-in refrigerators and freezers, shelf-space, facility availability.
Still others might be an exogenously required level of safety stock
as insurance against forced outages of supplies.
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As we should always, we begin with a simple, but instructive, and even useful
model for a decision maker.

5.2.1 Model me an EOQ
First we draw a picture. Here is an influence diagram to help us model inven-
tory order decisions. We might try this visual art site to make an influence
diagram. Barring that here is a hand-drawn diagram on a Microsoft white
board.

FIGURE 5.2: EOQ on the board.

Aside from the scrawl all roads (arrows, that is) lead to the minimize total
cost criterion for the manager. The three costs are at the next level, again, all
pointing to the criterion hexagon. In this first exercise we will focus only on
the pure inventory costs of storage (holding) and replenishment.

• The decision is the amount of the order in the green box, 𝑞𝑖 for 𝑖 = 1, 2
where fruit is 1, savory is 2. If 𝑞1 = 200 this means that the correct number
of extra fruit pies to be made per week is 200 fruit pies. This is called the
order quantity.

• Holding cost per unit ℎ𝑖 times the average order 𝑞𝑖/2 across a holding period
of a week feeds directly into the total cost criterion. If the total per pie
holding cost of fruit pies is $50/pie, then the fruit pie holding cost is $h_i
q_i = (0.60)(200) = $ $100,

• We also have two demands driving the need for inventory, 𝑑𝑖 for which
when combined will eventually build a product mix of the two pie lines. The
number of orders is the demand rate 𝑑𝑖/𝑞𝑖. If fruit pie demand 𝑑1 = 11000
and fruit pie order level 𝑞1 = 200 then the number of orders is 𝑑𝑖/𝑞𝑖 =

https://online.visual-paradigm.com/drive/#diagramlist:proj=0&new=InfluenceDiagram
https://online.visual-paradigm.com/drive/#diagramlist:proj=0&new=InfluenceDiagram
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10000/200 = 50 replenishments. If replenishment cost is fixed at We multiply
the orders by the replenish cost per order 𝑘𝑖. This creates the replenishment
cost which feeds the total cost criterion.

• We leave purchase cost out of this initial analysis and give it over to the
production for Make-A-Pie. We will come back to this portion of the analysis
since we will eventually need to value this inventory.

The total cost function so far is this expression for each 𝑞𝑖. Since the cost 𝐶𝑖
for each pie simply adds together across the two pie products we really only
need to look at one of the products at a time.

𝐶𝑖 = ℎ𝑖 (𝑞𝑖
2 ) + 𝑘𝑖 (𝑑𝑖

𝑞𝑖
) (5.1)

We do not have any tradeoff between inventories of the two products in this
version of the model. What determines the approximate location of a minimum
cost is in the replenishment, or reordering of lot sizes, the second term. Total
cost is the sum of all of the product inventory costs 𝐶𝑖.

We can find the marginal holding and replenishment costs of 𝑞𝑖 with this
optimization. We drop the subscript to ease our notional anxieties, just for a
moment. We first find the first derivatives of 𝐶 with respect to 𝑞. This gives
us the marginal impact of a change in 𝑞 on 𝐶. We want to find that level of
𝑞 such that the impact of a small change in 𝑞 on 𝐶. At this level of 𝑞, in this
case, 𝐶 will be at its very desireable lowest possible level.

𝐶 = ℎ (𝑞
2) + 𝑘 (𝑑

𝑞 ) (5.2)

𝑑𝐶
𝑑𝑞 = ℎ

2 − 𝑘 ( 𝑑
𝑞2 ) = 0 (5.3)

ℎ
2 = 𝑘 ( 𝑑

𝑞2 ) (5.4)

𝑞2 = 2𝑘𝑑
ℎ (5.5)

𝑞 = √2𝑘𝑑
ℎ (5.6)

This is the economic order quantity (EOQ) fabled since Ford W. Harris
(1913) asked how many parts should be made at one time, the economic lot
size. Lot size, also known as the order size, increases with replenishment cost
and demand and decreases with holding cost.

Let’s take a look at a plot of holding, replenishment and total cost for ℎ = 0.75,
𝑘 = 2.00 and 𝐷 = 7000. The economic order quantity is calculated here.
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𝑞∗ = √2𝑘𝑑
ℎ (5.7)

= √2(2)(7000)
0.75 (5.8)

= 193 (5.9)

And this is with rounding. When we substitute 𝑞∗ = 193 into the total cost
expression we have the minimized total cost of a lot size 𝐶∗ = 145.

FIGURE 5.3: EOQ neo-classical analysis.

Holding cost rises with order quantity in a nice straighline fashion from 0 so
that the marginal holding cost is just ℎ/2 = 0.375 per unit. Replenishment
cost is a hyperbola whose slope −2/𝑞2 is the marginal replenishment cost
per unit, a rapidly decreasing amount as 𝑞 approaches the holding cost line,
thereafter declining at a declining rate. Total cost is not at all linear in 𝑞. The
non-linearity derives solely from the need to incorporate a demand per order
cost to calculate replenishment.

The optimal economic order quantity is the level of lot size where any further
decrease in total cost equals any incremental or further increase in total cost,
the bottom of the total cost curve. We should note that this optimal quantity
occurs exactly where replenishment cost equals holding cost. EOQ implicitly
takes into account the timing of reordering, the cost incurred to place and
replenish an order, and the cost to store and hold product. If we constantly
place small orders to maintain a specific inventory level, the ordering costs are
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higher, and there is a need for additional storage space. All of this sense was
discovered by Ford and his colleagues.

The EOQ formula assumes that consumer demand is constant. The calcula-
tion also assumes that both replenishment and holding costs remain constant.
This fact makes it difficult or impossible for the formula to account for busi-
ness events such as changing consumer demand, seasonal changes in inventory
costs, lost sales revenue due to inventory shortages, or purchase discounts a
company like Make-A-Pie might realize for buying or making inventory in
larger quantities.

5.2.2 Implementing the simple EOQ
Here is a Solver setup for the raw EOQ formula we just derived. All of the
data we need is built into this setup.

FIGURE 5.4: EOQ a la Solver

We set total cost to be minimized by choosing the two decision cells. Since
this is a non-linear optimization problem, Solver uses a gradient reduction
approach. This method effectively uses a smart approximation iteration to get
closer and closer to an optimal solution. We need to take care here as there
might be other optimal solutons. There are no constraints, yet. We press OK
and solve.

Shown in row 11 is the EOQ formula we derived. Close enough for our purposes.
We should, each week, be sure there is this amount of inventory available to
manage these weekly demands, given this inventory cost structure.

The costs of fruit and savory pie inventories can be visualized with this 2-
dimensional grid of contours.

We can locate the optimal lot sizes of fruit and savory pies somewhere in the
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FIGURE 5.5: EQO Solver setup.

FIGURE 5.6: EOQ cost map.

middle of the yellow ochre blob. A brute force grid like this can be compu-
tationally and visually useful for a 2 product inventory. More products than
that would be difficult if not impossible to visualize, even with our expansive
imaginations.

5.2.3 Life constrains our simple model
What happens when we have only so much cubic footage of storage space.
Each pie package is about 3”x12”x12”. This translates into 0.25 cubic feet.
We might only have so much, so we create a constraint like this.
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𝑎1𝑞𝑙 + 𝑎2𝑞2 ≤ 𝑆

where the coefficients on the 𝑞s are the space occupied per pie and 𝑆 is the
available space.

Another wrinkle in the time-space continuum is financing of the inventory
investment. We might suppose that Tortiere and Fazi set aside $800 per week
to cover short-term, recurring inventory investment. How they come up with
that amount is the subject of a financial management course. But here is where
the purchase cost enters the inventory. To value the inventory, the inventory
management effectively takes in inventory from production management at
least at the variable cost per pie. This first-in-first-out FIFO valuation can
be assailed on many accounts, again best left for a management accounting
course. Here is the constraint.

𝑏1𝑞𝑙 + 𝑏2𝑞2 ≤ 𝐼

where the coefficients on the 𝑞s are the variable production costs per pie and
𝑈 is the desired limit on inventory investment.

In all its glory, here is the Solver setup for the revised EOQ model.

FIGURE 5.7: Bounding the EOQ solution.

Again we press OK, but also this time in the next dialogue request the Sensi-
tivity Report. We get this solution.
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The constraints make the lot sizes smaller indeed. We should by now expect
this. We notice that we have some space to spare, also known as slack. But
we do use up our allocated investment funds for inventory.

Remember that sensitivity report? Here it is.

FIGURE 5.8: Marginal values of each constraint.

THere is this new idea called the Lagrange Multiplier also known as the
shadow price. It is zero for the space constraint since we do not use all
of the space, there is some slack. On the other hand we use up all of the
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inventory investment funding. Whenever the right-hand side of a constraint is
completely used, we can expect a Lagrange Multiplier to show up.

Here is a little bit more than we have bargained for. We formulate a one
constraint EOQ model by minimizing the cost function with a further cost
(possibly benefit) to avoid exceeding the investment constraint only. We ignore
the space constraint, since we already know we have enough, and more, space
to go around.

Since we only want to focus on the simplest version of this model for illus-
tration, we train our sights on just one of the 𝑞s, again. Even so, we have
introduced a new variable into our midst, 𝜆. We take partial derivatives of
cost first with respect to 𝑞, for any level of 𝜆, the with respect to 𝜆, for any
level of 𝑞. We end up with two simultaneous equations in two unknowns, 𝑞
and 𝜆 when we set the partial derivatives to zero. There will be an important
insight waiting for us at the end of this tunnel.

𝐶 = ℎ (𝑞
2) + 𝑘 (𝑑

𝑞 ) + 𝜆(𝐼 − 𝑏𝑞) (5.10)

𝜕𝐶
𝜕𝑞 = ℎ

2 − 𝑘 ( 𝑑
𝑞2 ) − 𝜆𝑏 = 0 (5.11)

𝜕𝐶
𝜕𝜆 = 𝐼 − 𝑏𝑞 = 0 (5.12)

After some serious, and sometimes tedious, algebraic manipulation courtesy
of al-Khwarizmi, we arrive at this solution.

𝑞∗ = √ 2𝑏𝑘𝑑𝐼2

(𝑏 − ℎ)𝐼2 + 2𝑏2𝑑 (5.13)

𝜆∗ = ℎ
2𝑏 − 𝑏𝑘𝑑

𝐼2 (5.14)

Yes, these are as beastly as any other equations we might have, or hope never
to have, seen. We see that investment 𝐼 features prominently, as does demand.
These large amounts are honed down by the marginal holding and replenish-
ment costs. An increase in the spread between variable cost 𝑏 and holding rate
ℎ will decrease the amount of the lot size needed to manage inventory.

It is hard to say whether an increase in demand 𝑑 in the presence of this
constraint will or will not increase lot sizes. It certainly decreases the marginal
impact of an increase in inventory investment 𝐼 on cost, 𝜆. An increase in
marginal holding costs also unambiguously increases the impact of investment
on total cost. For our joint space and investment constraints, an increase of
investment of $1 decreases costs by $0.06. This seems true unambiguously as
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well.1 This shadow price of inventory investment also looks like an interest
rate (it is!). In fact this number is behind the use of inventory to collateralize
short-term borrowing and lending operations.

𝑑𝜆∗

𝑑𝐼 = 𝑏𝑘𝑑
𝐼3

So that the rise over run of inventory impact on cost will be always negative
in this model as it is inversely related to changes in 𝜆∗.

We should plug some numbers into these formula. That is a great exercise for
the less faint of algebraic heart among us. Toy models like this at least give us
some insight into what might or might not impact total inventory cost. More
constraints, more products in inventory, seemingly add to the complexity of
the model, but these general relationships will continue to hold mostly.

5.3 Back to the future
Tortiere and Fazi still need to plan for the future. They have figured out with
us a way to express product mix, pricing, and inventory as decisions chosen
to optimize relevant objective functions subject to various constraints. They
still need guidance on longer term planning. They ask now for a multi-period
production planning model.

5.3.1 Bottom line up front
We are in luck! We have done this before. Most of the elements of such a
model are present in previous models. Here is a template we can work from.

Which layout should we choose?

Here is a source-sink network representation of the model from a previous
engagement.

𝑃 is production, 𝐵 and 𝐼 are inventory, 𝐷 is demand, the sink. We will defi-
nitely need to clean this up. We will use it to scope out the data we need and
the client’s requirements at the same time.

In a network like this a common, if not also neutral, node is the source. Its
links point to the 6 production periods with ranges of potential production at
a production cost, or it could be profit. Networks represent flows from and to
common and disparate nodes. Each edge is an amount or condition flowing.
The arrows indicate the direction of flow and thus by convention the sign of

1If we are bold, we might calculate the rate of change of cost minimizing 𝜆 with respect
to inventory investment 𝐼. That operation guves us
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FIGURE 5.9: Multiperiod production template.

FIGURE 5.10: Where the template came from.

an amount of flow. Graphical representations like these help us understand
complex relationships like feed forward and feed back flows. We know these
relationships in algebra as simultaneous equations.

At period 1 initial production along with initial inventory feed demand. What
is left over from demand leaves period 1 as ending inventory at a holding cost
becoming the beginning inventory into period 2. Potential production enters
period 2 with beginning inventory to meet outgoing period 2 demand. Again
what is left over is inventory and a holding cost to the next period node and
so on to the final inventory leaving the period 6 node. The algebra of the node
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is arrows into a node will sign positive while arrows from a node will sign
negative.

5.3.2 Tighter, and tighter
Here is a tighter formulation that may suit us. We forecast that customers
demand 𝐷1, … , 𝐷𝑇 be the demands for the next 𝑇 periods. For our purposes
𝑇 = 6 weeks. When we get to simulation we will assume that the 𝐷𝑡’s are
independent random variables, and that all stockouts are backordered. We
will let 𝑐𝑡 denote the unit purchase cost in period 𝑡, and let 𝑥𝑡 denote the
inventory level at the beginning of period 𝑡, where a positive 𝑥𝑡 means that
𝑥𝑡 units of inventory are carried from the previous period, and a negative 𝑥𝑡
is a backlog of −𝑥𝑡 units is carried from the previous period.

We can produce, or contract with a product to procure, 𝑦𝑡. With these con-
ventions then 𝑦𝑡 − 𝑥𝑡 ≥ 0 is the size of the order, the lot size in in period 𝑡
with procurement cost 𝑐𝑡(𝑦𝑡 − 𝑥𝑡) and an increase of the inventory level to 𝑦𝑡.
Since customers demand 𝐷𝑡 units during the period, the inventory level at
the beginning of period 𝑡 + 1 is then this expression.

𝑥𝑡+1 = 𝑦𝑡 − 𝐷𝑡.

If 𝑦𝑡 = 𝑦 the loss function in period t is given by

𝐺𝑡(𝑦) = ℎ𝑡𝐸(𝑦 − 𝐷𝑡)+ + 𝑘𝑡𝐸(𝐷𝑡 − 𝑦)+

We use subscripted + strokes to avoid writing this expression repeatedly.

(𝑏 − 𝑎)+ = 𝑚𝑎𝑥(0, 𝑏 − 𝑎)

If we take expectations as perfectly fulfilled, then our model has no so-called
randomness, becomes nicely deterministic, and perhaps a little rosier, for now.

Let’s bring money to the table. Economic losses include the costs of holding
and setting up, replenishing, back ordering, whatever vocabulary we use, of
inventory. This situation is just like the myopic, period by period, static ap-
proach we used for the economic order quantity of Harris (1913). We have
finally introduced here ℎ𝑡 as the holding cost per unit of any positive levels
of inventory on hand and and 𝑘𝑡 as the replenishment, or some might say,
the back order cost. In contracts 𝑘𝑡 could be in a penalty or breakage clause
as well. We attempt to find the policy, that is, the time path, for managing
inventory from time 𝑡 = 1 to time 𝑡 = 𝑇 in our formulation. If we extinguish
inventory, or at least factor it out and sell it at time 𝑡 = 𝑇 + 1, then we would
in that time produce more or reimburse customers for funding any backlogs.

