Datafiow
“Reactive

Programming Systems

A Practical Guide
Theory « Application ¢« Examples

Matt Carkci

Dataflow and Reactive
Programming Systems

A Practical Guide to Developing Dataflow
and Reactive Programming Systems

Matt Carkci
This book is for sale at http://leanpub.com/dataflowbook

This version was published on 2014-05-29

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

©2014 Matt Carkci

http://leanpub.com/dataflowbook
http://leanpub.com
http://leanpub.com/manifesto

Contents

1

2

Introduction 1
1.1 Overview ofthe Book 1
1.2 Reactive Programming is Dataflow 2
1.3 Von Neumann Architecture 4
1.4 Benefits of Dataflow 5
1.5 History 6
1.6 The Purpose of thisBook 8
Asynchronous Dataflow Implementation. 9
2.1 Architecture Overview 10
2.2 Implementation Walk-Through 11
23 MainDataTypes 12
23.1 PortAddress. 12
23.2 DataToken 12
233 ExecuteToken. 13
234 Node 13
2.3.5 Node Definition 13
236 Arc. 13
2.3.7 FirePattern 14
2.3.8 TokenStore 14
239 NodeStore. 14
2.3.10 ArcStore, 14
2.3.11 Dataflow Program 15
2.4 Implementation Components 15

241 I0OUnit 15

CONTENTS

24.2 TransmitUnit 15
243 EnableUnit 16
244 ExecuteUnit. 17
2.5 Program Execution Example 18
2.6 Preparing a Program for Execution 19

2.7 Multiple Dataflow Engines 20

1 Introduction

Dataflow is a method of implementing software that is very dif-
ferent to the prevailing Von Neumann method that the software
industry has been based on since inception.

At the lowest level, dataflow is both a programming style and
a way to manage parallelism. At the top, dataflow is an over-
arching architecture that can incorporate and coordinate other
computational methods seamlessly.

Dataflow is a family of methods that all share one important fact,
data is king. The arrival of data causes the system to activate.
Dataflow reacts to incoming data without having to be specifically
told to do so. In traditional programming languages, the developer
specifies exactly what the program will do at any moment.

1.1 Overview of the Book

It is important to understand the concepts of dataflow and not
just the specifics of one library so that you can quickly adapt to
any new library encountered. There are many varieties of dataflow
with subtle differences yet they all can be considered dataflow.
Sometimes very slight changes in the dataflow implementation can
drastically change how you design programs. This book will explain
the whole landscape of dataflow:.

You'll learn dataflow from the software perspective. How it is an
architecture and a way to think about building programs.

We'll start by covering it in its simplest form, Pipeline Dataflow,
and then move on to the many features and variations you’ll
encounter in existing implementations. Three of the most common

Introduction 2

styles of dataflow are explained in detail using code of a working
implementation to bring theory into practice.

You should already have a little programming experience under
your belt but you don’t need to be an expert to understand what
this book covers.

1.2 Reactive Programming is Dataflow

“Reactive Programming” is a term that has become popular recently
but its origin stretches back to at least 1985. The paper, “On the
Development of Reactive Systems” by David Harel and Amir Pnueli
was the first to define “reactive systems”:

“Reactive systems... are repeatedly prompted by the
outside world and their role is to continuously respond
to external inputs?

The paper specifies that reactive systems are not restricted to
software alone. They were discussing ways to develop any type
of reactive system, software or hardware. A few years later in
1989 Gerard Berry focuses on the software aspects in his paper,
“Real Time Programming: Special Purpose or General Purpose Lan-
guages™:

“It is convenient to distinguish roughly between three
kinds of computer programs. Transformational pro-
grams compute results from a given set of inputs; typ-
ical examples are compilers or numerical computation
programs. Interactive programs interact at their own
speed with users or with other programs; from a user
point of view a time-sharing system is interactive.

'Harel, D., & Pnueli, A. (1985). “On the development of reactive systems” (pp. 477-498).
Springer Berlin Heidelberg. Chicago

Introduction 3

Reactive programs also maintain a continuous inter-
action with their environment, but at a speed which is
determined by the environment, not by the program
itself. Interactive programs work at their own pace
and mostly deal with communications, while reactive
programs only work in response to external demands
and mostly deal with accurate interrupt handling.

