

Data Analysis and Visualisation in Climate Science

A Programmer's Guide

Data Analysis and Visualisation in Climate Science

A Programmer's Guide

Sebastian Engelstaedter

This book is available at

<http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>

This version was published on 2024-08-12

This is a [Leanpub](#) book. Leanpub empowers authors and publishers with the Lean Publishing process. [Lean Publishing](#) is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

© 2019 - 2024 Sebastian Engelstaedter

This edition of the book is dedicated to the late Simon Abele - geospatial data analysis genius who helped and supported countless SoGE students and researchers over the years.

Contents

Preface	i
Acknowledgements	i
1. Introduction	1
1.1 Overview and Objective	1
1.2 Concept of Local and Remote Machines	2
1.3 Software	3
2. Climate Data	4
2.1 Climate Data Overview	4
2.2 Data Use Licences	4
2.3 Data Quality	4
2.4 Accessing Climate Data	4
2.5 Types of Climate Data	4
2.5.1 Analyses and Reanalyses Products	5
2.5.2 Climate and NWP Model Output	6
2.5.3 Point observations	6
2.6 Data File Formats	6
2.6.1 Plain Text and ASCII	6
2.6.2 Binary	7
2.6.3 GRIB	7
2.6.4 netCDF	7
2.6.5 PP	7
3. Unix	8
3.1 Introduction to Unix	8
3.1.1 Linux Distributions	8
3.1.2 Desktop versus Server	8

CONTENTS

3.1.3	High Performance Computing on a Server	8
3.2	Accessing a Remote Server	8
3.2.1	Remote Server Login Details	9
3.2.2	Virtual Private Network (VPN)	9
3.2.3	X Window System (X11 forwarding)	9
3.2.4	Connecting to a Remote Server	9
3.3	First Steps on the Unix server	11
3.3.1	The Terminal Window	11
3.3.2	The Shell	11
3.3.3	Linux Directory Structure and Home Directory	11
3.3.4	Quota	11
3.3.5	File Transfer to and from the Server	11
3.3.6	Mapping the Linux Home Directory as a Remote Network Drive	12
3.4	Some More Unix Server Basics	12
3.4.1	Unix Command Syntax}	12
3.4.2	Manual Pages	13
3.4.3	Editing Text Files	13
3.4.4	Full versus Relative Paths	13
3.4.5	Special Characters	13
3.5	Working with Files and Directories	13
3.5.1	Creating Text Files and Directories	13
3.5.2	Listing Files and Directories	13
3.5.3	Moving Around in the Directory Tree	14
3.5.4	Copying, Moving, Renaming and Deleting Files and Directories	14
3.6	Advanced Unix Commands	14
3.6.1	Examining Text Files	14
3.6.2	File and Directory Properties	14
3.6.3	File Permissions	14
3.6.4	Changing File Permissions and Ownership	16
3.6.5	Changing the Unix Account Password	16
3.6.6	Redirecting Command Output	16
3.6.7	Finding Files	16
3.6.8	File Compression and Archives	16
3.6.9	Download Files from the Command Line	16

CONTENTS

3.7	Long-running Jobs	16
3.7.1	GNU Screen (recommended)	17
4.	Multi-dimensional Gridded Datasets	18
4.1	The Earth's Coordinate System and Realms	18
4.2	The Model Grid	18
4.3	Grid Indexing and Geographical Referencing of Data Points	18
4.4	The Time Dimension	18
4.5	Horizontal Resolutions and Grid Types	19
4.5.1	Spectral Resolution	19
4.5.2	Full and Reduced Gaussian Grid	19
4.5.3	Regular latitude-longitude Grid	20
4.6	Vertical Level Types	20
4.6.1	Pressure, Potential Temperature and Potential Vorticity Levels	20
4.6.2	Sigma (Model) Levels	20
4.6.3	Sigma-Hybrid Levels	20
5.	The netCDF File Format	21
5.1	Introduction to the netCDF File Format	21
5.2	netCDF File Headers	21
5.2.1	Exploring netCDF File Headers with ncdump	22
5.2.2	Exploring netCDF File Headers with CDO	22
5.2.3	Exploring netCDF File Headers with ncview	22
5.3	Packed netCDF Files	22
5.4	netCDF File Format Conventions	22
6.	Python - Concepts and Work Environment	23
6.1	Python Overview	23
6.2	Python Concepts	23
6.2.1	Python Modules and Packages	23
6.2.2	Package Dependencies	26
6.2.3	Package Managers, Repositories and Channels	26
6.2.4	Virtual Environments for Python	26
6.2.5	Conda, Mamba or Micromamba?	26
6.2.6	Micromamba	26
6.2.7	Conda	27