We now formulate our multi-period production plan.

Decisions include the path of production, or contract production known as
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procurement and even tolling, 𝑦𝑡 from time 𝑡 = 1 to the finite horizon 𝑡 = 𝑇 ,
which in our problem is 6 weeks.

Criterion is just to minimize costs. We must set out our criterion equation.
It gets a bit messy, but says it all. For the moment we will inventory manage-
ment’s life on the job be very rosy indeed by the gift of 𝑘𝑡 = 0. We will see
that this artifice will straighten any quadratic lines.

𝑚𝑖𝑛𝑦𝑡≥𝑥𝑡

𝑡=𝑇
∑
𝑡=1

[𝑐𝑡𝑦𝑡 + ℎ𝑡 (𝑥𝑡 + 𝑥𝑡−1
2 )]

Constraints (and oops we already have at least one buried in the criterion)
include any upper and lower bounds on production, inventory (for space and
funding reasons at the least), as well as the relationship between current and
past inventory levels.

𝑦𝑚𝑖𝑛 ≤ 𝑦𝑡 ≤ 𝑦𝑚𝑎𝑥 (𝐶1) (5.15)
𝑥𝑚𝑖𝑛 ≤ 𝑥𝑡 ≤ 𝑥𝑚𝑎𝑥 (𝐶2) (5.16)

𝑥𝑡 = 𝑥𝑡−1 + 𝑦𝑡−1 − 𝐷𝑡−1 (𝐶3) (5.17)
𝑥0 = 𝑥 (𝐶4) (5.18)

The first two constraints, C1 and C2, just set the stage for bounding a decision
in practical life. We have only so much production capacity and so much space
to store inventory. These are easy ways to express much more difficult to
formulate ideas, including space and capacity decisions.

The third constraint C3 is the kicker. It allows decisions in one week to affect
a decision in another week. This moves us into the much more complex realm
of far-sighted rather than the myopia of the static EOQ.

The fourth constraint C4 means we have to seed the process of decision mak-
ing with a beginning inventory, an initial value. If this sounds like differential
equations, it is, except we use the discretization of derivatives known as dif-
ferences. We will also in our implementation hold the holding cost ℎ𝑡 and the
variable cost of production 𝑐𝑡 constant.

5.3.3 Implementing the model
We use the template, repurpose it, and input the data from reports which
CFO Fazi provide. Here is a summary of her report.

We have 6 weeks in the planning cycle. A large beginning inventory seems to
consume funding, space, and the attention of management disproportionately
to production. Both Tortiere and Fazi realize this and want us to help pare
this level down. The problem is how low? They contend that the fragility of
their products requires special handling, storage, and then there is shrinkage
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FIGURE 5.11: Some data is in order.

of product in inventory. So the only way to contend with high storage costs
per unit is to constrict the volume, while still meeting demand and within
the constraints imposed by production. In week 3 they forecast a partial shut-
down of production facilities to refit and upgrade equipment.

5.3.4 A revised rendering
In conversations with Tortiere, Fazi and their colleagues we draw this map of
the model.

FIGURE 5.12: A network view.

Sources are from production and appear in squares. Demands are sinks in
triangles. They flow into and out from period nodes in circles. Each period
node links to past and future adjacent nodes. They follow the algebraic model.
We notice from the discussion to use the average inventory across a period to
assess holding period cost. Fazi wants, for the time being, to prescind from
replenishment lot sizes.
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We use the report and the flow network to develop this worksheet model. Here
is the Excel Solver setup.

FIGURE 5.13: Setting up Solver version.

We also notice a late request to require a 𝑏 = 10% of demand per period safety
stock. This is the constraint. We use a ≥ relationship since a requirement is
a matter of have at least a certain level of inventory on hand.

𝑥𝑡 ≥ 𝑏𝐷𝑡

The request for this constraint may be result of Fazi’s recent conversations
with Make-A-Pie’s insurance broker about the coverage for the high level
of inventory investment. If Make-A-Pie internally reserves some production,
the insurance policy might be able to reduce, or at least not increase, the de-
ductible for inventory losses. In this way safety stock can act as self-insurance.

Now for the final model, and this only the beginning of our analysis.

FIGURE 5.14: A bang-bang solution presents itself.

We do not violate any constraints. We have reduced inventory and inventory
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cost. We have a multiperiod production plan whose path depends on past and
future demand. We also notice we have almost double the warehouse space
needed to fulfill demand, production, and inventory requirements.

5.4 Next steps?
Of course we will find the breaking points of this model. We can render a
sensitivity analysis report, attempt to understand the range of values produc-
tion, and by deduction inventory, policy can evolve. What would happen if
Make-A-Pie expands to all five boroughs of NYC and Westchester and Long
Island? What would happen if Make-A-Pie grows new lines of business? How
would we model these questionss



6
Case: Pricing Production at Make-A-Pie

6.1 Yet another ask!
Tortiere and Fazi now want us to do the seemingly impossible? Price pie. Our
job is to insert a pricing decision into the multi-period production planning
model. We will use the existing demand framework from the previous chapter.
We could alternatively set up a similar Salmeron Solar model? Try it for prac-
tice of course! We will try to sow up our discussions on production, demand,
inventory, in short a good hunk of the Make-A-Pie supply chain. That’s is and
that’s certainly enough! But, you know, the Salmeron multiperiod planning
model might be an interesting final project. Hmmm. We will see.

6.2 A process unfolds
We will soon hop into another problem that Tortiere faces. We will need to
use simulation to help her solve it. For now let’s try to

1. Watch this walkthrough video. You can access this video here

2. Build an influence diagram with production , inventory, demand,
and now pricing. This could follow the approach for the production
process network.

3. Start from the Make-a-Pie cost minimization multi-period produc-
tion model. Adding more weekly periods to the model.

4. Use a Make-A-Pie demand worksheet as the base for price based
demand.

5. Make a new pricing decision row. Now be sure all of the cell cal-
culations flow through the model cleanly, especially for price drive
demand. Remember we solve for price.

6. Check Solver’s settings to be use we have the right objective cell,
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decisions including price, just add price cells next to the production
sequence with a comma

7. Run GRG Non-linear as cost is now quadratic in prices, just like
the NPV and weekly profit analysis of weeks 1 and 2.

8. Remember this is cost minimization. You should get a not too sur-
prising result: the model does the absolute minimum production
and finds a price to support that policy.

9. Override the cost minimization assumption by creating a revenue
and then a profit cell. Maximize profits. We might see different price
and production possibilities? Or not?

10. Always perform sensitivity analysis, especially with respect to the
right hand-side constraint values. For GRG-non-linear you will be
examining the Lagrange multiplier values interpreted as shadow
prices.



Part 3 – Simulation

Getting our arms around

• Developing a waiting time archetypal model to answer specific business ques-
tions

• Simulating correlated variates

• Applying variates to the waiting time model

• Collecting data relevant to the decision framework inherent to the simulation
model

• Exploring simulated data

• Analyzing sensitivity of results with respect to changes in in key decision
parameters
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7
Probability for Real People

7.1 Can we rationally reason?
Some might wonder if this section header even makes sense! CFO Fazi looks
at it and knows everyone has a reason, some good and some not so good.
But sometimes our reasons are not founded in any data that can be observed
either by ourselves or by others. Our reasoning can be founded on falsified
data, delusions, unfounded opinions, beliefs with no authoritative grounds.
Her questions move from the various relationships in production planning in
the previous part of this project to the forecasting of what might happen
at all. What would be the rationale for a forecast? She begins her thought
experiment with the weather in her hometown of Albany, New York.

Rationality in the context we have been discussing at least means that we, as
decision makers, would tend to act based on the consistency of observed reality
with imagined and through ideas about the world in which data are collected.
We attempt to infer claims about the world based on our beliefs about the
world. When confronting ideas, imbued with beliefs, with ovbserved reality
we might find ourselves in the position to update our beliefs, even those, and
sometimes especially those, we so dearly hold.

In our thinking about anything we would venture candidate hypotheses ℎ
about the world, say the world of meeting demand, providing services, mar-
shalling resources in specific markets. Of course the whole point is that we
do not know which hypothesis ℎ is more plausible, or not. We then collect
some data 𝑑. When we perform this task, we move from the mental realm
of the possibiity of hypotheses, theories, surmises, and model to the realm of
observed reality. We may well have to revise our original beliefs about the
data.

To implement our maintained hypothesis of rationality, we begin our search for
potential consistencies of the collected data with our hypotheses that
are fed by the data. In our quest we might find that some one of the hypotheses
has more ways of being consistent with the data than others. When the data
is consistent with a hypothesis, that is, when the hypothesis is reasonable
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logically, then our belief in that hypothesis strengthens,1 and becomes more
plausible. If the data is less consistent with the hypothesis, our belief in that
hypothesis weakens. So far we have performed this set of tasks with conjectures
about virus testing and voter alliance in zip codes. Let’s switch up our program
and consider the following very simplified question about the weather.

CFO Fazi’s ask is this question about winter consumer behavior in the Albany-
area market:

We see people carrying snow shovels. Will it snow?

What is the data 𝑑? We have recorded a simple observation about the state
of the weather so that single piece of data (𝑑 = We see people carrying snow
shovels). Her is where our beliefs enter. We have two hypotheses, ℎ: either it
snows today or it does not.

Let’s figure out how to solve this problem? We have three desiderata:

1. We should include our experiences with snow in our analysis.

2. We should collect data about carrying snow shovels in January as
well.

3. We prefer more consistency of data with hypotheses to less consis-
tency.

Here we go, let’s strap ourselves in.

7.1.1 Priors: what we think might happen
Our observation is about the weather: clouds, wind, cold. But we want to
know about the snow! That is our objective and we have definite ideas about
whether (don’t pardon the pun!) it will snow or not. We will identify our beliefs,
ever before we make our observations, about snow. The analytical profession
and custom is to label these beliefs as a priori,2 and thus the ellipsis prior,

1The core idea of strengthen is to take us from a more vulnerable to a less vulnerable
place or state. Synonyms for strength include confirm and validate.

2The a priori elements of any argument include just about everything you and I know,
including the kitchen sink! We can’t help but to have these antecedent thoughts, experiences,
shared and not-so-shared histories. They tend to persist in most humans, including us. At
least that is what we will maintain. Thus it is a necessity to include these beliefs in our
discussion. Without their consideration we most plausibly will introduce unsaid and denied
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contentions we hold when we walk into the data story we create with the
question of will it snow?

Our prior contentions are just the plausibilities of each hypothesis whatever
data we eventually collect. After all we have to admit to everyone what we
believe to be true as the antecedent to the consequent of observations and
the plausibility of snow. This move allows us to learn, to revise, to update
our dearly held beliefs. We thus can grow and develop. This is in a phrase a
sine qua non, a categorial imperative, a virtually unconditioned requirement
for change.

What might we believe about whether it will snow (today)? If you come from
Malone, New York, north of the Adirondack mountains, you will have a differ-
ent belief than if you come from Daytona, Florida, on the matter of how many
ways snow might happen in a given month. So let’s take as our benchmark
Albany, the capital of the state of New York.

We will refer to some data to form hypotheses and their plausibility.using this
weather statistics site. The site reports the average number of days of snowfall
in January, when there is at least a 0.25 cm accumulation in a day. It is 10.3
days. These are the number of ways (days) in January, in Albany, NY, that it
is true, on average and thus some notion of expected, or believed to be, that
it snows. The total number of ways snow could possibly fall in any January
(defined by calendar standards) is 31. While the formation of the hypotheses
snowy and nice days is informed by data, we are asking a question about snow
because we have yet to observe if will snow. We cannot observe something that
has not yet happened. We can thus characterize hypotheses and conjectures
as unobserved data.

Thus we might conclude that we believe that is it plausible (probable) that
snow can fall 10.3/31 = 30% of the different ways snow can fall. Note very well
we will talk about priors as potentials and conjectures and hypotheticals, and
thus used the modal verbs can or might. Thus we believe it might not snow,
because it is possible, with plausibility 1−0.30 = 0.70, or, multiplying by 100,
70%, according to the law of total probability of all supposed (hypothesized)
events. We only have two such events: snow and not snow. Probabilities must,
by definition, add up to 1 and must, again by definition be a number between
0 and 1.

Nice ideas, nice beliefs, are our as yet to be observed, but projected notions of a
snowy day. But how real, how plausible, how rational, that is, how consistent
are they with any observed data? Is there any observed data we can use to

bias, let blindspots have the same focus as clearly understood experiences, and produce
time and resource consuming blind alleys. But we should hang on here: even blind alleys
and blind spots are extremely important bits of knowledge that help us understand what
does not work, an inverse insight as exposed by Bernard Lonergan (1970).

https://www.currentresults.com/Weather/New-York/snowfall-january.php
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TABLE 7.1: Priors by hypotheses

hypotheses priors
snowy day 0.3
nice day 0.7

TABLE 7.2: data meets hypotheses

hypotheses shovels hands
snow day 0.7 0.3
nice day 0.1 0.9

help us project which of our unobserved data, our hypotheses, is more or less
reasonable?

7.1.2 Likelihoods: thinking about the data
Life in the Northeast United States in January much revolves around the
number of snow days, also known as days off from school. A prediction of
snow meets with overtime for snow plow drivers, school shut downs, kids at
home when they normally are in school. On some snowy days we see people
carrying snow shovels, on others we don’t. On some nice days we see people
with snow shovels, on others we don’t. Confusing? Confounding? A bit.

Now we link our observations of shovels with our unobserved, but through
about and hypothesized, prediction of snow. We then suppose we observe
that people carry snow shovels about 7 of the 10 snowy days in January or
about 70%. On nice days we observe that people carry shovels at most 2 days
in the 21 nice days or about 10%.

This table records our thinking using data we observe in Januaries about
weather conditions.

First of all these probabilities register yet another set of beliefs, this time
about whether we see shovels or not, given, conditioned by, the truth of each
hypothesis ℎ. We write the conditional probability Pr(𝑑|ℎ), which you can
read as “the probability of 𝑑 given ℎ”. Also here we will follow the convention
that this set of results of our assessment of the relationship of shovels to snowy
days as a likelihood .3

3For Pierre Simon de Laplace et al. (1902), likelihood also has the idea of Pr(ℎ|𝑑). Let’s
stick to our knitting, and tolerance for ambiguity, with using the rows of this table as our
entries for likelihood.
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7.1.3 Altogether now
Do we have everything to fulfill our desiderata? Let’s check where we are now.

1. We should include our experiences with snow in our analysis.

Yes! We put our best beliefs forward. We even (sometimes this
is a courageous analytical step) quantified teh ways in which
snow and not snow would occur, we believe, in Albany NY in
an average January.4

2. We should collect data about carrying snow shovels in January as
well.

Yes we did! Again we elicited yet another opinion, belief, what-
ever we want to colloguially call it. That belief if what we register
and document based on observation of shovels and just hands
in the presence of snowy and nice days in a January.

3. We prefer more consistency of data with hypotheses to less consis-
tency.

Not yet! We will impose our definition of rationality here.

Let’s start out with one of the rules of probability theory. The rule in question
is the one that talks about the probability that two things are true. In our
example, we will calculate the probability that today is snowy (i.e., hypoth-
esis ℎ is true) and people carry shovels (i.e., data 𝑑 is observed). The joint

4we really need to think further about our notions of an average or centrally located
anything. This means more consideration later, including deviations from these locations
measured by scale.
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probability of the hypothesis and the data is written Pr(𝑑, ℎ) −Pr(𝑑 ∧ ℎ, and
you can calculate it by multiplying the prior Pr(ℎ) by the likelihood Pr(𝑑|ℎ).
The conjunction is a both-and statement. We express conjunctions using the
wedge ∧ symbol. Logically, when the statement that both 𝑑 and ℎ is true,
then the plausibility, now grown into probability is:

Pr(𝑑 ∧ ℎ) = Pr(𝑑|ℎ)Pr(ℎ)

When we divide both sides by Pr(ℎ) we get the definition, some say derivation,
of condition probability. If we count #() the ways 𝑑 ∧ ℎ are true and the ways
that ℎ are true then

#(𝑑|ℎ) = #(𝑑 ∧ ℎ)
#(ℎ)

Then the number of ways the data 𝑑 are true, given ℎ is true, equals the
total number of ways that 𝑑 and ℎ per each way that ℎ is true. We have thus
normed our approach to understanding a conditional statement like if ℎ, then
𝑑. Even more so, when we combine the law of conditional probability with the
law of total probability we get Bayes Theorem. This allows us to recognize
the dialectical principle that, yes, we recognize ℎ = 𝑠𝑛𝑜𝑤𝑦, but we also know
that every cloud has its silver lining and that there is a non-snowy day and
thus a

𝑛𝑜𝑡 ℎ = ¬ℎ = 𝑛𝑖𝑐𝑒

lurking in our analysis.