Real-time programs are usually reactive. However,
there are reactive program that are not usually con-
sidered as being real-time, such as protocols, system
drivers or man-machine interface handlers. All reac-
tive programs require a common programming style.

Complex applications usually require establishing co-
operation between the three kinds of programs. For
example, a programmer uses a man-machine inter-
face involving menus, scroll bars and other reactive
devices. The reactive interface permits him to tell the
interactive operating systems to start transformational
computations such as program compilations.”

From the preceding quotes we can say that reactive programs...

« Activate in response to external demands

+ Mostly deal with handling parallelism

+ Operate at the rate of incoming data

« Often work in cooperation with transformational and inter-
active aspects

The definition of dataflow is a little more vague. Any system where
the data moves between code units and triggers execution of the
code could be called dataflow, which includes reactive systems.

*Gerard Berry (1989). “Real Time Programming: Special Purpose or General Purpose
Languages” (pp.11-17) IFIP Congress

Introduction 4

Thus, I consider Reactive Programming to be a subset of dataflow
but a rather large subset. In casual use, Reactive Programming it is
often a synonym for dataflow.

1.3 Von Neumann Architecture

The reason parallel programming is so hard is directly related to the
design of the microprocessors that sit in all of our computers.

The Von Neumann architecture is used in the common micropro-
cessors of today. It is often described as an architecture where
data does not move. A global memory location is reserved and
given a name (the variable name) to store the data. Its contents
can be set or changed but the location is always the same. The
processor commands, in general, deal with assigning values to
memory locations and what command should execute next. A
“program-counter” contains the address of the next command to
execute and is affected by statements like goto and if.

Our programs are simply statements to tell the microprocessor what
to do... in excruciating detail. Any part of the program can mutate
any memory location at any time.

In contrast, dataflow has the data move from one piece of code to
another. There is no program-counter to keep track of what should
be executed next, data arrival triggers the code to execute. There is
no need to worry about locks because the data is local and can only
be accessed by the code it was sent to.

The shared memory design of the Von Neumann architecture poses
no problems for sequential, single threaded programs. Parallel pro-
grams with multiple components trying to access a shared memory
location, on the other hand, has forced us to use locks and other
coordination methods with little success. Applications of this style
are not scalable and puts too much burden on developers to get
it right. Unfortunately we are probably stuck with Von Neumann

Introduction 5

processors for a long time. There’s too much software already
written for them and it would be crazy to reproduce the software
for a new architecture.

Even our programming languages are influenced by the Von Neu-
mann architecture. Most current programming languages are based
directly or indirectly on the C language which is not much more
than a prettier form of assembly language. Since C uses Von
Neumann principals, by extension all derivative languages are also
Von Neumann languages.

It seems our best hope is to emulate a parallel friendly architecture
on top of the Von Neumann base. That’s where this book comes in.
All dataflow implementations that run on Von Neumann machines
must translate dataflow techniques to Von Neumann techniques. I
will show you how to build those systems and understand the ones
you will encounter.

1.4 Benefits of Dataflow

Some of the benefits of dataflow that we’ll cover in this book are...

« Dataflow has an inherent ability for parallelization. It doesn’t
guarantee parallelism, but makes it much easier.

« Dataflow is responsive to changing data and can be used to
automatically propagate GUI events to all observers.

« Dataflow is a fix for “callback hell”

« Dataflow is a high-level coordination language that assists in
combining different programming languages into one archi-
tecture. How nodes are programmed is entirely left up to the
developer (although implementations may put constraints
on it, the definition of dataflow does not). Dataflow can be
used to combine code from distant locations and written in
different languages into one application.

Introduction 6

“Contrary to what was popularly believed in the
early 1980s, dataflow and Von Neumann tech-
niques were not mutually exclusive and irrecon-
cilable concepts, but simply the two extremes of a
continuum of possible computer architectures™

« For those visual thinkers out there, dataflow graphs lend
themselves to graphical representations and manipulation.
Yet there’s no requirement that it must be displayed graphi-
cally. Some dataflow languages are text only, some are visual
and the rest allow both views.

1.5 History

The first description of dataflow techniques was in the 1961 paper,
“A Block Diagram Compiler™ that developed a programming lan-
guage (BLODI) to describe electronic circuits. The paper established
the concepts of signal processing blocks communicating over inter-
block links encoded as a textual computer language. “BLODI was
written to lighten the programming burden in problems concerning
the simulation of signal processing devices™.