CONTENTS

6.3	Python Code Development Solutions	28
6.3.1	Python Code Editors	28
6.3.2	Python IDEs	28
6.3.3	Browser-based Python Code Editing	28
6.3.4	The IPython Command Line	29
7.	Python - Programming Basics	30
7.1	Basic Python Programming Building Blocks	30
7.1.1	Declaring Variables	30
7.1.2	Variable Types and Conversion Between them	30
7.1.3	Functions	32
7.1.4	Methods and Attributes	33
7.1.5	Controlling the Code Flow	33
7.2	Applying Python in Climate Data Analysis	33
7.2.1	Error Messages when Running Code	33
7.2.2	Looping Through Input Files	33
7.2.3	Reading Data Files Into NumPy Variables	34
7.2.4	Executing Unix System Commands from Within Python	36
7.3	A Brief Introduction to Numpy	36
7.3.1	Creating Numpy Arrays	36
7.3.2	Indexing NumPy Arrays	36
7.3.3	Saving and Loading NumPy Variables	36
7.3.4	Some NumPy Solutions	36
7.4	Working with Dates and Times	37
7.4.1	Creating Date Objects	37
7.4.2	Converting Datetime Objects to Strings (<code>strftime</code>) . . .	37
7.4.3	Creating a NumPy Array with Datetime Objects	37
7.5	Tips and Solutions	37
7.5.1	Managing Paths and Filenames Using <code>pathlib</code>	37
7.5.2	String Formatting of Numbers	38
7.5.3	Zero-padding Integer Values in Filenames	38
7.5.4	Calculate Height from Geopotential with MetPy	38
8.	Python - Data Analysis with Xarray	39
8.1	What is Xarray?	39
8.2	Xarray Basics	39

CONTENTS

8.2.1	Xarray Terminology	39
8.2.2	Import Xarray into Python Script	39
8.3	Reading in netCDF Files Using Xarray	39
8.3.1	Reading in a Single netCDF File	40
8.3.2	Reading in Multiple netCDF Files	40
8.3.3	Reading in Very Large (memory-intensive) netCDF Files	40
8.3.4	Additional Considerations for Reading in netCDF Files	40
8.4	DataSets vs DataArrays	40
8.5	Exploring File Content	41
8.5.1	Print DataSet	41
8.5.2	Print DataArray	41
8.5.3	Accessing DataArray Elements	41
8.6	Dates and Times in Xarray	42
8.6.1	Retrieving Date/Time Information Using Datetime Accessors	42
8.6.2	Passing Date/Time Information to DataArray Methods	42
8.7	Selections	42
8.7.1	Selecting Variables	43
8.7.2	sel() vs isel()	43
8.7.3	Selecting Spatial Subsets (Geographical Regions)	43
8.7.4	Selecting Vertical Levels	43
8.7.5	Selecting Timesteps	44
8.8	Resampling - Downsampling the Time Dimension	45
8.8.1	Resampling to Daily Statistics	45
8.8.2	Resampling to Monthly Statistics	45
8.8.3	Resampling to Yearly Statistics	45
8.9	Aggregation - Calculating Statistics Over Dimensions	46
8.9.1	Aggregation Over the Time Domain	46
8.9.2	Aggregation Over the Spatial Domain	46
8.9.3	Aggregation Over the Vertical Domain	46
8.9.4	Aggregation Over the Zonal Domain	46
8.9.5	Aggregation Over the Meridional Domain	46
8.9.6	Aggregation for Hovmöller Plots	47
8.10	The Split-Apply-Combine Concept	47
8.10.1	Group by Hour	47
8.10.2	Group by Month	47