Here it in in all its glory.

Pr(ℎ ∣ 𝑑) = Pr(𝑑 ∣ ℎ) Pr(ℎ)
Pr(𝑑 ∣ ℎ) Pr(ℎ) + Pr(𝑑 ∣ ¬ℎ) Pr(¬ℎ) (7.1)

== Pr(𝑑 ∧ ℎ)
Pr(𝑑 ∣ ℎ) Pr(ℎ) + Pr(𝑑 ∣ ¬ℎ) Pr(¬ℎ) (7.2)

The numerator is the same as the conjunction both 𝑑 and $h. The denominator
is the probability that either both 𝑑 and ℎ or both 𝑑 and ℎ are true. While the
build up to this point is both instructive, and thus may at first be confusing, it
is useful as it will highlight the roles these probabilities perform in the drama
that is our analysis.

We had better get back to the data or get lost in the weeds of the maths. So,
what is the probability it is true that today is a snowy day and we observed
people to bring a shovel?

Let’s see what we already have. Our prior tells us that the probability of a
snowy day in any January is about 30%. Thus Pr(ℎ) = 0.30. The probability
that we observe people carrying shovels is true given it is a snowy day is
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TABLE 7.3: Both data and hypotheses

hypotheses shovels hands sum
snow day 0.21 0.09 0.3
nice day 0.07 0.63 0.7
sum 0.28 0.72 1.0

TABLE 7.4: both data and hypotheses in days in January

hypotheses shovels hands sum
snowy day 6.51 2.79 9.3
nice day 2.17 19.53 21.7
sum 8.68 22.32 31.0

70%. So the probability that both of these things are true is calculated by
multiplying the two to get 0.21. We can make this

𝑙Pr(𝑠𝑛𝑜𝑤𝑦, 𝑠ℎ𝑜𝑣𝑒𝑙𝑠) = Pr(𝑠ℎ𝑜𝑣𝑒𝑙𝑠 | 𝑠𝑛𝑜𝑤𝑦) × Pr(𝑠𝑛𝑜𝑤𝑦) (7.3)
= 0.70 × 0.30 (7.4)
= 0.21 (7.5)

This is an interesting result, something odds makers intuitively know when
punters put skin in the game. There will be a 21% chance of a snowy day
when we see shovels in people’s hands. However, there are of course four pos-
sible pairings of hypotheses and data that could happen. We then repeatthis
calculation for all four possibilities. We then have the following table.

Just to put this into perspective, we have for the 31 days in a January this
table.

We have four logical possibilities for the interaction of observed data and
unobserved hypotheses. We arrange these possibilities in two stacked rows.
We recall that visualizatiton is everything, even in tables! Here is the first
row.

1. Snowy and shovels

𝑙Pr(𝑠𝑛𝑜𝑤𝑦, 𝑠ℎ𝑜𝑣𝑒𝑙𝑠) = Pr(𝑠ℎ𝑜𝑣𝑒𝑙𝑠 | 𝑠𝑛𝑜𝑤𝑦) × Pr(𝑠𝑛𝑜𝑤𝑦) (7.6)
= 0.70 × 0.30 (7.7)
= 0.21 (7.8)

2. Snowy and just hands
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𝑙Pr(𝑠𝑛𝑜𝑤𝑦, ℎ𝑎𝑛𝑑𝑠) = Pr(ℎ𝑎𝑛𝑑𝑠 | 𝑠𝑛𝑜𝑤𝑦) × Pr(𝑠𝑛𝑜𝑤𝑦) (7.9)
= 0.30 × 0.30 (7.10)
= 0.09 (7.11)

In this row the prior probability about snow is 0.30.

Here is the second row.

1. Nice and shovels

𝑙Pr(𝑛𝑖𝑐𝑒, 𝑠ℎ𝑜𝑣𝑒𝑙𝑠) = Pr(𝑠ℎ𝑜𝑣𝑒𝑙𝑠 | 𝑛𝑖𝑐𝑒) × Pr(𝑛𝑖𝑐𝑒) (7.12)
= 0.10 × 0.70 (7.13)
= 0.07 (7.14)

2. Nice and just hands

𝑙Pr(𝑛𝑖𝑐𝑒, ℎ𝑎𝑛𝑑𝑠) = Pr(ℎ𝑎𝑛𝑑𝑠 | 𝑛𝑖𝑐𝑒) × Pr(𝑛𝑖𝑐𝑒) (7.15)
= 0.90 × 0.70 (7.16)
= 0.63 (7.17)

In this row the prior probability about nice days is 0.70.

An insightful exercise is to carry these calculations from the number of ways
snow with and without shovels occurs given we think we know something
about snow. The same with the number of ways a nice day might occur with
and without shovels, given what we think about nice days.

Let’s put one calculation together with a not so surprising requirement. When
we conjoin snow with shovels, how many possible ways can these logical state-
ments occur? It is just the 31 days.

We now have all of the derived information to carry our investigation further.
We also total the rows and, of course, the columns. We will see why very soon.

The row sums just tell us as a check that we got all of the ways in which
snow occurs in 31 days. What is brand new are the column sums. They add
up the ways that data occurs across the two ways we hypothesize that data
can occur: snow, no snow (nice day). They tell us the probability of carrying
a shovel or not, across the two hypotheses. Another way of thinking about the
𝑝(𝑑) column sums is that they are the expectation of finding snow or hands
in the data. The consistency of all of these calculations is that column sums
equal row sums, 100%. All regular, all present and correct, probability-wise.
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7.1.4 Updating beliefs
The table lays out each of the four logically possible combinations of data
and hypotheses. So what happens to our beliefs when they confront data? In
the problem, we are told that we really see shovels, just like the picture from
Albany, NY at the turn of the 20th century. Is surprising? Not necessarily in
Albany and in January, so you might expect this behavior out of habit during
a rough Winter. The point is that whatever our beliefs have been about shovel
behavior, we should still subject them to the possibility of accomodating the
fact of seeing shovels in hands in Albany in January, a winter month in the
Northern Hemisphere.

We should recall this formula about the probability of seeing both an hypoth-
esis and data:

Pr(ℎ ∣ 𝑑) = Pr(𝑑 ∧ ℎ)
Pr(𝑑) = Pr(𝑑 ∣ ℎ)Pr(ℎ)

Pr(𝑑)

Now we can trawl through about our intuitions and some arithmetic. We
worked out that the joint probability of both snowy day and shovel is 21%,
a rate reasonable given the circumstances. In our formula, this is the product
of the likelihood Pr(𝑑 = 𝑠ℎ𝑜𝑣𝑒𝑙𝑠 ∣ ℎ = 𝑠𝑛𝑜𝑤) = 0.70 and the prior probability
we registered that snow might occur Pr(ℎ = 𝑠𝑛𝑜𝑤) = 0.30.
Relative to the product of the likelihood of shovels given a nice day and the
chance that snow might occur is the the joint probability of both nice day and
shovel at 10%, or Pr(𝑑 = 𝑠ℎ𝑜𝑣𝑒𝑙𝑠 ∣ ℎ = 𝑛𝑖𝑐𝑒)Pr(ℎ = 𝑛𝑖𝑐𝑒) = 0.10 × 0.70 =
0.07, again a reasonable idea, since we plausibly wouldn’t see much shovel
handling on that nice day in January..

Both of these estimates are consistent with actually seeing shovels in people’s
hands. But what are the chances of just seeing shovels at all? This is an either
or question. We see shovels 21% of the time on snowy days or we see shovels
7% of the total days in January on nice days. We then add them up to get
28% of the time we see shovels in all of January, whether it snows or not.

So back to the question: if we do see shovels in the hands of those folk, will
it snow? The hypothesis is ℎ = 𝑠𝑛𝑜𝑤 and the data is 𝑑 = 𝑠ℎ𝑜𝑣𝑒𝑙𝑠. The joint
probability of both snow and shovels is Pr(𝑑, ℎ) = 0.21. But just focusing on
the data we just observed, namely that we see shovels, we now know that the
chances of seeing shovels on any day in January in Albany, NY is Pr(𝑑) =
0.27. Out of all of the ways that shovels can be seen in January then we
would anticipate that the probability of snow, upon seeing shovels, must be
Pr(ℎ ∣ 𝑑) = Pr(𝑑, ℎ)/Pr(𝑑) = 0.21/0.28 = 0.75.
What is the chance of a nice day given we see shovels? It would be again
likelihood times prior or 0.10 × 0.7 = 0.07 divided by the probability of seeing
shovels any day in January 28%. We then calculate 0.07/0.28 = 0.25. We now
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TABLE 7.5: Unobserved belief tempered by observed data = posteriors.

hypotheses shovels hands priors posterior shovels posterior hands
snow day 0.7 0.3 0.3 0.75 0.125
nice day 0.1 0.9 0.7 0.25 0.875
sum 0.8 0.2 1.0 1.00 1.000

have the posterior distribution of the two hypotheses, snow or nice, in the face
of data, shovels. So what are the odds in favor of snow when we see shovels?

𝑂𝑅(ℎ ∣ 𝑑) = Pr(ℎ = 𝑠𝑛𝑜𝑤 ∣ 𝑑 = 𝑠ℎ𝑜𝑣𝑒𝑙𝑠)
Pr(ℎ = 𝑛𝑖𝑐𝑒 ∣ 𝑑 = 𝑠ℎ𝑜𝑣𝑒𝑙𝑠) (7.18)

= 0.75
0.25 (7.19)

= 3 (7.20)

We can read this as: when we see people with shovels in January in Albany,
NY, then it is 3 times more plausible to have a snowy day than a nice day. The
ratio of two posteriors gives us some notion of the plausible divergence in likely
outcomes of snowy versus nice days. Again we must append the circumstances
of time and place: in a January and in Albany, NY.

Here is table that summarizes all of our work to date.

7.2 Enough with the shovels!
Let’s apply the probability analysis we developed so far to understanding the
plausibility of the demand for pies at one of the smaller restaurants Make-A-
Pie vends to. Here is a day by day count of the number of pies sold (the 𝑐𝑜𝑢𝑛𝑡
variable) and the weather (clear coded as 𝐶 or rainy coded as 𝑅). The original
data only has the date, count, and the weather. The rest is analysis based on
this data.

After carefully verifying and validating the data and its ssources, the next
step in spreadsheet engineering is always to create named ranges. Here they
are the names of the columns.

To derive the days of the week in a potential analysis, we can create a table
of the day number, with 1 as Sunday. Then the day of the week would be an
INDEX() lookup of the date’s corresponding day of the week in the table. The
result is the day name. With this we can possibly sort out all Saturdays and
Sundays to isolate activity on weekdays and weekends.

For our purposes we would like to know the odds of selling more than 10
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FIGURE 7.1: Daily Pie demand and the weather.

pies when the weather is clear. We can answer this query by making a 2x2
contingency table of the conditional data counts of pie demand. This panel
details the computations.

FIGURE 7.2: What are the odds?

The key is the associative counting of pies by both a count greater than a
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threshold of 10 and clear weather. We accomplish this, for example in cell
Q7, with =COUNTIFS( count, $O7, clear, “=”&Q$6 ). We can read this
statement as count the pies (count) greater than 10 ($O7) and with weather
(clear) which is indeed clear (Q$6). This yields 8 pies. When the weather is
clear we sell a total of 14 pies.

The probability of selling more than 10 pies when the weather is clear is about
8/14 × 100 = 57%. We sold 8 pies greater than the threshold and 6 pies less
than the threshold when the weather was clear. The ratio of 8 ∶ 6 = 1.33
reports the odds of selling greater than 10 pies. We interpret this number
with the phrase: it is 1.33x more likely to sell greater than 10 pies, than not,
when the weather is clear.5

7.3 What did we accomplish?
We have travelled through the complete model of probabilistic reasoning.

1. We started with a question. The question at least bifurcates into
the dialectical is it? or is it not?.

2. We then began to think about beliefs inherent in the question for
each of the hypotheses buried in the question.

3. We then collected data that is relevant to attempting an answer to
the question relative to each hypothesis.

4. Then we conditioned the data with the hypotheses inside the ques-
tion. It is always about the question!

5. Finally we derived plausible answers to the question.

6. We then illustrated the example with data collected, threshold set,
table constructed, odds computed.

What is next? We continue to use this recurring scheme of heuristic thinking,
sometimes using algorithms to count more efficiently, applied to questions of
ever greater comnplexity. In the end our goal will be to learn, and learning is
inference.

5Some folks might want to aggrandize this statement by saying that is is 33% more likely
to sell more than 10 pies when clear. We might caution ourselves as we might be falling into
a distortion by magnifying an apparent difference. The probability of selling more than 10
pies when clear is 8/14 = 4/7. on the other hand the complementary probability of selling
up to 10 pies when clear is 6/14 = 3/7. We get to sell only 1 pie in crossing the 10 pie
threshold given this data set. An inflated way of expressing the results of this analysis?
Isocrates would agree.
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7.4 Try this out
1. Start with a question for analysis using a indicative-interrogative

statement format, for example “We observe X. Will Y occur?” Based
on this statement identify the unobserved data of the hypothesis and
the observed data. Use binary hypotheses and observations.

2. Rework the Albany NY example using your hometown or city. De-
velop initial distribution of hypotheses, distributions of data given
a hypothesis, joint distributions of hypotheses and data. Find the
probability that a particular hypothesis might occur given a specific
piece of data.

3. Rework the spreadsheet example using various thresholds. Use the
Data Table sensitivity analysis to calculate results. Plot the Data
Table. Lead a discussion with some skeptical people about your
findings.





8
Waiting on a Simulation

8.1 A story of chance
Stan Ulam got sick one day, and it lasted for quite a while. The year was about
1945 . The place, a secret facility in a not so secret desert in the Southwest
United States. To wile away the time he played, as many might do, solitaire,
a game of self-imposed patience. He was a mathematician and soon became
impatient with not winning several hands in a row.

The combinations of potential hands and their rule by rule repositioning in an
ace-high order, and Stan knew this, results in 52! ≈ 8.07×1067 possible games.
If he could play 4 games per hour, non-stop, it would take him about 3.29×1062

years. That wasn’t happening! He discussed this idea with his colleague John
von Neuman who had just been involved in building the ENIAC computer
(see Thomas Haigh (2014) for a history). He supposed he could generate 𝑁
games.

8.1.1 A short digression on volatility
For each game Stan Ulam determines which proposed game is, or is not,
winnable. The number of winnable games is 𝑊 . The relative frequency 𝑓
of winnable, acceptable games is then 𝑓 = 𝑤/𝑁 . Next he would let 𝑁 get
larger thinking that the accuracy of this thought experiment should improve.
There are after all just two possibilities win or lose, a binary outcome. If there
are just two outcomes, and like the flipping of a coin, equally likely or nearly
so, then solitaire wins and losses can be modeled by a binomial distribution
with 𝑁 games a probability of a win 𝑝. and thus a loss 1 − 𝑝. The standard
deviation of 𝑝 = 𝑓 = 𝑤/𝑁 wins over losses is the sampled 𝑓 from a binomial
distribution of a 1 shot sample (also known as a geometric distribution, but
neither here nor there.