In 1966 William Robert Sutherland wrote, “The On-Line Graphical
Specification of Computer Procedures™ that heavily influenced the
visual representation of dataflow. He proposed a purely visual
programming language where the user interacted with computer
using the new technology of video displays and drawing tablets.
Objects were drawn and then given a meaning. In a historical video,

*Johnston, W. M., Hanna, J. R., & Millar, R. J. (2004). Advances in dataflow programming
languages. ACM Computing Surveys (CSUR), 36(1), 1-34. Chicago

“John L. Kelly Jr., Carol Lochbaum, V. A. Vyssotsky (1961). “A Block Diagram Compiler”.
Bell System Technical Journal, pages 669-678

*ibid

®Sutherland, W. R. (1966). ON-LINE GRAPHICAL SPECIFICATION OF COMPUTER
PROCEDURES (No. TR-405). LINCOLN LAB MASS INST OF TECH LEXINGTON. Chicago

Introduction 7

Sutherland is shown drawing a square-root block and then defines
its operation by drawing its constituent blocks.

Jack B. Dennis continued the evolution of dataflow by explaining
the exact steps that must be taken to execute a dataflow program in
his 1974 paper, “First Version of a Data Flow Procedure Language™.
Many consider this paper to be the first definition of how a dataflow

implementation should operate.

Dataflow has always been closely related to hardware. It is es-
sentially the same way electronic engineers think about circuits,
just in the form a programming language. There have been many
attempts to design processors based on dataflow as opposed to the
common Von Neumann architecture. MIT’s Tagged Token archi-
tecture, the Manchester Prototype Dataflow Computer, Monsoon
and The WaveScalar architecture were all dataflow processor de-
signs. They never gained the popularity that Intel’s Von Neumann
microprocessors did, not because they wouldn’t work, but because
it was impossible for them to keep pace with the ever increasing
clock speeds that Intel, Zilog and others mass market manufactures
were able to provide.

From the 1990s until the early 2000s, less research went into
dataflow because there was no pressing need. Every 18 months
a new, faster microprocessor came out and no one felt a need to
change the way things were done. Due to the increasingly graphical
capabilities of computers, most of the advances during this period
were concentrated in the visual aspects of dataflow. LabView is one
of notable developments of this period.

Then we reached the limits of silicon. Starting around 2005, proces-
sor speed stopped increasing and the only option was to just add
more cores to the chip. Parallelism became important again. Devel-
opers began looking around for solutions and created a resurgence
in the 40+ year old concept of dataflow and reactive programming.

"Dennis, J. B. (1974, January). First version of a data flow procedure language. In
Programming Symposium (pp. 362-376). Springer Berlin Heidelberg. Chicago

Introduction 8

1.6 The Purpose of this Book

Dataflow is difficult to learn. Not due to inherent complexity but
due to the number of variations dataflow can take on and the lack
of a standardized language. Take for example the most common
of all elements of dataflow, the node. Some call it a node while
others call it a “block”, a “process”, an “action”, an “actor” and
any number of other names. Extend this renaming to other basic
elements and sometimes youa€™re not sure what you are reading
about. Half of the work in reading about dataflow is learning the
author’s terminology.

Additionally, dataflow does not have a single set of features and
capabilities. It is like ordering from a Chinese restaurant. Mix and
match as you want but some things just don’t taste right together.

My goal is to describe all of the possible variations in easy to
understand terms. Your goal should be to understand the general
concepts of dataflow. Then you will be able to apply that knowledge
to specific problems with possibly different semantics than those
I describe. The purpose of this book is to give you the tools and
understanding to work with a multitude of dataflow systems.

2 Asynchronous Dataflow
Implementation

Asynchronous Dataflow is characterized by nodes that fire when-
ever one of their fire rules are satisfied.

Implementations commonly have a few standard components. An
activation unit that determines what nodes can fire, an execution
unit that controls how the nodes are executed, a token transmission
unit that moves tokens from one node to another and finally storage
for nodes and tokens.

This is just the bird’s eye view of asynchronous dataflow. There
are many different ways to design the system. In the rest of this
chapter we will look at the design of a typical asynchronous
implementation that you can you as a reference to understand the
details of asynchronous dataflow systems.

