

Deal With It
Attitude for Coders

Gavin Davies

This book is for sale at http://leanpub.com/dealwithit

This version was published on 2013-09-02

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight
tools and many iterations to get reader feedback, pivot until
you have the right book and build traction once you do.

©2012 - 2013 Gavin Davies

http://leanpub.com/dealwithit
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Gavin Davies by spreading the word about this
book on Twitter!

The suggested tweet for this book is:

I just bought Deal With It: Attitude for Coders

The suggested hashtag for this book is #attitudeforcoders.

Find out what other people are saying about the book by
clicking on this link to search for this hashtag on Twitter:

https://twitter.com/search/#attitudeforcoders

http://twitter.com
https://twitter.com/search/#attitudeforcoders
https://twitter.com/search/#attitudeforcoders

Contents

Dedication . i

Introduction . ii

What’s all this about? iii

Who is this guy? . iv

Part 1: Overall attitude 1

Attitude over Aptitude? 2

Be courageous in ignorance 3

Be professional . 4

Be resourceful . 5

Don’t try to prove how smart you are 6

Don’t worry about being the brightest 7

Open Source your knowledge 8

CONTENTS

Seek to build community 9

Take the initiative . 10

Don’t be precious! . 11

Do it scared if you have to 12

Part 2: Tools, learning and technique 13

Have respect for books 14

Always pressure test 15

Think testing . 16

Automate like your name was Dan 18

Performance matters 19

Measure, don’t guess 20

Get your tools right . 21

Build a solid technical foundation 22

Be deployment minded 23

Choose your libraries carefully 24

No source is set in stone 25

Learn to spot antipatterns 26

CONTENTS

Don’t be tied to a single technology 27

Part 3: Wisdom for the long haul 28

Have achievable goals 29

Accept that failure happens 30

Treat people as people 31

Take care of yourself 32

Beware burnout . 33

Dealing with burnout 34

One thing at a time . 35

Part 4: Communication is key 36

Documentation is communication! 37

No unnecessary docs 38

Keep emails short . 39

“Just” is the worst word 40

Social problems can’t be solved with tech 41

Dealing with suits . 42

Beware meetingitis . 43

CONTENTS

Part 5: Some closing advice 44

Never stop learning . 45

Keep it in perspective 46

Who do you think you are telling me all this?! 47

Signing off . 48

Acknowledgements . 49

Dedication
For Mum and Gail,

teachers to the core

Introduction
“Deal With It.” That’s a strong phrase.

One interpretation is “here’s how it is, you have to put up
with it”. It can be a bratty, unilateral, condescending, dismissive
statement.

Another interpretation is “let’s cope with things how they are,
but work hard to change them for the better”. An encompassing,
generous statement.

This book is about choosing how you, as a software developer,
deal with our industry and your day-to-day work.

“Most of the time, it’s your thinking, not your talent, that holds
you back.” - Rick Warren¹

¹https://twitter.com/RickWarren

https://twitter.com/RickWarren
https://twitter.com/RickWarren

What’s all this about?
I’ve been working in software for a long time, and I wanted to
write the book I wished I’d had when I started out. I wanted
to encourage myself, and encourage others, and pass on the
development experience of a decade and a half. Thatmight sound
like a lot to you, or it might not!

There are a lot of technical programming books, this isn’t one
of those. I wanted to write a book on the attitude side of things,
which is just as important to being successful as a coder - in terms
of being good to work with, a proper attitude is absolutely vital!

I had long wanted to do this, but felt a book was a lot to take
on. I mentioned this, and one of my colleagues, Rod, responded
“nah, you can just sling together 60 pages these days and call it
‘the good parts’!”

So here it is - the good parts of what I know! To borrow a phrase
from Zane Lowe - this is our book. Mine and yours. It should get
you thinking, give you ideas, perhaps help you out of a rut.

You might not agree with everything that I say. I’d be worried if
you did!