𝜎𝑝 = √𝑝(1 − 𝑝)
𝑛

Here’s a sketch of the derivation. The sketch includes a manipulation of ex-
pectations. Now, we do remember a bit of information about expectations.
They are ultimately weighted averages of outcomes, like the 𝑓/𝑁 we, includ-
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ing Stan, sampled, where the weights are assigned probabilities of occurrence
of outcomes. We let 𝐸() stand in for this aggregation. Then we remember
that the standard deviation is the square root of the variance. The variance in
turn is the expectation (weighted probability average) of squared deviations
of outcomes from means (which are in turn expectations). If 𝑓 is a binomial
outcome, then 𝐸𝑓 = 𝑛𝑝 and 𝑉 𝑎𝑟(𝑓) = 𝐸(𝑓 − 𝐸𝑓)2 = 𝑛𝑝(1 − 𝑝). Here is the
sketch without much, in any, commentary.

𝑉 𝑎𝑟(𝑝) = 𝐸(𝑝 − 𝐸𝑝)2 (8.1)
= 𝐸𝑝2 − (𝐸𝑝)2 (8.2)

𝑝 = 𝑓
𝑁 (8.3)

𝑉 𝑎𝑟(𝑝) = 𝐸(𝑓/𝑁)2 − (𝐸(𝑓/𝑁))2 (8.4)
= (1/𝑛2)(𝐸𝑓2 − (𝐸𝑓)2) (8.5)
= (1/𝑛2)𝑣𝑎𝑟(𝑓) (8.6)
= (1/𝑛2)𝑛𝑝(1 − 𝑝) (8.7)

= 𝑝(1 − 𝑝)
𝑛 (8.8)

The standard deviation 𝑠𝑖𝑔𝑚𝑎𝑝 of 𝑉 𝑎𝑟(𝑝) is then

𝜎𝑝 = √𝑝(1 − 𝑝)
𝑛

Phew! Only a little waving of the hands required.

8.1.2 Back Solitaire
This means that as the number of sampled solitaire (Klondike style) hands
climbs, the standard deviation of relative frequencies declines and thus the
process produces more accurate results. The win rate for recreational play has
been apocryphally estimated at 𝑝 = 0.43. This is almost a random walk.

John von Neumann, his computer operator wife Klara von Neumann, and oth-
ers worked with Ulam’s idea, code-named Monte Carlo (it was secret until
about 1948) on the ENIAC computer with its 17,000+ vacuum tubes. They
were able to find solutions to problems they had no idea even existed. They also
built thermo-nuclear weapons with designs enabled by Monte Carlo methods
on the ENIAC. Haigh et al. document the use of the stored program modern
computing paradigm installed in the ENIAC as well as the programs them-
selves (Thomas Haigh (2014)),

We might have three or so takeaways from all of this story-telling. First, we
should always keep a notebook, the original stored program facility. Second, we
can use Monte Carlo to generate new insights through a random brute force
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method. Third, advances in technology provide a touchstone for technique:
always be on the look-out for off trend movements in a domain of knowledge.

The second takeaway has an important implication for us. Generative mod-
els build joint probabilities of highly interrelated groupings of data. In our
working example in this chapter we will need the capability of letting multi-
ple eateries communicate with different times of day. With 20 eateries and 2
shifts there are over 4 × 1018 possible interactions. That’s a lot of potential
communication. Conditioning the data will help us pare this down to size.
Monte Carlo will help us understand customer experience at the eateries.

8.2 A piece of pie, please
Tortiere and Fazi started baking vegan pies because they really wanted to open
a chain of small eateries where the pies, with salads of course, would be the
main attraction. They would also offer coffee, near-coffee as they call products
from some chains from the Northwest United States, perhaps liquor and beer,
very cosmopolitan. They hire some restaurant experts from a popular TV
network to help them understand some of the business side of an eatery. The
so-called experts build a robot. This is a pie-eating-robot, not a person, but a
machine that can sense, observe, even build updateable probability tables for
how long it takes to get served.

Our model (we are the so-called experts) should be able to go from one eatery
to another with memory. and we We do remember that last time we ordered
a cup of coffee and a piece of pie at a lunch counter eatery. The model should
also be able to the same eatery or another in the morning or the afternoon.
Time of day traffic at eateries could be different, exhibiting different customer
experiences. The primary metric we elicit from our clients is their concern over
how long a customer remains in line, gets to order, and receives the order. Too
slow and the customer might bolt next door and eat meat pies. Too fast and
service quality, including basic courtesy might jump out of the back window.

We will program a robot to visit two eateries, order coffee and a piece of
pie, and estimate the waiting times at each. The robot enters the first eatery,
either in the morning or in the afternoon. The pie-eating-robot begins with
a vague idea for the waiting times, say with a mean of 5 minutes and a
standard deviation of 1. After ordering a cup of coffee and a piece of pie at
the first eatery, the robot observes a waiting time of 4 minutes, an observation
below the mean, about 1 standard deviation’s worth. It updates its probability
of being at this eatery, the so-called entry, just getting in the queue, prior
distribution, using Bayes’ theorem of course, with this information. This gives
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it an exit, resulting, otherwise known as a posterior distribution for the waiting
time at the first eatery.

Now the robot moves on to a second eatery. It might be morning or afternoon.
When this robot arrives at the next eatery, what is its expectation upon
entering, the so-called prior, the probability that the next eatery is to be
entered? It could just use the resulting distribution, also known as a posterior,
from the first eatery as its entry distribution, also known as a prior, for the
second eatery. But that implicitly assumes that the two pie-eateries have the
same average waiting time. Eateries are all pretty much the same, but they
aren’t identical.

On the other hand, it doesn’t make much sense to ignore the observation, the
experience of waiting, from the first eatery. That would make the robot have
amnesia and we want the robot to remember, and possibly compare. So how
can the eatery customer-robot do better? It needs to represent the population
of eaterys and learn about that population. The distribution of waiting times
in the population becomes the prior, the probability, for each eatery, until,
and if, the pie-eating-robot encounters a new customer experience, which will
be compared with and conditioned by prior experiences.

Whatever the eatery, the robot has a simple model in its robotic cortex.

𝜇𝑖 = 𝛼𝑖 + 𝛽𝑖𝐴𝑖

where 𝜇𝑖 is the average waiting time in minutes at eatery 𝑖, 𝛼𝑖 is the average
morning waiting time, 𝛽𝑖 is the average difference in morning and afternoon
waiting times, and 𝐴𝑖 is a zero/one indicator of whether we are in the afternoon
shift, 1, or present ourselves to the morning shift, 0.

Eateries covary in their intercepts and slopes. Why? At a popular eatery, wait
times are on average long in the morning, because staff are very busy, in
a word, slammed. The eatery might be the only place open for blocks, but
the same eatery might be much less busy in the afternoon, leading to a large
difference between morning and afternoon wait times. At such a popular eatery,
the intercept is high and the slope is far from zero, because the difference
between morning and afternoon waits is large. But at a less popular eatery,
the difference will be small. Such a less than popular eatery would make us
wait less in the morning, because it’s not busy. and there is not much of a
change in the afternoon. In the entire population of eateries, including both
the popular and the unpopular, intercepts and slopes covary. This covariation
is information that the robot can use.
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8.3 A brief interlude with Cholesky
The information structure we impose on the customer-robot relates morning
and afternoon wait times. We model this as covariance, eqivalently as corre-
lation, which is covariance scaled (divided) by the product of the standard
deviations of morning and afternoon. Scaling forces a covariance that can
possibly range from negative to positive infinity into a far more useful range
between -1 and +1. If we (through a scanner darkly1 with our robot, that is)

We have two random parameters, so our problem is like this one. Given a 2×2
standardized variance-covariance matrix, also known as a correlation matrix,
𝑅, where 𝜌 is the coefficient of correlation,

𝑅 = [1 𝜌
𝜌 1]

We start with uncorrelated variates 𝑥 from no particular distribution. Our
job is to transform the uncorrelated variates to produce correlated variates 𝑧
with the same expected variance-covariance matrix as 𝑅. This will put infor-
mational structure into the otherwise independently occurring 𝑥.
When we say transform we mean this mathematically.

𝑧 = 𝐿𝑥

such that

𝑅 = 𝐿𝐿𝑇

This may be a tall order if it weren’t for a trick we might have learned when
solving simultaneous equations called triangularization.

8.4 Solution
We can decompose 𝑅 into the product of upper and lower triangular symmet-
rical matrices. This is the standard trick of matrix algebra noted above.

𝑅 = [1 𝜌
𝜌 1] = [ℓ11 0

ℓ21 ℓ22
] [ℓ11 ℓ21

0 ℓ22
]

1Pilfered directly from Philip K. Dick’s memorable novel, A Scanner Darkly. Our aim is
not at all as dystopic as Dick’s.

https://en.wikipedia.org/wiki/A_Scanner_Darkly
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When we multiply the upper and lower triangular matrices we get this inter-
esting matrix.

𝑅 = [1 𝜌
𝜌 1] = [ ℓ2

11 ℓ11ℓ21
ℓ11ℓ21 ℓ2

21 + ℓ2
22

]

Now we use another trick by matching elements of 𝑅 with the elements in our
new matrix. Here we go.

• ℓ2
11 = 1 implies ℓ11 = 1

• ℓ11ℓ21 = 𝜌 then implies ℓ21 = 𝜌
• ℓ2

21 + ℓ2
22 = 1 then implies that ℓ22 = √1 − 𝜌2

That wasn’t as bad as we might have thought when we started. We then let
𝐿 be the new mashed up 𝑅 matrix. Here we already know that ℓ12 = 0 from
the original definition of 𝐿.

𝐿 = [ℓ11 0
ℓ21 ℓ22

] = [1 0
𝜌 √1 − 𝜌2] (8.9)

This matrix can be expanded to more than 2 dimensions. The procedure to
make that happen is called a Cholesky factorization, really an algorithm,
well beyond these proceedings, but on a path for Monte Carlo generation.

8.5 Now we can simulate
We generate correlated 𝑧 = 𝐿𝑥 building on the uncorrelated 𝑥. We first gener-
ate a random 𝑥1 and, independently, a random 𝑥2. We can use the =RAND()
function in Excel to perform this task.

𝑥 = [𝑥1
𝑥2

]

Then we generate a 𝑧1 and a 𝑧2 using the 𝑥 vector of random numbers, but
transformed by pre-multiplying 𝑥 with 𝐿.

𝑧 = [𝑧1
𝑧2

] = [1 0
𝜌 √1 − 𝜌2] [𝑥1

𝑥2
]

We do remember that By definition, if 𝑥1 is not correlated with 𝑥2, then
𝜌12 = 0. We can check our maths with this calculation.

𝑥𝑥𝑇 = [𝑥1
𝑥2

] [𝑥1 𝑥2] = [ 𝑥2
1 𝑥1𝑥2

𝑥1𝑥2 𝑥2
2

] = [1 0
0 1]

The multiplication of a column vector of independently drawn 𝑥 with its trans-
pose, the row vector of those same 𝑥 random numbers will always return the

https://en.wikipedia.org/wiki/Cholesky_decomposition
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identity matrix 𝐼 , a matrix of 1’s on the diagonal and 0’s elsewhere. This shows
that variates are perfectly correlated with themselves but not each other.

Back to the main business at hand. We now calculate

𝑧𝑧𝑇 = (𝐿𝑥)(𝐿𝑥)𝑇 = 𝐿𝑥𝑥𝑇 𝐿𝑇 = 𝐿𝐼𝐿𝑇 = 𝐿𝐿𝑇

But, 𝑅 = 𝐿𝐿𝑇 so that 𝑅 = 𝑧𝑧𝑇 .

Thus we have sketched out these steps.

• Generate uncorrelated 𝑥.
• Generate 𝑧 = 𝐿𝑥, where 𝐿 reflects the desired correlation structure.

• Find that 𝐿 generates the same correlation structure as the correlations in
𝑧.

8.5.1 Excel or bust!
Here is a demonstration in Excel. It will use VBA without apology.

Vectors of 𝑥 and 𝑧 flank the correlation matrix 𝑅 and the transformation
matrix 𝐿, just like the maths. We name the region B2:N3 calculation. The 𝑥
vector is populate with RAND() functions. These will always return a uniformly
distributed random number between 0 and 1. This will act like a probability
if we would like to shape the draws into something more usful to our purposes.
We use the MMULT() array function to matrix multiply 𝐿 and 𝑥 to get 𝑧. We
then simulate this act 10,000 times.

To simulate we designate the Q3:T3 range by naming it interface. This is
a go-between region that mediates the calculations with the presentation of a
single run to another named range called simulationin cells Q5:T5.

We then (cleverly) write a routine that replaces our fingers. They would other-
wise press F9 10,000 times to recalculate the sheet, drawing new 𝑥 values and
transforming them into new 𝑧 values. Each time the fingers would drop a copy
of the interface value row into the next available row below the simulation
range Q5:T5, and do it all over again, shall we say it again? Yes, 10,000 times.
We replace this labor intensive work with this Visual Basic for Applications
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(VBA) code which may be viewed by pressing the Visual Basic button in the
Developer ribbon.

FIGURE 8.1: Cholesky does a demo.

We might some appropriate pithy remark in the MsgBox. We can also change
the number of simulations to some other assumption of the analysis by editing
the FOR-NEXT loop. Otherwise, this code is self-sufficient and ready to reuse.
We simply specify the named ranges. The rest is nicely automated. Assigning
this subroutine to a button finishes the job.

8.6 Back to the eatery robot
The robot enters an eatery and observes waiting times. We will have this robot
do this many times in the morning and / or the afternoon for 20 eateries, thus
the simulation.

Here is the setup, calculation and graph for the random 𝛼𝑖 waiting time in-
tercepts correlated with 𝛽𝑖 afternoon waiting time differentials. This table is
the starter for the rest of the waiting time simulation. It represents our prior
expectations about the range and shape of morning intercept times and after-
noon slope times. We will use this table in the main simulation in the next
section.

The intercepts and slopes for 20 eateries plots a negative relationship. We
shape the random variates into Gaussian (normal) distributions. In an x_1 cell
in column F we make a normally distributed random variable with a 0 mean
and 1 standard deviation. This is none other than the centered and scaled
normal z-score. NORM.INV() will report the number of standard deviations
away from 0 corresponding to a given probability, here drawn as a number
from 0 to 1 with RAND(). But we need a probability version of this draw
that transforms z’s that may positive or negative and very large or very small
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FIGURE 8.2: Simulating wait time parameters.

into a probability. That magic we perform with NORM.DIST set to TRUE,
the cumulative normal density distribution. In the end we get a normally
distributed random number with mean zero and standard deviation one.

We move to an x_2 cell in column G where we Cholesky (a new verb, perhaps)
the x_1 normal random number into a new normal (pun intended!) but corre-
lated random number. We use the second row of the Cholesky matrix, which
when multiplied by another randomly drawn x_2 in Excel gives us in Excel
this algebraic formula.

𝑧2 = 𝜌 𝑥1 + √1 − 𝜌2 𝑥2

We remember that 𝑧1 = 𝑥1 in the Cholesky transformation. Maybe this is too
much information, but it does come in handy when numbers blow up or do
not at all align with anyone’s common sense.

We then get to the random intercepts and slopes in columns H and I. The
hard work has already been done. We draw normal variates with mean and
standard deviations already specified for a and b. The graph concurs with our
expectations that they are random and negatively correlated.

8.6.1 The main course
The robot randomly enters eatery number one and orders again, and possibly,
again, or goes to eatery number two to do the same. The robot may go in the
morning, or possibly in the afternoon. We and the robot do not expend any
calories, get heartburn, or even have a good time. The robot only cares about
how long it takes to get served. This means the robot tracks parameters for
each eatery and time of day.
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FIGURE 8.3: Simulating wait time setups.

We introduce more, uncorrelated, uncertainty by allowing the customer-robot
to choose whether to sample an eatery in the morning 𝐴 = 0 or afternoon
𝐴 = 1. We use the IF() statement to make a choice with a threshold of p_am.
Basically this is Jakob Bernoulli’s probability. The robot jumps into the eatery
in the morning if a uniformly drawn RAND() number exceeds this threshold,
otherwise wait for the afternoon shift.