Asynchronous Dataflow Implementation 10

2.1 Architecture Overview

v

Enable

Ea—
I0

o |(Output)

Other =l
Engines i

Transmit
r—~| Y
IO Datafl
e ataflow
From | (INput) Program Execute
Other
Engines

Top Level Architecture of the Example Implementation

This figure shows the architecture of our asynchronous dataflow
system. It uses a simple pipeline dataflow architecture to define a
system that runs other, dynamic, asynchronous dataflow programs.
It is modeled after a dataflow processor from the early 1980’s, the
Manchester Prototype Dataflow Computer.

Most asynchronous dataflow processors use some version of this
basic architecture. The Manchester Processor design had demands
on its design due to the physical nature of computer processors. As
software doesn’t share in those burdens, I have changed the design
to be more general purpose.

Using the features of dataflow we examined earlier in the book, this
implementation can be described as:

« Dynamic

Asynchronous Dataflow Implementation 11

+ Asynchronous Activations

« Multiple Inputs and Outputs

+ Cycles Allowed

» Functional Nodes

+ Uses Per-Node Fire Patterns

+ Pushes Data

» Arc Capacity > 1

+ Arcs May Join and Split

« Single Token per Arc per Activation

2.2 Implementation Walk-Through

The four main components are:

« 10: Communication with other engines and the world

« Transmit: “Moves” a token by changing its location address
to the next port’s address

+ Enable: Determines what nodes can fire

 Execute: Executes nodes

Tokens come into the system through the input side of the IO unit.
Its job is to keep any tokens with addresses inside this engine and
to pass on all other tokens.

Tokens then are sent to the Transmit unit. It looks at the token’s
address and compares it to a look-up table of connections in the
system. If it finds that the new token’s address is on an output port,
then it will make a copy of the token and give it the address of the
input port(s). Effectively, moving the token from one output port
to another input port. If the token’s address is already on an input
port, then it keeps the address the same.

The tokens with the new addresses are sent from the Transmit unit
to the output side of the IO unit. Its job is to send any tokens with
external addresses and to keep those with internal addresses.

Asynchronous Dataflow Implementation 12

Our local tokens then move to the Enable unit. It looks at the
incoming tokens and compares them to a store of waiting tokens
to see if any nodes can now fire due to the new token. If not, it will
save the new token in the Token Store for later use. If a node can
now be activated, it creates a new token called an Execute Token. It
packages together all the data tokens for the inputs of the node and
a way to invoke the node itself.

The Execute unit receives these Execute Tokens and runs the node.
Any output tokens are passed back around to the input IO unit again
to start over.

2.3 Main Data Types

Besides the Fire Pattern data type below, all of these can be
implemented as classes in an Object Oriented language, a struct
in C or the equivalent in your language of choice. The itemized
elements under each data type are the members of the type.

2.3.1 Port Address

Defines a unique location (combination of node ID and port ID) of
a port within this engine

+ Node Id - Unique to engine
« Port Id - Unique to node only

2.3.2 Data Token

A container for the data value and its location

« Value - Any data value
« Port Address - Current location (port) of token

Asynchronous Dataflow Implementation 13

2.3.3 Execute Token

Combines everything needed to fire a node

« Data Tokens - A collection of all tokens on inputs of node
+ Node - A means to activate the node

2.3.4 Node

A run-time node combines the Node Definition and a unique Node
ID

« Node Definition - Defines how to activate the node
+ Node Id - Engine wide, unique id

2.3.5 Node Definition
A node declaration and definition. A single Node Definition may

be used to define many run-time nodes that all act the same as the
Node Definition - just with different Node IDs.

« Node’s activation function - Function that does the real work
« List of Ports - All the ports on this node
« Fire Patterns - A collection of Fire Patterns

2.3.6 Arc

An Arc is a connection between to two ports

» Source Port Address - Address of the output port
« Sink Port Address - Address of the input port

Asynchronous Dataflow Implementation 14

2.3.7 Fire Pattern

This is a union type in C/C++, a sum type in Haskell, or, in object
oriented languages, a base class of Fire Pattern with one sub-class
for Exists, one for Empty and so on. This could also be implemented
as an enumeration.

A Fire Pattern for a single port is one of the following:

« Exists - A token must exist on this input

« Empty - Input must be empty

« Don’t Care - Doesn’t matter if a token is available or not

 Always - Ignores all other patterns, and forces the whole fire
pattern to match

The pattern for the whole node is simply a collection of the all the
Fire Patterns for that node.