This book is in short chapters. One thing at a time.

Isn’t that the best way to do things?

Who is this guy?
I’m just some guy, you know? If we’re going to spend some time
together, though, I’ll fill you in on what I do.

My job title is “Principal Software Developer”. I work at Box
UK, a software consultancy I’ve been at for over 5 years, during
which time we’ve grown from about 22 staff to over 75. We
take on all sorts of projects; streaming media, CMS builds,
framework development, throwing huge hunks of data around,
responsive websites, mobile, bespoke apps… Before Box UK, I
worked mostly for small outfits, although I had a brief stint at a
large company that felt rather too Dilbert for comfort.

Day-to-day, I operate as developer-in-test and quality evangelist.
I work with devs to improve their skills. I perform code reviews.
I give training. I will automate anything.

Vitally, I write code.

“Can this guy teach me anything?” you may ask. Perhaps I can’t
- I doubt I’m any smarter than you - but this is our book, and
as you hold it, I hope you take space to think, to let your mind
wander, to reach your own ideas. That’s what books do for me.
That is why I love them so.

Part 1: Overall
attitude

Attitude over Aptitude?
“We Are All Fallen Creatures and All Very Hard To Live With” -
C.S. Lewis

So I’ve told you a bit about me, but it’s just as important who you
are. This may sound strong, but I feel attitude is as important as
aptitude. I’ve had a lot of very clever colleagues - some of whom
I just couldn’t work well with. I’m hard to work with too, but
there are some things that the greatest people I’ve worked with
had in common.

1. Open to unfamiliar approaches
2. Challenges hirself to develop new skills
3. Willing to share knowledge

An archetype that you will likely encounter in your career is the
supersmart computer scientist whoworks in his own isolated silo
and spends a lot of time sneering at those who know less. No
matter how smart Mr Sneer is, he can be a detriment to morale.
Don’t let this kind of person put you off in your quest to improve,
or drag you down to his level.

This book is about dealing with the challenges of the software
industry. My belief is that if you get your attitude right, and be
willing to learn, grow and share, then the knowledge will come.

Be courageous in
ignorance
“Endeavour to be the dumbest guy in the room” - unknown

You will be ignorant at some points in your career. That’s OK.
I’ve stopped trying to hide my ignorance, I will ask questions.
You just need a little courage.

At Uni in ‘98, I had a fellow joint honours student in my
yeargroup. Sam was extremely sharp, but being joint honours,
didn’t always have the cross-knowledge the straight CS guys
had. Every lecture, Sam would ask a question. Sometimes, one
of the hardcore techie guys would groan, eager to leave, but Sam
would persist unabashed. He always got his answer, and you
know what? There was invariably someone else who needed
that answer and it was often a nervous young Gavin Davies.
I had the pleasure of working with him on a group project
and his willingness to ask questions taught me a lot about
professionalism.

It’s not about hiding what you don’t know. It’s about having the
courage and determination to get it right.

You may also be helping others. Choose to be brave.

Be professional
Some people don’t understand the difference between being
professional and being corporate. Perhaps I don’t understand it
either, but here is my take.

Being professional is doing a good job to the best of your ability.
It’s communicating well. It’s being honest and friendly and
efficient.

Being professional does not imply wearing a suit and displaying
no personality or sense of humour. In fact, lack of humour makes
communication ineffective, because people will disengage.

Most of the most professional people I know don’t often rock
up to work in sharp suits (except you, Mr Knight!). Rather, they
show up with sharp skills, a great attitude, a willingness to learn
and share and an enthusiasm for their work that drives them on.

Putting jokes in your docs or wearing a band t-shirt is not unpro-
fessional. If you are sloppy, slapdash, condescending, know-it-
all, non-communicative, or rude (particularly to clients) - THAT
is unprofessional.

Being the best version of yourself in your workspace that you
can possibly be is professionalism. That’s my take.