We calculate the average wait time using each eatery_id in an IN-
DEX(MATCH()) statement to lift the correct intercept 𝛼𝑖 and slope 𝛽𝑖 for
eatery 𝑖. We then add intercept to the slope times the 0 or 1 afternoon marker.
This is the mean, along with an assumed standard deviation that samples a
waiting time from a normal distribution in the wait column. We do this lots
and lots of times.

With all of this data it behooves us to study it closely.

8.6.2 Exploring wait times
We now have several hundred logically related versions of how 20 eateries with
two shifts, morning and afternoon produce wait times for wary and unwary
customers. We did this by building a logically endowed robot to perform the
calculations all in Excel. Here is the workup in a separate worksheet called
eda (for Tukey (1977) exploratory data analysis).

There are three tables. The one on the left at the top builds the parameters
for an equally spaced set of intervals from which we can count the number of
wait time results occur in the interval. All of that action occurs in the table
to the right. Just below the grid parameter table is a summary of results.
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FIGURE 8.4: Building EDA

We compose a typical data summary with these items:

1. Maximum, minimum, and the 25th, 50th, and 75th quartiles, since
they break the data into four parts. All four are measures of location.
We measure central tendency with the median. Generally these are
all we need to make a box plot. We also record the Interquartile
Range (IQR), a scale metric useful for helping us determine outliers.

2. Mean and standard deviation to get other measures of location and
scale. We also compare with median with the mean and see they
are very close.

3. Skewness measures how lopsized, asymmetric the distribution of
data is. Kurtosis is very nearly a scaled standard deviation of the
standard deviation. It measures the thickness, or thinness, of the tail
where we find less frequent outcomes. This data is nearly symmetric
with a meso-kurtic, a medium-thick, tail. It so looks like the normal
distribution, and it should, since we sampled from this distribution
in the first place.
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4. Other measures such as the data can be included.

Now off to the right is a table where we calculate, using 21 intervals, the
frequency, relative frequency, and cumulative relative frequency of the data
occurring in intervals. We use enough intervals with interval mid-point spacing
designed for the use of managers and other decision makers. The documented
cells at the bottom of the table document the way we construct intervals and
their mid-points. We use midpoints in graphing. We count the integer number
of times that a wait time we just sample happens to occur in a an interval.

The Excel function COUNTIFS(array, criterion, array, criterion) does the
heavy lifting for us. An array here is the vector of wait times. All criteria are
logical statements. The syntax for a finding the number of wait time samples
in an interval with beginning of interval value in a cell and an ending of in-
terval value in another cell is “>=”&begin_cell and “<”&end_cell. The very
last interval, to ensure we count all of the data has a “<=”&end-cell logical
statement. We check each of the beginning and ending interval cell formulae
and the logical criteria to count wait time observations.

In the last column of the table we compute the normal (Gaussian) cumulative
distribution function (CDF) version of cumulative relative frequency. We use
mid-points from our interval estimations and the mean and standard deviation
from the data summary table. We set the last argument to TRUE to calculate
the CDF. Our mechanical work is done. Here is a graph of the results.

We see that the simulation and normal CDF’s nearly collide into one another.
The utility of a distribution like this is to help us ask how certain are we about
average wait times? Probability intervals with lower and upper bounds will
help us allocate scarce resources in a more principled fashion. We continue to
remind ourselves that models are abstractions from reality, they are not cus-
tomer experience, or the staff and facilities needed to enhance the experience.

8.7 Any next steps?
We certainly should take a paste-values frozen copy of the simulation, split
it into morning and afternoon sections and run the same exploratory data
analysis on the splits. This will enable us to determine whether the eateries
have much the same or radically different customer experiences.

We can also ask the question about which eateries are more or less popular, if
we think popular is longer wait times for both morning and afternoon shifts. If
popular, the conjecture is that longer wait times are due to customer conges-
tion. Unfortunately they could be due to staff shortages, relatively less trained
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FIGURE 8.5: Finally, a picture.

staff or even the physical configuration of an eatery. But at least we have a
start on beginning to advise Make-A-Pie.

Can we use this model in other settings? We might try to map the parameters
of this model to other processes. For example the model might apply to analyze
queues at vaccination sites. We might also conceive of the use of the model
for tracking time to correct faults in geographically distributed electric and
gas equipment. We might also use this sort of model in any environment
where the number of steps, the number movements, the distance to and from,
varies by some category in time and space (physical and imaginary) and where
the categories are correlated. As always one size will probably only fit one.
Customization will require further scoping, designing, and implementing.





9
The Outer Limits

9.1 Tales of tails
Rod Serling portrayed the edge of human dire straits and decisions in his
classic TV series, The Twilight Zone.1 We will go to the edge in this round
of simulation, but we hope, not too far over the edge of our capabilities to
analyze. The edges and horizons of our work will be peering into the tails of
distributions of decision outcomes. One of these outcomes is workers compen-
sation claims experience.

Let’s set the scene. Make-a-Pie owner Simone Tortiere meets regularly with
other vegan food company owners. This week their agenda covers the rising
incidence of and cost of covering workers compensation claims. A claim arises
when a worker, on the job, becomes disabled for any reason. The New York
State Insurance Fund (NYSIF) offers several plans and products to employer
policy-holders. The vegan company owners around the table at host Candle
Cafe try to get a handle on claims, rejection of claims, required drug formu-
laries and treatment codes, increasing cost of disability, loss of key personnel,
among other things.

Many of the vegan businesses are NYSIF policy-holders. For example, if a
covered worker falls, has extended health issues, the fund will cover expenses
for a specific time frame, using specified drug and other therapy treatments, all
under the direction of NYSIF medical associates. Premiums will undoubtedly
rise with more claims experience. Safety Group plans, while paying dividends
to policy-holders with relatively low claims experiences, often groups all food-
related workers into one class. This may, or may not, disadvantage the vegan
food industry.

The group decides on this course of action.

• Gather workers compensation claims experience across the group

1Local lore places the zone at a now decommissioned train station in Dryden, NY. Ser-
ling ran the entire series with his company Cayuga Production, anmed for the lake where
Serling’s family owned a summer home Ithaca, NY, not far from Dryden on, yes, Route 13.

111

https://ww3.nysif.com/Home/Employer/LookingForInsurance/NYSIFInsurancePlans
https://ww3.nysif.com/Home/Employer/LookingForInsurance/NYSIFInsurancePlans
http://www.candle79.com/
http://www.candle79.com/
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• Attempt to model future claims to understand the range and shape of the
distribution of claims, all based on existing claims experience

• Use the future claims model to simulate a self-insurance portfolio

All of this is a very tall order for experts in vegan food production and service.
Tortiere has already talked to us about the issues. She recommends that our
analytics service can at least start to structure the group’s next conversation
in a month with some provisional results.

9.2 It always starts with data
Not really, because we actually begin with Tortiere’s question: can we insure
ourselves and be better off? Yes, then we begin our analysis by gathering 12
years of annual workers claim experience from several of the vegan establish-
ments.

FIGURE 9.1: Some workers compensation claims data.

This is only a small sample of owners experience, all in hundreds of thousands
of dollars. We visualize the times series.
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Two patterns emerge. There seems to be a base-line of claims experiences. But
there are several very large experiences as well. We ask is there some sort of
threshold that splits the analysis of claims experience?

Well a well-known exploratory technique exists to examine the behavior of
data, especially extreme values in this claims data. We see that Tukey (1977)’s
outlier fences detect outliers above a threshold claims level of $529,000. An-
other technique develops an excess of high threshold series. We generate a
series of possible thresholds 𝑢. Then we sort the claims from lowest to highest.
For each threshold nd claim 𝑥 we calculate the excess of threshold metric. Sou-
vik Ghosh and Sidney Resnick (Ghosh and Resnick, 2010) develop just how
reasonable a mean excess plot (MEP) is to explore extreme tail behaviors.2

We use this tool to evaluate this metric.

max(𝑥, 𝑦) = 𝑥 + 𝑦 + |𝑥 − 𝑦|
2

Let’s try this with 𝑥 = 0 and 𝑦 = 5. We remember that we are trying to
measure claims 5 in excess of a threshold of 0.

2This is a highly technical discussion including the topology (normed vector spaces) of
the region beyond a threshold. Some of the nuggets they reveal include: - MEP is linear
when 0 < 𝜉 < 1. In this region, while there will much variability, 𝜎, uncertainty measured
by 𝜉 seems more at bay. The mean is well defined in this region. - When 𝜉 ≥ 1, the MEP can
mislead the analyst. A slowly varying tail process, such as with water seapage and ozone
layering in urban areas, can fool any attempt to provide a systematic diagnostic. Perhaps
this is simply because a tail with a value of 𝜉 ≥ 1 cannot be discerned from the data, a
distribution, or any other systematization except one: we know it is unknown, the inverse
insight itself.
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𝑒(𝑢) = max(0, 𝑥 − 𝑢) (9.1)

= 𝑥 + 𝑦 + |𝑥 − 𝑦|
2 (9.2)

= 0 + 5 + |0 − 5|
2 (9.3)

= 5 + 5
2 (9.4)

= 10/2 (9.5)
= 5 (9.6)
= (5 − 0)+ (9.7)

This case seems to work. This works only because when and 𝑥 > 𝑦, then
𝑥 − 𝑦 < 0 and |𝑥 − 𝑦| = 𝑦 − 𝑥 > 0. Here we flex our algebraic muscles to verify
this relationship.

𝑒(𝑢) = 0 + (𝑥 − 𝑢) + |0 − (𝑥 − 𝑢)|
2 (9.8)

= 𝑥 − 𝑢 + | − (𝑥 − 𝑢)|
2 (9.9)

if 𝑥 > 𝑢 (9.10)

𝑒(𝑢) = 𝑥 − 𝑢 + 𝑥 − 𝑢
2 (9.11)

= 2𝑥 − 2𝑢
2 (9.12)

= 𝑥 − 𝑢 (9.13)
if 𝑥 ≤ 𝑢 (9.14)

𝑒(𝑢) = 0 (9.15)

We can use this analysis to program spreadsheet cells. We use the subscript
+ to economize on notation. Next we average 𝑒(𝑢) for each threshold. We
remember from somewheere, maybe an elementary statistics course, the for 𝑢
a constant that E𝑢 = 𝑢.

E 𝑒(𝑢) =
𝑁𝑢

∑
𝑖

𝜋𝑖(𝑥𝑖 − 𝑢)+ (9.16)

= 𝜋1(𝑥1 − 𝑢)+ … 𝜋𝑁𝑢
(𝑥𝑁𝑢

− 𝑢)+ (9.17)
= E𝑥 − 𝑢 (9.18)

On the other hand does the variance of 𝑒(𝑢) have anything at all to do with
𝑢?
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if 𝑥 > 𝑢 (9.19)
then (9.20)

Var 𝑒(𝑢) = E[𝑒(𝑢) − E 𝑒(𝑢)]2 (9.21)
= E[(𝑥 − 𝑢)2 + (E𝑥 − 𝑢)2 − 2(𝑥 − 𝑢)(E𝑥 − 𝑢)] (9.22)
= E[𝑥2 − 2𝑢𝑥 + 𝑢2 + (E𝑥)2 − 2𝑢E𝑥 + 𝑢2 − 2𝑥E𝑥 + 2𝑢E𝑥 − 𝑢2]

(9.23)
= E𝑥2 − (E𝑥)2 + 𝑢2 − 2𝑢E𝑥 (9.24)
= 𝜎2

𝑥 + 𝑢2 − 2𝑢𝜇𝑥 (9.25)

We can use these calculations to build probability intervals around 𝑒(𝑢) should
the desire ever percolate to the surface.

Expectations build around a number 𝑁𝑢 of non-zero 𝑒(𝑢) values. It is possible
that there are less than 𝑁 observations for which a claim 𝑥 only exceeded a
threshold 𝑢. It is very possible that given a stream of claims, a very few set
of claims which exceeds a high threshold will occur and thus we can state
another rule of the excess over threshold story that 𝑁𝑢 ≤ 𝑁 .

Here we calculate the mean excess of claims over a series of potential thresholds
𝑢.

FIGURE 9.2: Mean excess plot calculations.

We notice that there are a lot of zeros in this table. That is a direct result
from just considering only positive differences of 𝑥 − 𝑢. We use this idea to
calculate a conditional mean with the AVERAGEIF() function. We generate
the thresholds 𝑢 on an equally spaced grid. What is 𝑁𝑢? In column L after
all of the zeros we are left with 𝑁𝑢 = 3, and in column N 𝑁𝑢 = 2. We look at
Now for the plot of all of this handiwork.

The plot is a straight line until some turbulence occurs as the threshold ap-
proaches the maximum value of claims in the data. This usually indicates that
the following distribution will work well to match this data.
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FIGURE 9.3: MEP claims.

9.3 A distribution to remember
We need an observational model with these qualities:

1. It generates a regularly occuring ranges of outcomes.

2. On occasion the distribution generates very high outcomes.

3. It will be relatively easy to implement.

Well, we always hope for 3) but will get by with 1) and 2). Such a distribution
is the Generalized Pareto Distribution (GPD) built on ideas by the Italian
civil engineer, sociologist and economist Vilfredo Pareto at the turn of the last
century. The very high outcomes he observed were wealth in the hands of an
elite. For us, its just a lot of bad work days in a year, no elites are involved. The
GPD has been used in quality control for manufacturing, epidemic outbreaks,
severe weather, finance collapse, and political violence. We use it for workers
compensation claims experience

Here is the probability distribution function. There are three parameters, lo-
cation 𝜇 is a threshold of claims 𝑥, 𝜎 is the scale or dispersion of claims, 𝜉
is the shape of claims that allow thick or thin tails in the distribution. That
last quality is crucial. It marks a way to measure kurtosis in our observational
model.

𝑃𝑟(𝑥 ∣ 𝜇, 𝜎, 𝜉) = (1/𝜎)[1 + 𝜉(𝑥 − 𝜇)/𝜎]−(1+𝜉)/𝜉
+

where 𝜇 > 0 is the location parameter (a known value, the threshold), 𝜎 > 0

https://en.wikipedia.org/wiki/Generalized_Pareto_distribution
https://en.wikipedia.org/wiki/Vilfredo_Pareto
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is Again we use the short hand notation ℎ+ = max(ℎ, 0). If 𝜉 < 0, then we
are taking a root of a negative number in the square brackets. We must not!
At least not here as this will entail complex numbers, a fate we do not want
to tempt, again, at least here. If 𝜉 should wander into a negative range, then
this condition must hold true, or else, we have a singular model, and we will
get a !NUM error in Excel.3

Here we isolate the 𝑥 to get an idea of what range (mathematicians sometimes
call this a support) 𝑥 can take on before the model blows up.

1 − 𝜉(𝑥 − 𝜇)/𝜎 < 0 (9.26)
1 < 𝜉(𝑥 − 𝜇)/𝜎 < 0 (9.27)

𝜎
𝜉 + 𝜇 < 𝑥 (9.28)

𝑥 > 𝜎
𝜉 + 𝜇 (9.29)

In other words, 𝑥 definitely needs to be greater than the 𝜇 threshold. In general,
the support is 𝑥 > 𝜇 for 𝜉 > 0, and 𝜇 < 𝑥 < 𝜇−𝜎/𝜉 for 𝜉 < 0. This will be our
observational model. Such a model takes a 𝜉, 𝜎 combination as a conjecture,
for a given level of threshold 𝜇, a hypothesis as a given, a condition.

The model computes the probability that a 𝑥 occurs given this conjecture. Of
course, we conjecture many combinations of the shape and scale parameters.
Which one do we pick? The most plausible one. It turns out that the most
plausible hypothesis is the hypothesis with the highest probability of choosing
a particular hypothesis of 𝜉, 𝜎 given all of the data we have available, here 12
annual observations of claims.

How do we get to that probability? We simply find the probability that both
the data occurs, given a hypothesis, and the probability that the hypothesis
itself occurs. We calculate the probability both of the data in a model and of
the probability of the hypothesis as the product of the probabilities. This is
justly called the Law of Conditional Probability.