2.3.8 Token Store
A collection of all the Data Tokens in the system. Read and written

to by the Enable Unit only. The tokens in here represent the
complete state of the program.

2.3.9 Node Store

A collection of all the nodes in the system. Note changing this at
run-time allows for dynamic node redefinitions.

2.3.10 Arc Store

A collection of all the connections in the system. Note changing this
at run-time allows for dynamic graphs.

Asynchronous Dataflow Implementation 15

2.3.11 Dataflow Program

The Node Store and Arc Store together are everything needed to
define a dataflow program. This is loaded into the engine before
execution.

+ Node Store - A collection of all the nodes in the program.
+ Arc Store - A collection of all the arcs in the program.

2.4 Implementation Components

2.4.110 Unit

Input: Data Token
Local Output: Data Token
External Output: Data Token

The IO Unit is the interface to the engine. Tokens arriving at the
input port with internal addresses are directed to the “local” port
of the component and those with external addresses are directed to
the “external” port.

2.4.2 Transmit Unit

Input: Data Token
Output: Data Token

Token movement along arcs are implemented with this unit. The
Transmit Unit looks at the tokens address and compares it to a look-
up table of connections in the system (Arc Store). If it finds that the
new token’s address is on an output port, then it will make one copy
of the token for each input port and give it the address of that input
port. This action is equivalent to moving the token along the arc
and sending a copy down each path.

Asynchronous Dataflow Implementation 16

The look-up table is an encoding of all the connections in the
program. Changing the values in this table changes the graph at
run-time.

2.4.3 Enable Unit

Input: Data Token
Output: Execute Token

The Enable Unit looks at the incoming tokens and compares them
to a store of waiting tokens. The Token Store holds all the tokens
currently moving through the program. By comparing the waiting
tokens with the node’s fire pattern (pulled from the Token Store),
the Enable Unit can determine if a node can fire.

For activated nodes, it creates and sends an Execute Token that
packages together all the data tokens for the inputs of the node and
a way to invoke the node itself. The tokens are removed from the
Token Store and the node definition is copied from the Node Store.

If the incoming token does not cause a node to activate, then it will
save the new token in the Token Store for later use.

This implementation allows for per-node firing patterns. The origi-
nal Manchester Processor design had one firing pattern for every
node... all inputs must have tokens waiting before the node can
activate. And since all nodes in the original design only had 1 or
2 inputs, the Manchester architecture’s Enable Unit didn’t need
access to the node’s definition.

Due to the addition of per-node firing patterns and more than 2
inputs allowed per node, this design requires Enable to connect to
the Node Store and the Token Store while the Manchester design
only needed a connection to the Token Store.

The Enable Unit is the only component that writes to the Token
Store so no special locking is needed for multithreaded operation.

Asynchronous Dataflow Implementation 17

2.4.4 Execute Unit

Input: Execute Token
Output: Data Token

With the contents of the Execute Token, this unit has everything it
needs fire nodes.

It takes the collection of data tokens from the Execute Token and
passes it to the node definition for evaluation. In this implementa-
tion the node definition is simply a function that takes a collection
of tokens and returns another (possibly empty) collection of output
tokens.

The node’s function only deals with what I call, “local tokens.” They
are just like the regular data tokens (that I refer to in this context
as a “global token”) without the Node ID field. Nodes should be
isolated and not have to know anything about the outside world.
The node’s ID is external to the definition of the node itself. It
doesn’t matter if there are 10 nodes, all with the same definition
and different node IDs, they should all operate exactly the same.
What the node does know about is its Port IDs. Port IDs are unique
to the node definition. The node’s function returns a collection of
local tokens with addresses of output ports that exist on the node.

The Execute Unit must first convert a global token to a local token.
It does this by simply stripping off the node’s ID but retaining the
port ID and data value. It calls the function with the locals (input
tokens) and gets back a collection of locals (output tokens). The unit
converts these to globals by adding the current node’s ID back to
the tokens along with the port ID and data value.

In the original Manchester design, nodes were defined by an op-
code in the same way that assembly language instructions in a
typical microprocessor are given numeric identifiers. The Execute
Unit knew how to execute an op-code it received so the Execute
Token only needed to include an op-code number instead of the
full node definition like this implementation requires. In software

Asynchronous Dataflow Implementation 18

it costs the same to pass an integer as it does to pass the full node
definition and makes the design more general.