CONTENTS

8.11	8.10.3 Group by Season	47
8.11	Interpolation	48
	8.11.1 Simple Interpolation Example	48
	8.11.2 Spatial Interpolation	48
	8.11.3 Interpolation Between two Geographical Points	48
8.12	Xarray Computations	49
	8.12.1 Direct Application of Arithmetic Operation	49
	8.12.2 NumPy Universal Functions - ufunc()	49
	8.12.3 Xarray Universal Functions - apply_ufunc()	49
8.13	Xarray MetPy Integration	49
8.14	More Xarray Methods and Attributes to Explore	49
	8.14.1 Some Useful Xarray Methods	50
	8.14.2 Some Useful Xarray Attributes	50
8.15	Xarray Plotting	50
8.16	Applying Xarray in Climate Computations	50
	8.16.1 The 1997 Indian Ocean Dipole Event	50
	8.16.2 Rainfall Variability in the Sahel	50
	8.16.3 Winds at In Salah (Algeria)	50
9.	Python - Creating Plots	51
9.1	Matplotlib	51
	9.1.1 Setting up a Plotting Page (Figure and Axes)	51
	9.1.2 Main Plotting Commands	51
	9.1.3 Colour Names and Colour Maps	51
9.2	Line Plots	51
	9.2.1 Line Plot with Labels	52
	9.2.2 Line Plot with Arrows	52
	9.2.3 Multiple Lines Plot with Markers and Legend	52
	9.2.4 Multiple Lines Plot with two Scales	52
	9.2.5 Multiple Lines Plot with Standard Deviation	52
9.3	Scatter Plots	52
	9.3.1 Scatter Plot with a Legend	52
	9.3.2 Scatter Plot with Divergent Colour Bar	53
	9.3.3 Scatter Plot on a Map with Colour Bar and Legend	53
	9.3.4 Adding Trend Line Based on Linear Regression	53
9.4	Map Plots	53

CONTENTS

9.4.1	Cartopy Map Projections	53
9.4.2	Cartopy Data Transformations	53
9.4.3	High-Resolution Map Features	54
9.4.4	Simple Map of SST Anomalies	58
9.4.5	Map with Stipples for Statistical Significance	62
9.5	Bar Graphs	63
9.5.1	Anomalies Bar Graph	63
9.6	Hovmöller Plots	63
9.6.1	Hovmöller Plot with Time as a Function of Latitude . .	63
9.6.2	Hovmöller Plot with Time as a Function of Pressure . .	63
9.7	Vertical Cross-Section Plots	63
9.7.1	Meridional Cross-Section	64
9.7.2	Vertical Cross-Section Between two Points	64
9.8	Skew-T Plots	64
9.8.1	Brief Introduction to Skew-T Plots	64
9.8.2	Simple Skew-T Plot	71
9.8.3	Multiple Skew-T Plots	71
9.9	Vector and Streamline Plots	71
9.9.1	Black Wind Vectors on Filled Colour Contours	71
9.9.2	Coloured Wind Vectors	71
9.9.3	Streamline Plot	72
9.10	Looping Through Multiple Panels	72
9.10.1	Multiple Line Plots (<code>axes.flat</code> method)	72
9.10.2	Multiple Line Plots (<code>pop()</code> function)	72
9.10.3	Multiple Map Plots (<code>axes.flat</code> method)	72
10.	Data Analysis with CDO	73
10.1	What is CDO?	73
10.2	Useful CDO Resources	73
10.3	Basic Syntax of CDO Commands	73
10.3.1	CDO Options	73
10.3.2	CDO Operator Categories	73
10.3.3	Using Multiple CDO Operators	74
10.3.4	CDO Operator Parameters	74
10.3.5	CDO Command Input and Output Files	74
10.4	Merging Files	74