Pr(𝑥 ∧ (𝜎, 𝜉)) = Pr(𝑥 ∣ 𝜎, 𝜉)Pr(𝜎)Pr(𝜉)
The little wedge ∧ means and and the Pr(𝜇) = 1, means we know 𝜇 with
certainty, after all we are setting it ourselves. But that does mean there will
be some scrutiny to assure ourselves of the level of the threshold.

Yes, this a beast of a table. But while there is a lot going on here, we can start
from left to right and top to bottom. This calculation machine is our claims-
robot’s cerebral cortex in its separate grid-approximation worksheet.4 A grid
on the left has all of the conjectured 𝜉 shape and 𝜎 parameter combinations

3What distribution to choose? Taleb (2019) has a bit to say about the matter, and very
technically, and practically, so.

4Grids, and techniques to approximate functions like our GPD, are popular in many fields,

https://en.wikipedia.org/wiki/Conditional_probability
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002803
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FIGURE 9.4: A grid to approximate claims distribution plausibility.

from the grid-setup worksheet. This table is pivotable, a task we perform in
the next worksheet.

We can unpack the IF() statements in cells C6 and D6 by realizing that we
must stay at the same xi_h only while we loop through the list of sigma_hs,
otherwise move to the next xi_h. Cells C5 and D5 start the parade with the
beginning entries of the xi_h and sigma_h lists.

Cell C6 tests whether the previous D5 is the end of the sigma_h list by using
the MAX() function. If true then the INDEX(..., MATCH()) retrieves the next
xi_h, otherwise stay at the same xi_h in cell C5.

At the same time, the IF() statement in D6 tests whether or not
thesigma_hin D5 is the lastsigma_hin the list. If true, then
go back to the beginning of thesigma_h, otherwise go to the
nextsigma_h‘ in the list.

We end up With 25 nodes, that is, 5 × 5 = 25 hypotheses, in a grid. We can
then proceed to use the GPD observational model, one fit for use with location,
𝜇 is the threshold, shape, approximated by xi_h, and scale, 𝜎, approximated
by sigma_h.

Our next stop on the magical mystery tour is the mashing together of observed
data with the unobserved data of hypotheses, all 25 combinations of set 𝜇 and
approximated 𝜎 and 𝜉. These hypothetical parameters turn up in the GPD
observational model again, here for reference.

including option pricing in finance, queue measurement in operations, customer sentiment
analysis in marketing, reservoir flow in hydrological engineering, and beam stress analysis
in civil engineering. We already used grids to optimize Simone Tortiere’s pie price in our
first outing with decision models.
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𝑃𝑟(𝑥 ∣ 𝜉, 𝜎) = 1
𝜎 [1 + 𝜉 (𝑥 − 𝜇

𝜎 )]
−(1+𝜉)/𝜉

This distribution is less beastly than the Gaussian (normal) distribution, after
all it does not have 𝜋 in it! So we just drop in one of the claims observations
for 𝑥, and one of the 𝜉, 𝜎 combinations from the 25 node grid and compute.
There will be 12 × 25 = 300 such calculations, much more effectively and
efficiently performed in the spreadsheet.

For example, the probability of observing 𝑥 = 101.00 given a hypothesis that
𝜉 = 1.00 and 𝜎 = 12.00 is 0.0710, found in the first calculation cell F5 of the
table. Then we calculate the probability that the next claim occurs under the
same condition, and so one until we get to the end of the 12 claims observations.
We now have 12 probabilities that observations occur, all conditional, in this
row, on the same hypothesis 𝜉 and 𝜎.
To calculate the probability that we see both observation 1 and observation 2
and, …, observation 12, we multiply all of the probabilities together with the
PRODUCT() function. We now find the probability both of the data, Pr(𝑥 ∣
𝜉, 𝜎) and of the hypotheses, Pr(𝜉) and Pr(𝜎). the hypotheses probabilities
are in columns E and F, We assume all hypotheses are equally likely until
we happen to update our assumptions. We multiply the three probabilities
together and now we have this expression all up and down column T.

But the next column U tells the story. We take the column T joint probabilities,
sum them up to get the grand total probability both of all of the data and
all of the hypotheses. We use this grand total probability to normalize each
of the column T joint probabilities. How do we do that? In column U we
divide each cell in column T by the grand total probability. This ends up
computing the one thing we have been looking for all along, the probability
of a particular hypothesis given the data. Column U is the contribution of
each joint probability to the medley of mashing together data and conjectures
about the data.

9.4 What does it all mean, so far?
Does our grid tell us anything useful? On its own it is not in a form easy to
interpret. We have the raw Pr(𝜇, 𝜎 ∣ 𝑤𝑎𝑔𝑒𝑠) in column U. We did build a key
in columnW above. Now is the time to put it to good use. We need to calculate
the total probability of any particular 𝜇 or 𝜎. Here is the ultimate grid that
relates each hypothesized 𝜇 with each hypothesized 𝜎. The link between them
is the probability both of 𝜇 and 𝜎, that is, Pr(𝜇, 𝜎 ∣ 𝑤𝑎𝑔𝑒𝑠) in column U.

Right in the cross-hairs is the maximum joint probability of 𝜉 and 𝜎. We
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FIGURE 9.5: In the cross-hairs: variability and uncertainty.

might interpret these parameters as uncertainty and variability. In any case,
they indicate the maximum probabilities of hypotheses and the value of those
best hypotheses 𝜉 = 2 and 𝜎 = 13.5.
The marginal probability of Pr(𝜉 = 2.00) is the highest density in the I column.
We calculate it realizing that this probability must take into account any of
the ways in which 𝜉 = 12.00 interacts jointly with each of the hypothesized 𝜎’s.
The key word in the last sentence is the indefinite pronoun any. This pronoun
denotes an either-or proposition: either 𝜎 = 12 or 12.75 or, …, 15. Either-or
situations have probabilities that add up and thus the SUM() in cell I5.

Similarly the marginal probability of Pr(𝜎 = 13.5) is the highest density for the
hypthesized 𝜎s. This probability is also the sum of the either-or probabilities
of 𝜎 = 10 interacting jointly with any of the hypothesized 𝜇s. We often refer
to this calculation as integrating out, in this case, the 𝜇s for each 𝜎, and
vice-versa for integrating out the 𝜎s for each 𝜇.
Thus we end our estimation of the hypotheses which are most compatible with
the claims data. We now have the ability to simulate the claims experience in
a principled way.

9.5 The joint’s ajumpin’
We know that 𝜉 and 𝜎 are joined at the hip. The estimation table is a joint
probability table. Let’s investigate further. We will calculate the mean, vari-
ance (standard deviation), and covariance (correlation). In this way we can
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generate claims with correlated shape and scale parameters exactly in the
manner we did with waiting times using Cholesky Factorization.

In this table we first calculate the expectations of 𝑥𝑖 and 𝜎 for means, standard
deviations and covariances. These are weighted averages with probabilities and
grid outcomes ported directly from the 𝜉 × 𝜎 table. The probabilities for the
covariance calculation are the diagonal joint probabilities in that table. Since
they do not add up to one we follow our standard practice by normalizing
them using their sum.

FIGURE 9.6: Simulating Xi and sigma jointly.

Using this calculation apparatus we can then calculate the means, standard
deviations, covariance, and correlation that summarize the joint estimation
of claims shape 𝜉 and scale 𝜎. Using these parameters we can then simulate
correlated versions of 𝜉 and 𝜎 for each of 6 funding years we will forecast for
the self-insurance discussion.

We now have the parameters and the one run simulation of 𝜉 and 𝜎 values for
each of the forward years we will include in our burgeoning fund analysis. We
also set a maximum claim size to keep our model from exploding.

It turns out we can generate GPD variates with this formula for 𝜉 ≠ 0.

𝑌 = 𝜇 + 𝜎(𝑈−𝜉 − 1)
𝜉 ∼ 𝐺𝑃𝐷(𝜇, 𝜎, 𝜉 ≠ 0)

If 𝑈 is uniformly distributed on (0, 1], we can use RAND() in our spreadsheet.
Here is a revised one run simulation with simulated claims. Finally!

In fact this run looks a little like the experience of claims in the small sample.
There are several threshold level claims and a nearly 2x claim to thicken the
tails of this kurtotic distribution.
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FIGURE 9.7: Further setting up the xi and sigma simulation.

9.6 A sinking feeling?
The Vegan Workers Insurance Fund (VWIF, Fund) would be a monoline in-
surance fund Federally chartered, operating in New York State, with strategic
partners chartered in Bermuda. The fund would specialize in vegan food indus-
try worker compensation risk. As an insurance fund it considers the matching
of claims exposures with investments needed to fund claims over a several year
period. Premiums charged will depend on the riskiness of the funding, and the
variability and size of claims over time. In this way the Fund operates similarly
to any sinking fund where cash flow obligations occurring over several time
periods must be met with a slate of investment returns.

As a first step, Fund investment analysts would propose a slate of potential
funding opportunities while claims analysts determine potential exposures
over time. The slate of potential investments reflect the monthly timing of
expected cash flow in along with annual annual returns. At the same time,
claims are cash flows determined by analysis of various risk drivers and expo-
sures. Our model takes the more naive approach to jump-start the analysis of
claims using the GPD to model exposures.

The fund would have a 7 year mandate to meet claims. A 7th year is required
to manage overlaps in coverage among participants and restart the investment
allocations. Here is the expected claims schedule based on data collected from
a small sample of vegan establishments and projected for years 2 to 6. The
first year is the funding period for this tranche of exposures.

The main constraint is to have investment surplus from proceeds equal
claims requirements. The calculation of investment surplus 𝑆𝑡 for each year
𝑡 = 2, … , 7. A return 𝑟𝑖𝑡 from investment 𝑖 at year 𝑡 accrues according to the
schedule of years of cash flow for each investment. These abstractions become
a bit clearer in this next panel.
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FIGURE 9.8: A model to design a monoline insurance fund.

Our objective is to minimize the front-end investment in year 1. In calculating
premia for each policy-holder we can levelize payments according to the capital
needed by year. This process is not shown here and would be quite a good
exercise. For now we content ourselves with understanding this version of a
funding model. In this model we add all of the investments that start with
year 1 using the SUMIF() function.

We choose levels of capital to invest in each of the A, B, C, D funds. These
funds have starting and ending years. Each then earns a different time-based
return. We flow a $1 dollar (-1) in a starting year across the holding period of
the fund to earn at the end of the holding period the invested capital $1 plus
a return. The nested IF() statements establish these flows successfully. They
only took a few fevered hours to concoct!

The constraints for each year calculate the investment surplus (insurance-
speak for dollar returns) by summing up the products of the one plus returns
and the amount of capital investment by fund. Investment surplus must equal
claims. Claims in turn are the simulated claims from much previous and labori-
ous analysis. To calculate investment surplus we multiply the amount invested
with the return in each investment return year from years 2 through 7. This
effort requires the use of the SUMPRODUCT() function.

The right-hand side (the bottom here) is the projected claims experience from
the simulation of claims in another worksheet. Because Solver badly interacts
(as would any interative algorithm!) with volatile functions like OFFSET() and
RAND() we must cut and paste special with values the projection into the
claims constraint. Failure to do this will result in Solver errors like non-linear
or binary constraints detected, when there aren’t any in the model.5

5Solver linear programming uses a modified simplex algorithm, along with a genereralized
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We build several headers and data transpositions for input into the fund-sim
worksheet all starting at row 28. Two buttons adorn this model. One executes
a single run of the model, the other 100 runs of the model. Here is the Visual
Basic for Applications script for one run of Solver.

FIGURE 9.9: On run of the monoline fund design.

We record the key strokes in this macro by turning on the Record Macro
feature in the Developer ribbon. The copy of the selection in the xi-sigma-sim
worksheet can be optimized simply by naming the range. But it is instructive
to see how Excel seems as if to think about all of the steps needed for a
selection of a range. The paste utility works on a selection of the first cell,
H20, in the fund-allocation sheet. The script will always need to have some
way of identifying in which sheet a range resides. We can now invoke Solver
and its settings. We can also add and delete constraints as well. All of this
points to the way we often need to build VBA scripts: first and foremost just
record key strokes, and second, review and revise the script as needed.

9.7 Simuluate and stimulate
We accomplish multiple runs, with storage, of the funding simulation itself
through this subroutine. We simulate several runs, 100 here, of the fund-
allocation model in a separate spreadsheet. Because we need to automate
the manual cut and copy paste special with values claims projections from

reduced gradient and genetic algorithms, all of which iterate to an approximation solution.
The routines expect a stable numerical input, one that does not change with spreadsheet
recalculations. Even if we set recalculation to manual, Solver will still react to underlying
changes and produce the error.
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the claims simulation into the fund allocation constraints, we must resort to
VBA.

FIGURE 9.10: A modified simulation automated flow.

Here is a snapshot of the simulator itself in its own worksheet.

We generated quite a bit of data here! We named the range B4:T4 interface
and the range header B5:T6 as simulation. The Offset() function in VBA
will advance the row from 0 to the value of iRun to record each run’s worth of
results from the fund allocation model. We will additionally name the ranges
of the header and data to perform the analysis for which we have all been
not so patiently waiting.

To see the sausage being made in the fund-simulation worksheet we could
place a ′ single quote in front of the Application.ScreenUpdating = False line
in the VBA code to comment this instruction out. We should have a beverage
on hand for the viewing, or perhaps popcorn, as this action will take even
more precious time away from other activities in the busy analyst’s life.

Each run can takes up to 20 seconds or 3 runs per minute depending on
available CPU availability and thus we only perform 100 runs where, perhaps,
10,000 might be preferable by some analysts. On a Lenovo IdeaPad from the
factory, 10,000 runs could take up to 2.5 hours. A GPU multi-core processor
would run such routines nearly in the blink of an eye.
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9.8 Finally, exhaustively, where are the results?
With all of that derived data we generate, we owe ourselves results. We name
each column of simulated data with the cell at the head of the vectors of length
100 we generated. We then reuse the 21 interval (yet another grid!) frequency
analysis from the waiting time analysis.

First, here is the grid setup for the frequency table, along with a summary of
the simulated data. We build a list box from the data validation feature in
the Data ribbon to facilitate choices of variable to analyze. We show here the
year 1 capital required to meet simulated claims.

FIGURE 9.11: EDA for the claims simulation.

We cannot help but notice the whopping 14+ kurtosis. The volatility of volatil-
ity of simulated capital requirement is impressively large, as advertised by the
GPD approach to tails.

Next, the table of frequencies of occurrence of capital values across 21 intervals.
From these counts we calculate relative and cumulative relative freuqencies.
For comparison purposes we also compute the estimated GPD probability
distribution function (from the mass function) and cumulative probability
functions.
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Last, and most importantly we have a plot.

Estimated are not exactly, but only generally following the simulation. We
might call sampling error here, as we only simulated 100 variations of potential
future decisions. We do have the characteristic GPD shape and scale inside
gamma distributed exponential rates. What does it all mean? We have a
highly variable capital requirement further necessitating risk management for
extreme claims experience. An insurance analyst might remark that we need
an excess of loss reinsurance treaty along with our general insurance coverage.
Then there is the preventive maintenance and capital to support safer and
healthier worker conditions to consider.

https://www.investopedia.com/terms/t/treaty-reinsurance.asp#:~:text=Treaty%20reinsurance%20is%20insurance%20purchased%20by%20an%20insurance,of%20the%20three%20main%20types%20of%20reinsurance%20contracts.
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Case: Forecasting Workers Compensation
Claims

10.1 Some background
Make-A-Pie CEO and owner Simone Tortiere helped organize a group of like-
minded owners of vegan food providers. Many of the vegan businesses are New
York State Insurance Fund workers compenations policy-holders. For exam-
ple, if a covered worker falls, has extended health issues, the fund will cover
expenses for a specific time frame, using specified drug and other therapy
treatments, all under the direction of NYSIF medical associates. Premiums
will undoubtedly rise with more claims experience. Safety Group plans, while
paying dividends to policy-holders with relatively low claims experiences, often
groups all food-related workers into one class. This may, or may not, disad-
vantage the vegan food industry. The owners seek an alternative solution, at
least to get a baseline view of the expense and exposure they face altogether.