2.5 Program Execution Example

1

Node #1 i Node #2

#1

Node #3

Example Program. The number next to the port is the Port Id

We will assume that the dataflow program is already loaded into
the engine. Node #1 is the first node to activate. When it is done,
the node pushes a new token to its output port (#1) with the address
of (Node #1, Port #1). This states that the token is currently on the
output end of the arc between nodes #1 and #2. Then Node #2 fires
since it has a token on its input.

For that sequence to happen, the engine has to do the following...

Immediately after starting the engine with the example dataflow
program, there are no tokens in the program. The Enable Unit
normally first looks at its incoming tokens to see if a node can be
executed due to the new token. In this case, there are no input tokens
to the Enable Unit but it finds that Node #1 is a source node so
that means it can fire all the time. So the Enable Unit creates a new
Execution Token with Node #1’s definition as its contents and sends
it to the Execute Unit.

The Execute unit sees that it has a new Execute Token waiting
so it consumes the token and fires the Node Definition found

Asynchronous Dataflow Implementation 19

in the Execute Token. As mentioned above, activating Node #1
pushes a new token to its output. The Execute Unit gets the token,
produced from Node #1, and sends that to the input IO Unit which
immediately sends it to the Transmit Unit.

Remember that the token’s address is (Node #1, Port #1)... The
Transmit Unit looks in the collection of all arcs in the system to find
where the token should be sent. Node #1’s output arc connects to
Node #2’s input port #1. So the Transmit Unit changes the address
of the token to (Node #2, Port #1) saying that the token has been
moved to the input port of Node #2. The token with the updated
address is passed to the output IO Unit. Since the address of the
token is local to this engine, it sends the token to the Enable Unit.

Now the Enable Unit will look at the incoming token and see that
now Node #2 can fire because a token is waiting on its input. It takes
the token and places it into an Execute Token along with the Node
Definition for Node #2.

The Execute Unit then activates Node #2 just like it did before with
Node #1 and the cycles continue.

2.6 Preparing a Program for Execution

This example implementation does not include any means to con-
vert a human friendly format (program text) to the engine’s repre-
sentation. Besides parsing and validating the program text, which
is the same for every programming language, the only other thing
required is to generate a unique ID for every node in the program.

This is the run-time identifier that uniquely identifies every node
in the engine.

The best choice is to use Universally Unique IDs (UUIDs also called
GUIDs). Second best is to use unique integers. UUIDs take up 128
bits each so space could be an issue for some designs.

Asynchronous Dataflow Implementation 20

UUIDs are best because they only need to be defined once and
allow us to change the graph at run-time without worrying about
generating duplicate integer IDs. They also can be used to refer to
a specific version of a node. If you generate a new UUID anytime
a breaking change is made to a node, all existing code referring to
the old UUID will continue to work as expected.

Choose wisely because the type of ID impacts the maximum
number of nodes you can have in the engine at any one time and
thus restricts maximum program size.

The end result of the preparation phase is a filled in Node Store and
Arc Store that is passed to the engine to execute.

2.7 Multiple Dataflow Engines

The Manchester architecture was designed to be easy to combine
with other processors. Simply connect the IO units of a few of them
to a bus so they can communicate. The tokens will be sent anywhere
the address specifies.

This design does not handle multi-engine configurations as well
as it could. The addition of an engine ID to the Port Address type
would allow you to easily move nodes around to other engines to
balance the load. It only takes changing the addresses on the arcs
and a few other minor changes.

With multiple engines, some sort of overseer is necessary to balance
the load and move code from one engine to another. This implemen-
tation was designed as an example of an asynchronous dataflow
engine so no effort was spent on external components to make it
easy to combine with other engines.

	Table of Contents
	Introduction
	Overview of the Book
	Reactive Programming is Dataflow
	Von Neumann Architecture
	Benefits of Dataflow
	History
	The Purpose of this Book

	Asynchronous Dataflow Implementation
	Architecture Overview
	Implementation Walk-Through
	Main Data Types
	Port Address
	Data Token
	Execute Token
	Node
	Node Definition
	Arc
	Fire Pattern
	Token Store
	Node Store
	Arc Store
	Dataflow Program

	Implementation Components
	IO Unit
	Transmit Unit
	Enable Unit
	Execute Unit

	Program Execution Example
	Preparing a Program for Execution
	Multiple Dataflow Engines