Be resourceful
Our jobs can be daunting, I know this. I have to do it scared most
of the time. One way to truly annoy me, though, is a dev who
doesn’t try at all.

Imagine a dev, let’s call him Montague Marwood. Monty starts
work at a new company and is on your team. You show him the
ropes and give him training on the application you’re working
on. You direct him to training materials and documentation and
give him a simple starter problem to solve. Two days later, Monty
hasn’t made a single commit. You ask how he’s doing andMonty
says “oh, I didn’t really understand feature x so I haven’t really
done anything.”

You could argue that you could have perhaps pair programmed
with Monty, or the problem it should have come up in daily
standups. What I’m trying to illustrate, though, is that some
people, if they can’t solve a problem, will just kind of sit there
and not even mention it. Please don’t be like this.

Never just sit there with a problem doing nothing. You must be
resourceful. Talk to your teammates. Study the docs. Run the
unit tests. Ask questions on your IRC channels. Browse the code.
Communicate! It’s OK to hit roadblocks, but you MUST actively
attempt to solve the problem!

Don’t try to prove how
smart you are
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site² to get the whole book!

²http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Don’t worry about being
the brightest
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site³ to get the whole book!

³http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Open Source your
knowledge
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site⁴ to get the whole book!

⁴http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Seek to build community
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site⁵ to get the whole book!

⁵http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Take the initiative
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site⁶ to get the whole book!

⁶http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Don’t be precious!
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site⁷ to get the whole book!

⁷http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Do it scared if you have to
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site⁸ to get the whole book!

⁸http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Part 2: Tools, learning
and technique

Have respect for books
“No matter how busy you may think you are, you must find time
for reading, or surrender yourself to self-chosen ignorance.” -
Confucius

A number of years ago, I wrote a blog post entitled “Coders! Y U
no read books?!”⁹ and I stand by it today. Books are a wonderful
thing, and just because we work online doesn’t mean we should
limit ourselves to solely using online tutorials, StackOverflow
and videos for our development.

I include e-books in this, of course, I’m not that backward!

A book allows you to sit and soak in your own thoughts. The
gradual, expansive experience of reading gives me most of my
best ideas. I have solved innumerable technical problems whilst
lying in a good hot bath reading something by Kent Beck or
Martin Fowler.

Don’t try to read too fast or too much. The important thing is the
space it gives you. If your mind wanders, let it wander, inspired
by the text.

I found that the book “Pragmatic Thinking and Learning” by
Andy Hunt was absolutely marvellous for giving me ideas. I’d
read a paragraph and it would unlock whole trains of thought
that I lazily sauntered down. A joyous experience!

⁹http://www.boxuk.com/blog/coders-y-u-no-read-books

http://www.boxuk.com/blog/coders-y-u-no-read-books
http://www.boxuk.com/blog/coders-y-u-no-read-books
http://www.boxuk.com/blog/coders-y-u-no-read-books

Always pressure test
“You must move, have a sense of timing, and progressive resis-
tance that resembles what you would receive on the street.. That’s
Aliveness” - Matt Thornton, Straight Blast Gym¹⁰

In November 1993, several people got exposed. At UFC #1,
fighters from all around the world were defeated with apparent
ease by a Brazilian Jiu-Jitsu (BJJ) guy named Royce Gracie.

Where many martial artists dubbed their styles “too deadly”
to spar and pressure test in training, the Gracies would travel
around testing their style against whoever would take them on.
Unlike many styles, BJJ practitioners trained against resistant,
non-compliant partners. Therefore, Gracie’s techniques work
when put to the test.

The same is true of software development. You can talk all you
want, but you must pressure test your software. Unit tests should
be part of a project from day one. Measure, don’t guess, at
load testing. Run automated vulnerability scanners. Use coding
standards checkers and mess detectors. YOU want to be the one
to know the weaknesses of your “style”, not some script kiddy.
Make it part of your build loop if you can.