10.2 The ask
The group decides on this course of action.

• Gather workers compensation claims experience across the group

• Attempt to model future claims to understand the range and shape of the
distribution of claims, all based on existing claims experience

• Use the future claims model to simulate a self-insurance portfolio

All of this is a very tall order for experts in vegan food production and service.
Tortiere has already talked to us about the issues. She recommends that our
analytics service can at least start to structure the group’s next conversation
in a month with some provisional results.

129
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10.3 Some requirements
The ask only includes the simulation of potential claims experience, not to
simulate the self-insurance fund itself. Tortiere’s colleagues offer some new
data arrives for several years of workers compensation claims experience.

1. Explore the data using summaries, Tukey’s
fences, and a time series plot. Observe possible thresholds.

2. Perform a mean excess of threshold plot. Identify possible threshold
candidates. Be able to communicate the need for such an analysis
to a decision maker.

3. Propose an appropriate distributional model that respects the thick
tail nature of this data, including the threshold, scale, and shape of
the distribution. Discuss its relevance and parameterization. Make
a plot of the proposal.

4. Use a grid to approximate the joint probability of conjectured pa-
rameters and claims data of the proposed distribution.

5. Calculate summary statistics of the conjectured parameters includ-
ing mean, standard deviation, and correlation using the distribution
of conjectured parameters. Use these statistics to generate 12 years
of correlated parameter values.

6. Simulate 10,000 runs of 12 years each run of claims data.

7. Analyze the sensitivity of anticipated claims using a plot of claims
relative and cumulative relative frequency of occurrence in the simu-
lation, along with a data summary including quantiles, mean, stan-
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dard deviation, skewness, and kurtosis. Discuss the impact of these
graphical and tabular results on projected claims experience.





Part 4 – Optimal Decision
Simulation

Putting together

• Spreadsheet engineering practice

• Native Excel functions

• Probabilistic simulation on a grid

• Multi-variable optimization by simplex algorithm

• Plotting to communicate with a simple dashboard
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Vegan Workers Insurance Fund: case and notes

11.1 Tales of tails
Let’s set the scene. Make-a-Pie CEO and owner Simone Tortiere meets regu-
larly with other vegan food company owners. This month their agenda covers
the rising incidence of and cost of covering workers compensation claims. A
claim arises when a worker, on the job, becomes disabled for any reason. The
New York State Insurance Fund (NYSIF) offers several plans and products to
employer policy-holders. The vegan company owners around the table at host
Candle Cafe try to get a handle on claims, rejection of claims, required drug
formularies and treatment codes, increasing cost of disability, loss of key per-
sonnel, among other things. The COVID-19 pandemic alone has raised costs
of production and service by over 30%. Workers comp claims have kept pace
with this rise.

Many of the vegan businesses are NYSIF policy-holders. For example, if a
covered worker falls, has extended health issues, the fund will cover expenses
for a specific time frame, using specified drug and other therapy treatments, all
under the direction of NYSIF medical associates. Premiums will undoubtedly
rise with more claims experience. Safety Group plans, while paying dividends
to policy-holders with relatively low claims experiences, often groups all food-
related workers into one class. This may, or may not, disadvantage the vegan
food industry.

The group decides on this course of action.

• Gather workers compensation claims experience across the group

• Attempt to model future claims to understand the range and shape of the
distribution of claims, all based on existing claims experience

• Use the future claims model to simulate a self-insurance portfolio

• Suggest and implement two scenarios to sensitize the group to alternative
approaches to funding

All of this is a very tall order for experts in vegan food production and service.
Tortiere has already talked to her Bronx consultants Rose Mascetti and Marie
Ortiz (Mascetti-Ortiz Analytics) about the issues. They have already provided
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https://ww3.nysif.com/Home/Employer/LookingForInsurance/NYSIFInsurancePlans
http://www.candle79.com/
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valuable advice and plans for production, pricing, and strategies for expansion
of the business. Tortiere recommends to her colleagues that Mascetti-Ortiz
Analytics service can at least start to structure the group’s next conversation
in a month with some provisional results. The vegan food employers annoint
a sub-committee to commission the work. They call themselves the Vegan
Workers Group.

11.2 It always starts with data
We work with Rose and Marie on their analytics team. Does the analysis al-
ways start with data? Not really, because we actually begin with Tortiere’s
question: can we insure ourselves and be better off? To help answer this ques-
tion we begin our analysis by gathering 12 years of annual workers claim
experience from several of the vegan establishments.

FIGURE 11.1: The new claims data.

This is only a small sample of owners experience, all in hundreds of thousands
of dollars. We visualize the times series.

Two patterns emerge. There seems to be a base-line of claims experiences. But
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FIGURE 11.2: EDA for claims - again.

there are several very large experiences as well. We ask is there some sort of
threshold that splits the analysis of claims experience?

We know from our business analytics experience that a well-known exploratory
technique exists to examine the behavior of data, especially extreme values
in this claims data. We see that Tukey (1977)’s outlier fences detect outliers
above a threshold claims level of $529,000. Another technique develops an
excess of high threshold series. We generate a series of possible thresholds 𝜇.
Then we sort the claims from lowest to highest. For each threshold and claim
𝑥 we calculate the excess of threshold metric.

We use this tool to evaluate the threshold metric 𝜇.

max(𝑥, 𝑦) = 𝑥 + 𝑦 + |𝑥 − 𝑦|
2

We have some interns from a local Lasallian college. To help them understand
the analysis we frequently use simplified examples. Let’s try this tool out with
𝑥 = 0 and 𝑦 = 5. We remember that we are trying to measure claims 5 in
excess of a threshold of 0.
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𝑒(𝜇) = max(0, 𝑥 − 𝑢) (11.1)

= 𝑥 + 𝑦 + |𝑥 − 𝑦|
2 (11.2)

= 0 + 5 + |0 − 5|
2 (11.3)

= 5 + 5
2 (11.4)

= 10/2 (11.5)
= 5 (11.6)
= (5 − 0)+ (11.7)

This case seems to work. This works only because when and 𝑥 > 𝑦, then
𝑥 − 𝑦 < 0 and |𝑥 − 𝑦| = 𝑦 − 𝑥 > 0. Here we flex our algebraic muscles to verify
this relationship.

𝑒(𝜇) = 0 + (𝑥 − 𝜇) + |0 − (𝑥 − 𝜇)|
2 (11.8)

= 𝑥 − 𝜇 + | − (𝑥 − 𝜇)|
2 (11.9)

if 𝑥 > 𝜇 (11.10)

𝑒(𝜇) = 𝑥 − 𝜇 + 𝑥 − 𝜇
2 (11.11)

= 2𝑥 − 2𝜇
2 (11.12)

= 𝑥 − 𝜇 (11.13)
if 𝑥 ≤ 𝜇 (11.14)

𝑒(𝜇) = 0 (11.15)

We can use this analysis to program spreadsheet cells. We use the subscript
+ to economize on notation. Next we average 𝑒(𝜇) for each threshold. We
remember from somewhere, maybe an elementary statistics course, the for 𝑢
a constant that E𝜇 = 𝜇.

E 𝑒(𝜇) =
𝑁𝜇

∑
𝑖

𝜋𝑖(𝑥𝑖 − 𝜇)+ (11.16)

= 𝜋1(𝑥1 − 𝜇)+ … 𝜋𝑁𝜇
(𝑥𝑁𝜇

− 𝜇)+ (11.17)
= E𝑥 − 𝜇 (11.18)
= 𝜇𝑥 − 𝜇 (11.19)

We must remember not to confuse the 𝜇 which is the threshold, and the
expectation of an outcome (here claims) 𝑥 which is 𝜇𝑥. On the other hand
does the variance of 𝑒(𝜇) have anything at all to do with 𝜇?
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First, if 𝑥 > 𝜇, then,
Var 𝑒(𝜇) = E[𝑒(𝜇) − E 𝑒(𝜇)]2 (11.20)

= E[(𝑥 − 𝜇)2 + (E𝑥 − 𝜇)2 − 2(𝑥 − 𝜇)(E𝑥 − 𝜇)] (11.21)
= E[𝑥2 − 2𝜇 𝑥 + 𝜇2 + (E𝑥)2 − 2𝑢E𝑥 + 𝑢2 − 2𝑥E𝑥 + 2𝜇E𝑥 − 𝜇2]

(11.22)
= E𝑥2 − (E𝑥)2 + 𝜇2 − 2𝜇E𝑥 (11.23)
= 𝜎2

𝑥 + 𝜇2 − 2𝜇𝜇𝑥 (11.24)

We can use these calculations to build probability intervals around 𝑒(𝜇) should
the desire ever percolate to the surface.

Expectations build around a number 𝑁𝑢 of non-zero 𝑒(𝜇) values. It is possible
that there are less than 𝑁 observations for which a claim 𝑥 only exceeded a
threshold 𝑢. It is very possible that given a stream of claims, a very few set
of claims which exceeds a high threshold will occur and thus we can state
another rule of the excess over threshold story that 𝑁𝑢 ≤ 𝑁 .

Here we calculate the mean excess of claims over a series of potential thresholds
𝑢.

FIGURE 11.3: MEP for claims - again.

Wenotice that there are a lot of zeros in this table. That is a direct result
from just considering only positive differences 𝑥 − 𝑢. We use this idea to
calculate a conditional mean with the AVERAGEIF() function. We generate
the thresholds 𝑢 on an equally spaced grid. What is 𝑁𝑢? In column L after
all of the zeros we are left with 𝑁𝑢 = 3, and in column N 𝑁𝑢 = 2. We look at
Now for the plot of all of this handiwork.

The plot is a straight line until some turbulence occurs as the threshold ap-
proaches the maximum value of claims in the data. This usually indicates that
the following distribution will work well to match this data.
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FIGURE 11.4: MEP for claims- the eplot this time - again.

11.3 A distribution to remember
We need an observational model with these qualities:

1. It generates a regularly occuring ranges of outcomes.

2. On occasion the distribution generates very high outcomes.

3. It will be relatively easy to implement.

Well, we always hope for 3) but will get by with 1) and 2). Such a distribution
is the Generalized Pareto Distribution (GPD) built on ideas by the Italian
civil engineer, sociologist and economist Vilfredo Pareto at the turn of the last
century. The very high outcomes he observed were wealth in the hands of an
elite. For us, its just a lot of bad work days in a year, no elites are involved. The
GPD has been used in quality control for manufacturing, epidemic outbreaks,
severe weather, finance collapse, and political violence. We use it for workers
compensation claims experience

Here is the probability distribution function. There are three parameters, lo-
cation 𝜇 is a threshold of claims 𝑥, 𝜎 is the scale or dispersion of claims, 𝜉
is the shape of claims that allow thick or thin tails in the distribution. That
last quality is crucial. It marks a way to measure kurtosis in our observational
model.

𝑃𝑟(𝑥 ∣ 𝜇, 𝜎, 𝜉) = (1/𝜎)[1 + 𝜉(𝑥 − 𝜇)/𝜎]−(1+𝜉)/𝜉
+

where 𝜇 > 0 is the location parameter (a known value, the threshold), 𝜎 > 0

https://en.wikipedia.org/wiki/Generalized_Pareto_distribution
https://en.wikipedia.org/wiki/Vilfredo_Pareto
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is Again we use the short hand notation ℎ+ = max(ℎ, 0). If 𝜉 < 0, then we
are taking a root of a negative number in the square brackets. We must not!
At least not here as this will entail complex numbers, a fate we do not want
to tempt, again, at least here. If 𝜉 should wander into a negative range, then
this condition must hold true, or else, we have a singular model, and we will
get a !NUM error in Excel.1

Here we isolate the 𝑥 to get an idea of what range (mathematicians sometimes
call this a support) 𝑥 can take on before the model blows up.

1 − 𝜉(𝑥 − 𝜇)/𝜎 < 0 (11.25)
1 < 𝜉(𝑥 − 𝜇)/𝜎 < 0 (11.26)

𝜎
𝜉 + 𝜇 < 𝑥 (11.27)

𝑥 > 𝜎
𝜉 + 𝜇 (11.28)

In other words, 𝑥 definitely needs to be greater than the 𝜇 threshold. In general,
the support is 𝑥 > 𝜇 for 𝜉 > 0, and 𝜇 < 𝑥 < 𝜇−𝜎/𝜉 for 𝜉 < 0. This will be our
observational model. Such a model takes a 𝜉, 𝜎 combination as a conjecture,
for a given level of threshold 𝜇, a hypothesis as a given, a condition.

The model computes the probability that a 𝑥 occurs given this conjecture. Of
course, we conjecture many combinations of the shape and scale parameters.
Which one do we pick? The most plausible one. It turns out that the most
plausible hypothesis is the hypothesis with the highest probability of choosing
a particular hypothesis of 𝜉, 𝜎 given all of the data we have available, here 12
annual observations of claims.

How do we get to that probability? We simply find the probability that both
the data occurs, given a hypothesis, and the probability that the hypothesis
itself occurs. We calculate the probability both of the data in a model and of
the probability of the hypothesis as the product of the probabilities. This is
justly called the Law of Conditional Probability.

Pr(𝑥 ∧ (𝜎, 𝜉)) = Pr(𝑥 ∣ 𝜎, 𝜉)Pr(𝜎)Pr(𝜉)

The little wedge ∧ means and and the Pr(𝜇) = 1, means we know 𝜇 with
certainty, after all we are setting it ourselves. But that does mean there will
be some scrutiny to assure ourselves of the level of the threshold.

Yes, this a beast of a table. But while there is a lot going on here, we can start

1What distribution to choose? Taleb (2019) has a bit to say about the matter, and
very technically, and practically, so as we thought about before. Here we will continue to
work our way through a very thick tailed distribution. An interesting comparison presents
itself: how would the thick-tailed approach compare with the conventional approach. The
so-called conventional approach is, of course, to use a distribution which converges to a
central location, namely a mean-reverting Gaussian distribution.

https://en.wikipedia.org/wiki/Conditional_probability
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FIGURE 11.5: Xi and sigma grid approximation.

from left to right and top to bottom. This calculation machine is our claims-
robot’s cerebral cortex in its separate grid-approximation worksheet.2 A grid
on the left has all of the conjectured 𝜉 shape and 𝜎 parameter combinations
from the grid-setup worksheet. This table is pivotable, a task we perform in
the next worksheet.

We can unpack the IF() statements in cells C6 and D6 by realizing that we
must stay at the same xi_h only while we loop through the list of sigma_hs,
otherwise move to the next xi_h. Cells C5 and D5 start the parade with the
beginning entries of the xi_h and sigma_h lists.

Cell C6 tests whether the previous D5 is the end of the sigma_h list by using
the MAX() function. If true then the INDEX(..., MATCH()) retrieves the next
xi_h, otherwise stay at the same xi_h in cell C5.

At the same time, the IF() statement in D6 tests whether or not
thesigma_hin D5 is the lastsigma_hin the list. If true, then
go back to the beginning of thesigma_h, otherwise go to the
nextsigma_h‘ in the list.

We end up With 25 nodes, that is, 5 × 5 = 25 hypotheses, in a grid. We can
then proceed to use the GPD observational model, one fit for use with location,
𝜇 is the threshold, shape, approximated by xi_h, and scale, 𝜎, approximated
by sigma_h.

Our next stop on the magical mystery tour is the mashing together of observed

2Grids, and techniques to approximate functions like our GPD, are popular in many fields,
including option pricing in finance, queue measurement in operations, customer sentiment
analysis in marketing, reservoir flow in hydrological engineering, and beam stress analysis
in civil engineering. We already used grids to optimize Simone Tortiere’s pie price in our
first outing with decision models.

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002803
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data with the unobserved data of hypotheses, all 25 combinations of set 𝜇 and
approximated 𝜎 and 𝜉. These hypothetical parameters turn up in the GPD
observational model again, here for reference.