Don’t tolerate vague, static, esoteric “grab my wrist” nonsense.
Pressure test all that you do.

¹⁰http://www.straightblastgym.com/interview01.htm

http://www.straightblastgym.com/interview01.htm
http://www.straightblastgym.com/interview01.htm

Think testing
Here are 7 reasons to unit test that I gave in a blog post Pragmatic
Code Coverage¹¹:

1. To answer the question “does the code do what I think it
does?”

2. To break a problem up
3. To encourage good design and loose coupling (untestable

code is bad code!)
4. To write exploratory code
5. To show your working and provide documentation (e.g.

testdox format)
6. To prevent regressions
7. … and because otherwise you’re being a cowboy!

People talk about BDD vs TDD like they were in opposition.
Here’s my take.

TDD says; “this program does what I, the developer, wrote it to
do.”

BDD says; “this program does what the customer wants it to do.”

Both are useful, and you must write tests. Be pragmatic, though.
If a region of code really is untestable and isn’t just badly fac-
tored, then annotate it with @codeCoverageIgnore or whatever
your framework supports.

¹¹http://www.boxuk.com/blog/pragmatic-code-coverage/

http://www.boxuk.com/blog/pragmatic-code-coverage/
http://www.boxuk.com/blog/pragmatic-code-coverage/
http://www.boxuk.com/blog/pragmatic-code-coverage/

Think testing 17

Tell other developers what your code should do. Describe your
code by writing descriptive tests.

Automate like your name
was Dan
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site¹² to get the whole book!

¹²http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Performance matters
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site¹³ to get the whole book!

¹³http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Measure, don’t guess
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site¹⁴ to get the whole book!

¹⁴http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Get your tools right
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site¹⁵ to get the whole book!

¹⁵http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Build a solid technical
foundation
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site¹⁶ to get the whole book!

¹⁶http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Be deployment minded
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site¹⁷ to get the whole book!

¹⁷http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Choose your libraries
carefully
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site¹⁸ to get the whole book!

¹⁸http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

No source is set in stone
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site¹⁹ to get the whole book!

¹⁹http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Learn to spot antipatterns
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site²⁰ to get the whole book!

²⁰http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Don’t be tied to a single
technology
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site²¹ to get the whole book!

²¹http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Part 3: Wisdom for the
long haul

Have achievable goals
This is adapted from a longer entry on my personal blog²²

A long-term project can be hard work. It’s easy to lose sight of
goals, and drift when it feels like actually DELIVERING some-
thing is simply out of sight, over the horizon. Then, suddenly,
that intangible deadline begins to rocket towards you and a
frenzied “crunch time” begins.

This is one of the reasons devs people tend to work on their own
projects outside of their day jobs - because these projects tend to
be feel achievable, and the sense of progress is tangible.

It’s greatly underestimated how much developer morale affects
productivity. Unhappy devs will twiddle their thumbs and fiddle
around with toy projects, sighing at the thought of another
arduous day working on the “goal over the horizon”.

That’s why agile - or any kind of iterative development - is
helpful from a psychological standpoint. Short term goals are
incredibly motivating because you have an achievable target.
You aren’t trying to fit the universe into your headspace at once
- you are instead working over a short period to reach a goal that
remains in sight.

²²http://gavd.co.uk/2012/09/how-agile-can-keep-up-morale-on-long-term-
projects/

http://gavd.co.uk/2012/09/how-agile-can-keep-up-morale-on-long-term-projects/
http://gavd.co.uk/2012/09/how-agile-can-keep-up-morale-on-long-term-projects/
http://gavd.co.uk/2012/09/how-agile-can-keep-up-morale-on-long-term-projects/

Accept that failure
happens
“For though a righteous man falls seven times, he rises again” -
Solomon

“Experience: that most brutal of teachers. But you learn.” - C.S.
Lewis

You’re going to get things wrong. You’re going to make mistakes.
No matter how hard you try, no matter what best practises you
follow, some day you’ll DROP DATABASE on a live server, or do
what I did and accidentally email the text of Edgar Allen Poe’s
“The Pit And The Pendulum” to several thousand users (oops!).

Give yourself a break. Forme, this is hard; I’m instinctively tough
on myself, so if you’re wired like that then I know how it is.
Think, though; “would I be so annoyed if one of my co-workers
had made this mistake instead of me”?

Try to put your mistakes into perspective. Definitely learn from
them. Do all you can to put things in place to prevent mistakes
happening again.

It can be hard to come into the office the morning after a
catastrophic screw-up. That’s a mark of a true professional,
though.

Get up, don’t give up! Know that we’ve all made mistakes.
Forgive yourself, learn, grow and teach.

Treat people as people
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site²³ to get the whole book!

²³http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Take care of yourself
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site²⁴ to get the whole book!

²⁴http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Beware burnout
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site²⁵ to get the whole book!

²⁵http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Dealing with burnout
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site²⁶ to get the whole book!

²⁶http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

One thing at a time
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site²⁷ to get the whole book!

²⁷http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Part 4:
Communication is key

Documentation is
communication!
When you pick up a project, it can be hard to even get it running.
I’ve often been in the situation where I’ve checked out or cloned
a repository and I have no idea how to use the application!

There’s an old computer science term: the runbook. It’s kind of
a retro term, but it works for me. I use “runbook” to mean a file
that tells you how to use an application.

Usage examples should always be in your documentation. Never
be vague, be specific.

Above all, in this age of ludicrously named libraries, your run-
book should tell you precisely what the application actually does!

Many Github projects are a good example of this; they should
always have a file in the root called README.md, telling you
how to test, use and extend the project.

Try to bear in mind that others don’t have your knowledge. Get
your colleagues to check your runbooks in the same way as they
would code.

It doesn’t have to be highly detailed, but it does have to get
somebody going quickly. It’s the information you’d want if it
was you.

No unnecessary docs
We’ve looked at runbooks, so am I contradicting myself here? I
don’t think so.

If you’ll forgive me something of a “businessy” term, it’s all
about ROI (Return On Investment) here. As are most things.
Documentation reaches a point of diminishing return. Don’t try
to specify things precisely that will change a lot - instead, focus
on communicating the things that will remain fairly steady -
usually, the public interface. People can read your code if they
want the details; written documentation should take the runbook
approach from the previous chapter.

Always ask yourself questions like: “is this going to change?Will
anybody need to know this to use the system? Am I adding
complexity or clarification?”

If the documentation you were going to add can be served by
simplifying the system, you may be better off spending the time
in that way.

Write documentation. Your project is NOT complete without it.
Just be sensible about how far you go.

Keep emails short
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site²⁸ to get the whole book!

²⁸http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

“Just” is the worst word
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site²⁹ to get the whole book!

²⁹http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Social problems can’t be
solved with tech
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site³⁰ to get the whole book!

³⁰http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Dealing with suits
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site³¹ to get the whole book!

³¹http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Beware meetingitis
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site³² to get the whole book!

³²http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Part 5: Some closing
advice

Never stop learning
“Unless you are continually improving your skills, you’re quickly
becoming irrelevant. Andwhen you’re irrelevant, you’re no longer
credible.” - Stephen Covey

In our industry, perhaps more than any other, we have to keep
improving. As coders, we have never “arrived”. Our skills are
never good enough.

That’s pretty difficult to accept sometimes. It’s tempting to
believe that some day, I will be a “complete” coder. Not so!
It’s not achievable. What IS achievable, however, is to be better
than yesterday. Therefore, an attitude of continual, humble
improvement will stand us in good stead.