𝑃𝑟(𝑥 ∣ 𝜉, 𝜎) = 1
𝜎 [1 + 𝜉 (𝑥 − 𝜇

𝜎 )]
−(1+𝜉)/𝜉

This distribution is less beastly than the Gaussian (normal) distribution, after
all it does not have 𝜋 in it! So we just drop in one of the claims observations
for 𝑥, and one of the 𝜉, 𝜎 combinations from the 25 node grid and compute.
There will be 12 × 25 = 300 such calculations, much more effectively and
efficiently performed in the spreadsheet.

For example, the probability of observing 𝑥 = 101.00 given a hypothesis that
𝜉 = 1.00 and 𝜎 = 12.00 is 0.0710, found in the first calculation cell F5 of the
table. Then we calculate the probability that the next claim occurs under the
same condition, and so one until we get to the end of the 12 claims observations.
We now have 12 probabilities that observations occur, all conditional, in this
row, on the same hypothesis 𝜉 and 𝜎.
To calculate the probability that we see both observation 1 and observation 2
and, …, observation 12, we multiply all of the probabilities together with the
PRODUCT() function. We now find the probability both of the data, Pr(𝑥 ∣
𝜉, 𝜎) and of the hypotheses, Pr(𝜉) and Pr(𝜎). the hypotheses probabilities
are in columns E and F, We assume all hypotheses are equally likely until
we happen to update our assumptions. We multiply the three probabilities
together and now we have this expression all up and down column T.

But the next column U tells the story. We take the column T joint probabilities,
sum them up to get the grand total probability both of all of the data and
all of the hypotheses. We use this grand total probability to normalize each
of the column T joint probabilities. How do we do that? In column U we
divide each cell in column T by the grand total probability. This ends up
computing the one thing we have been looking for all along, the probability
of a particular hypothesis given the data. Column U is the contribution of
each joint probability to the medley of mashing together data and conjectures
about the data.

11.4 What does it all mean, so far?
Does our grid tell us anything useful? On its own it is not in a form easy to
interpret. We have the raw Pr(𝜇, 𝜎 ∣ 𝑤𝑎𝑔𝑒𝑠) in column U. We did build a key
in columnW above. Now is the time to put it to good use. We need to calculate
the total probability of any particular 𝜇 or 𝜎. Here is the ultimate grid that
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relates each hypothesized 𝜇 with each hypothesized 𝜎. The link between them
is the probability both of 𝜇 and 𝜎, that is, Pr(𝜇, 𝜎 ∣ 𝑤𝑎𝑔𝑒𝑠) in column U.

FIGURE 11.6: Xi x sigma joint distribution and optimal values.

Right in the cross-hairs is the maximum joint probability of 𝜉 and 𝜎. These
indicate the maximum probabilities of hypotheses and the value of those best
hypotheses 𝜉 = 2 and 𝜎 = 13.5.
The marginal probability of Pr(𝜉 = 2.00) is the highest density in the I column.
We calculate it realizing that this probability must take into account any of
the ways in which 𝜉 = 12.00 interacts jointly with each of the hypothesized 𝜎’s.
The key word in the last sentence is the indefinite pronoun any. This pronoun
denotes an either-or proposition: either 𝜎 = 12 or 12.75 or, …, 15. Either-or
situations have probabilities that add up and thus the SUM() in cell I5.

Similarly the marginal probability of Pr(𝜎 = 13.5) is the highest density for the
hypthesized 𝜎s. This probability is also the sum of the either-or probabilities
of 𝜎 = 10 interacting jointly with any of the hypothesized 𝜇s. We often refer
to this calculation as integrating out, in this case, the 𝜇s for each 𝜎, and
vice-versa for integrating out the 𝜎s for each 𝜇.
Thus we end our estimation of the hypotheses which are most compatible with
the claims data. We now have the ability to simulate the claims experience in
a principled way.
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11.5 The joint continues to jump
We reprise the forecasting work we already developed for claims experience.
The estimation table is a joint probability table. Let’s investigate further. We
will calculate the mean, variance (standard deviation), and covariance (corre-
lation). In this way we can generate claims with correlated shape and scale
parameters exactly in the manner we did with waiting times using Cholesky
Factorization.

In this table we first calculate the expectations of 𝑥𝑖 and 𝜎 for means, standard
deviations and covariances. These are weighted averages with probabilities and
grid outcomes ported directly from the 𝜉 × 𝜎 table. The probabilities for the
covariance calculation are the diagonal joint probabilities in that table. Since
they do not add up to one we follow our standard practice by normalizing
them using their sum.

FIGURE 11.7: Begins the xi-sigma simulation.

Using this calculation apparatus we can then calculate the means, standard
deviations, covariance, and correlation that summarize the joint estimation
of claims shape 𝜉 and scale 𝜎. Using these parameters we can then simulate
correlated versions of 𝜉 and 𝜎 for each of 6 funding years we will forecast for
the self-insurance discussion.

We now have the parameters and the one run simulation of 𝜉 and 𝜎 values for
each of the forward years we will include in our burgeoning fund analysis. We
also set a maximum claim size to keep our model from exploding.

It turns out we can generate GPD variates with this formula for 𝜉 ≠ 0.

𝑌 = 𝜇 + 𝜎(𝑈−𝜉 − 1)
𝜉 ∼ 𝐺𝑃𝐷(𝜇, 𝜎, 𝜉 ≠ 0)
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If 𝑈 is uniformly distributed on (0, 1], we can use RAND() in our spreadsheet.
Here is a revised one run simulation with simulated claims. Finally!

FIGURE 11.8: sampling xi and sigma to generate a single claims forecast.

In fact this run looks a little like the experience of claims in the small sample.
There are several threshold level claims and a nearly 2x claim to thicken the
tails of this kurtotic distribution.

11.6 A sinking feeling?
The Vegan Workers Insurance Fund (VWIF, Fund) would be a monoline in-
surance fund Federally chartered, operating in New York State, with strategic
partners chartered in Bermuda. The fund would specialize in vegan food indus-
try worker compensation risk. As an insurance fund it considers the matching
of claims exposures with investments needed to fund claims over a several year
period. Premiums charged will depend on the riskiness of the funding, and the
variability and size of claims over time. In this way the Fund operates similarly
to any sinking fund where cash flow obligations occurring over several time
periods must be met with a slate of investment returns.

As a first step, Fund investment analysts would propose a slate of potential
funding opportunities while claims analysts determine potential exposures
over time. The slate of potential investments reflect the monthly timing of
expected cash flow in along with annual annual returns. At the same time,
claims are cash flows determined by analysis of various risk drivers and expo-
sures. Our model takes the more naive approach to jump-start the analysis of
claims using the GPD to model exposures.

The fund would have a 7 year mandate to meet claims. A 7th year is required
to manage overlaps in coverage among participants and restart the investment
allocations. Here is the expected claims schedule based on data collected from
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a small sample of vegan establishments and projected for years 2 to 6. The
first year is the funding period for this tranche of exposures.

The main constraint is to have investment surplus from proceeds equal
claims requirements. The calculation of investment surplus 𝑆𝑡 for each year
𝑡 = 2, … , 7. A return 𝑟𝑖𝑡 from investment 𝑖 at year 𝑡 accrues according to the
schedule of years of cash flow for each investment. These abstractions become
a bit clearer in this next panel. Here we repurpose a linear programming model
proposed by ? (p. 94) to match cash flow requirements with funding.

FIGURE 11.9: Claims forecast as input to the monoline design.

Our objective is to minimize the front-end investment in year 1. In calculating
premia for each policy-holder we can levelize payments according to the capital
needed by year. This process is not shown here and would be quite a good
exercise. For now we content ourselves with understanding this version of a
funding model. In this model we add all of the investments that start with
year 1 using the SUMIF() function.

We choose levels of capital to invest in each of the A, B, C, D funds. These
funds have starting and ending years. Each then earns a different time-based
return. We flow a $1 dollar (-1) in a starting year across the holding period of
the fund to earn at the end of the holding period the invested capital $1 plus
a return. The nested IF() statements establish these flows successfully. They
only took a few fevered hours to concoct!

The constraints for each year calculate the investment surplus (insurance-
speak for dollar returns) by summing up the products of the one plus returns
and the amount of capital investment by fund. Investment surplus must equal
claims. Claims in turn are the simulated claims from much previous and labori-
ous analysis. To calculate investment surplus we multiply the amount invested
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with the return in each investment return year from years 2 through 7. This
effort requires the use of the SUMPRODUCT() function.

The right-hand side (the bottom here) is the projected claims experience from
the simulation of claims in another worksheet. Because Solver badly interacts
(as would any interative algorithm!) with volatile functions like OFFSET() and
RAND() we must cut and paste special with values the projection into the
claims constraint. Failure to do this will result in Solver errors like non-linear
or binary constraints detected, when there aren’t any in the model.3

We build several headers and data transpositions for input into the fund-sim
worksheet all starting at row 28. Two buttons adorn this model. One executes
a single run of the model, the other 100 runs of the model. Here is the Visual
Basic for Applications script for one run of Solver.

FIGURE 11.10: A dry run of fund design.

We record the key strokes in this macro by turning on the Record Macro
feature in the Developer ribbon. The copy of the selection in the xi-sigma-sim
worksheet can be optimized simply by naming the range. But it is instructive
to see how Excel seems as if to think about all of the steps needed for a
selection of a range. The paste utility works on a selection of the first cell,
H20, in the fund-allocation sheet. The script will always need to have some
way of identifying in which sheet a range resides. We can now invoke Solver
and its settings. We can also add and delete constraints as well. All of this
points to the way we often need to build VBA scripts: first and foremost just
record key strokes, and second, review and revise the script as needed.

3The Solver linear programming add-in uses a modified simplex algorithm, along with
genereralized reduced gradient and genetic algorithms, all of which iterate to an approxima-
tion solution. The routines expect a stable numerical input, one that does not change with
spreadsheet recalculations. Even if we set recalculation to manual, Solver will still react to
underlying changes and produce an error.
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11.7 Simuluate and stimulate
We accomplish multiple runs, with storage, of the funding simulation itself
through this subroutine. We simulate several runs, just 100 here to get an idea
of the direction of computation, of the fund-allocation model in a separate
spreadsheet. Because we need to automate the manual cut and copy paste
special with values claims projections from the claims simulation into the
fund allocation constraints, we must resort to VBA.

FIGURE 11.11: Automating the simulation work flow for fund design.

Here is a snapshot of the simulator itself in its own worksheet.

FIGURE 11.12: Alas! The simulation of so many fund designs.

We generated quite a bit of data here! We named the range B4:T4 interface
and the range header B5:T6 as simulation. The Offset() function in VBA
will advance the row from 0 to the value of iRun to record each run’s worth of
results from the fund allocation model. We will additionally name the ranges
of the header and data to perform the analysis for which we have all been not
so patiently waiting.

To see the (vegan) sausage being made in the fund-simulation worksheet we
could place a ′ single quote in front of the Application.ScreenUpdating =
False line in the VBA code to comment this instruction out. We should have
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a beverage on hand for the viewing, or perhaps popcorn as needed, as this
action will take even more precious time away from other activities in the busy
analyst’s life.

Each run can takes up to 20 seconds or 3 runs per minute depending on
available CPU availability and thus we only perform 100 runs where, perhaps,
10,000 might be preferable by some analysts. On a Lenovo IdeaPad from the
factory, 10,000 runs could take up to 2.5 hours. A GPU multi-core processor
would run such routines nearly in the blink of an eye.

11.8 Finally, exhaustively, where are the results?
With all of that derived data we generate, we owe ourselves results. We name
each column of simulated data with the cell at the head of the vectors of length
100 we generated. We then reuse the 21 interval (yet another grid!) frequency
analysis from the waiting time analysis.

First, here is the grid setup for the frequency table, along with a summary of
the simulated data. We build a list box from the data validation feature in
the Data ribbon to facilitate choices of variable to analyze. We show here the
year 1 capital required to meet simulated claims.

We cannot help but notice the whopping 14+ kurtosis. The volatility of volatil-
ity of simulated capital requirement is impressively large, as advertised by the
GPD approach to tails.

Next, the table of frequencies of occurrence of capital values across 21 intervals.
From these counts we calculate relative and cumulative relative freuqencies.
For comparison purposes we also compute the estimated GPD probability
distribution function (from the mass function) and cumulative probability
functions.

Last, and most importantly we have a plot.

Estimated first year capital levels, again using the SUMIF() function, are not
exactly, but only generally following the simulation. We might call this an ex-
ample of sampling error here, as we only simulated 100 variations of potential
future decisions, just as Stanislaw Ulam did in simulating hands of solitaire.
We do have the characteristic GPD shape and scale inside gamma distributed
exponential rates. What does it all mean? We have a highly variable capital
requirement further necessitating risk management for extreme claims expe-
rience. An insurance analyst might remark that we need an excess of loss
reinsurance treaty along with our general insurance coverage. Then there is
the preventive maintenance and capital to support safer and healthier worker
conditions to consider.

https://www.investopedia.com/terms/t/treaty-reinsurance.asp#:~:text=Treaty%20reinsurance%20is%20insurance%20purchased%20by%20an%20insurance,of%20the%20three%20main%20types%20of%20reinsurance%20contracts.
https://www.investopedia.com/terms/t/treaty-reinsurance.asp#:~:text=Treaty%20reinsurance%20is%20insurance%20purchased%20by%20an%20insurance,of%20the%20three%20main%20types%20of%20reinsurance%20contracts.
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FIGURE 11.13: Making some initial sense of the simulations.

11.9 Another scenario emerges
Some of the members of the Vegan Workers Group wonder, and so do we,
if the funding tenors matter. A funding tenor is the length of time between
investment and return. Some of the tenors are short-term, such as the A fund.
Others, like the D fund are longer term. What if we constrained funding to
only short term tenors and use just the A fund? We can then compare the
all-in (A through D) scenario with the short-term financing (only one year
terms) scenario. Then we might at least have a true decision alternative.

One tack we might take is to set all but the one year funding vehicles to start
and end with year 8. This will allow the model effectively to set these funds to
zero. Another way way we could use is to set the decision cells equal to zero
in the solver formulation. Here is a snapshot of the first approach.

The main advantage of this approach is that we can create constraints without
reprogramming the solver model. The three-nested IF() statements do all of
the work to detail the investment program over the life of claims.

We then run the model once to have this solution.
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FIGURE 11.14: Setting up a more useful plot.

FIGURE 11.15: Trying another fund design scenario for comparison and
sensitivity.
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FIGURE 11.16: Short-run funding vehicle scenario sample run.

At last we can run the short-term funding scenario 100 times with this result.

FIGURE 11.17: Simulating the new scenario.

We check all 100 runs to see that only the short-term tranches are calculated.
They are. We can then recover a summary of the results for first year capital.
We should copy and paste the all-in funding runs into a separate worksheet.
When doing so we can name the first year capital with a different name, say
capital_yr1_allto distinguish it from short-term funding version.

How do the two scenarios compare? We can develop a comparison based on
the summary statistics of the two scenarios. Here is an example.

Following good spreadsheet engineering practice, we use named ranges and the
INDIRECT() function for each of the components of the summary. It appears
that the two scenarios have very different profiles, including the kurtosis. This
measures the thickness of the tail of the first year capital infusion. Here is a
plot of the first year capital distribution of 100 Monte Carlo runs, based on
the short-term scenario.

The distribution poses much higher capital levels, and it is lumpy, a technical
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FIGURE 11.18: An EDA comparison of the two scenarios.

FIGURE 11.19: Even better: a plot emerges.

term for volatile. Literally, the short-term vehicle only scenario also irons out
the tail. It reduces the volatility of the standard deviation of the funding
required in year one. But it does so at the expense of increasing the standard
deviation of funding and the average funding required.

Multiple objectives seem to collide here. Only the preferences for risk and
return of the Vegan Workers Group can resolve the deadlock. That determi-
nation is beyond the capabilities of this model. Perhaps a goal-programming
approach might help the group discern which path to follow?
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