This is where community is particularly important. Being around
people with different skills to us is really helpful. Other lan-
guages, paradigms, ways of doing testing, patterns, deployment
methods, automation and virtualisation techniques…

Don’t sweat becoming “perfect”. Simply keep learning, and have
the humility to never make out that you’ve achieved program-
ming greatness!

Keep it in perspective
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site³³ to get the whole book!

³³http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Who do you think you are
telling me all this?!
This chapter appears in the full version of this book! Please visit
the book’s LeanPub site³⁴ to get the whole book!

³⁴http://leanpub.com/dealwithit

http://leanpub.com/dealwithit
http://leanpub.com/dealwithit

Signing off
I decided I would write this book to be small, concise, and direct
- I wanted this book to be as readable as possible. I hope that you
enjoyed it!

I wrote on 8.5” pages in Google docs with 2” margins using
14pt Arial to restrict me to columns of about 45 characters
to encourage me to be concise. I then exported to HTML and
imported into Leanpub and continued to work on it in the
Markdown format.

I wanted each page to stand alone, to get a single point across,
and to have a quote or a story. I wanted each page to be
something you could hand to a co-worker that they could read
in a minute or so and hand back to you.

Hopefully you’ve found something encouraging in here. Get out
there and do it! If you have at least some aptitude and your
attitude is right, then you can improve, and find your work more
satisfying. You can impact your culture positively. You can be a
good example to yourself and others.

Be honest.

Be brave.

Be yourself!

“Courage is not simply one of the virtues but the form of every
virtue at the testing point “ - C.S. Lewis

Acknowledgements
A huge thanks to Dayle Rees³⁵ for the encouragement in writing
this book, and not least of all, for designing the front cover!
Thanks also to his lady Emma for allowing me to use her
awesome cover photo - that little capuchin’s face is priceless!

Thanks to Box UK³⁶ for over 5 years of employing me! I’ve
never worked anywhere where there’s so much opportunity for
innovation and development. Thanks to Stu, Carey and Benno
for having a read through and sanity checking the book!

Big up Warren, Carey, Craig and Rod - team Unified Diff³⁷!

Hold tight Woodville Baptist Church³⁸!

Easy the City Arms, Cardiff’s best pub!

³⁵http://daylerees.com/
³⁶http://www.boxuk.com/
³⁷http://unifieddiff.co.uk/
³⁸http://www.woodybap.org.uk/

http://daylerees.com/
http://www.boxuk.com/
http://unifieddiff.co.uk/
http://www.woodybap.org.uk/
http://daylerees.com/
http://www.boxuk.com/
http://unifieddiff.co.uk/
http://www.woodybap.org.uk/

	Table of Contents
	Dedication
	Introduction
	What's all this about?
	Who is this guy?
	Part 1: Overall attitude
	Attitude over Aptitude?
	Be courageous in ignorance
	Be professional
	Be resourceful
	Don't try to prove how smart you are
	Don't worry about being the brightest
	Open Source your knowledge
	Seek to build community
	Take the initiative
	Don't be precious!
	Do it scared if you have to

	Part 2: Tools, learning and technique
	Have respect for books
	Always pressure test
	Think testing
	Automate like your name was Dan
	Performance matters
	Measure, don't guess
	Get your tools right
	Build a solid technical foundation
	Be deployment minded
	Choose your libraries carefully
	No source is set in stone
	Learn to spot antipatterns
	Don't be tied to a single technology

	Part 3: Wisdom for the long haul
	Have achievable goals
	Accept that failure happens
	Treat people as people
	Take care of yourself
	Beware burnout
	Dealing with burnout
	One thing at a time

	Part 4: Communication is key
	Documentation is communication!
	No unnecessary docs
	Keep emails short
	``Just'' is the worst word
	Social problems can't be solved with tech
	Dealing with suits
	Beware meetingitis

	Part 5: Some closing advice
	Never stop learning
	Keep it in perspective
	Who do you think you are telling me all this?!
	Signing off

	Acknowledgements