CONTENTS

10.5	Selections	74
10.5.1	Selecting Variables	74
10.5.2	Selecting Spatial Subsets (Geographical Regions)	74
10.5.3	Selecting Vertical Levels	75
10.5.4	Selecting Time Subsets	75
10.6	Basic Statistics	75
10.6.1	Statistics over the Time Domain	75
10.6.2	Statistics over the Spatial Domain	75
10.6.3	Statistics over the Vertical Domain	75
10.6.4	Statistics over the Zonal Domain	76
10.6.5	Statistics over the Meridional Domain	78
10.6.6	Statistics over Ensembles	79
10.7	Interpolations	79
10.7.1	Interpolation to a new horizontal grid (remapping)	79
10.7.2	Interpolation in the Vertical Domain	79
10.7.3	Interpolation in the Time Domain	79
10.8	Basic Arithmetic	79
10.8.1	Arithmetric Between Two Files	80
10.8.2	Arithmetic Using a Constant Value	80
10.9	Applying CDO in Climate Computations	80
10.9.1	Indian Ocean Dipole Example	80
10.9.2	Sahel Rainfall Variability Example	80
10.9.3	Creating a Land-Sea Mask File	80
10.10	Using CDO with Python	80
	Appendix	81
	List of Acronyms	81

Preface

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

Acknowledgements

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

1. Introduction

The field of climate and environmental sciences has been constantly growing in importance over the last few decades mainly due to an increased need to understand how the climate system works and how it may change in the future as a result of man-made climate change. Similar to a craftsman who as part of his apprenticeship needs to learn what tools are available to work wood and hone his skills in how to use them, young researchers need to learn what software is available, what the software can do and how to use it.

Climate and environmental data come in a variety of formats depending on the nature of the data and the preference of the scientists or organisations who compiled or generated them. The analysis and subsequent visualisation of such data requires a good understanding of the file formats and data structures as well as the tools that can be used to manipulate them, to calculate statistics and to visualise the output.

The material presented in this book is based on about 20 years of experience working in the field of climate sciences and teaching climate data analysis and visualisation courses to students at all levels at the University of Oxford. The aim of this book is to introduce students to the technical background, set of tools and programming skills required to successfully analyse climate datasets and produce scientific output in publishable format.

1.1 Overview and Objective

In most institutions where work on climate and environmental data is being carried out the storage, analysis and visualisation of climate data is done on Unix servers. This is because Unix servers tend to have large disk arrays attached to them which provide the storage capacity needed to store large datasets (petabytes range). In addition, they allow fast read and write operations and have substantially more processing power than standard desktop or laptop machines. If storage capacity and processing power is not essential (e.g., for exploratory research) then all of

the software packages discussed in this book can also be installed on local PCs or laptops as long as they are running a Linux operating system. All software packages introduced in this book are freely available for research purposes.

This book provides an introduction to different types of climate data and the main data formats in which they are being made available with a specific focus on the most commonly used formats such as comma-separated values (CSV) and Network Common Data Form (netCDF) files. The nature of gridded data will be discussed as well as ways to explore the content of netCDF files. Students will learn how to work on the Unix command line, how to use tools such as Climate Data Operators (CDO) and the Python programming language to handle climate data saved in netCDF file format, how to calculate climate statistics and how to visualise the output. Many code examples will help in the learning process. Additional tools and techniques will be discussed which will help with the data analysis and visualisation tasks including how to deal with long-running processing jobs, which code editors to use and how to set up isolated coding environments on the server.

For many of the subjects and software packages covered in this book (e.g., Unix, CDO, Python) detailed in-depth user guides, tutorials and books exist. The focus of this book is to integrate the different tools that have been shown to work well in climate computing into a single framework that allows to create a seamless work flow from understanding and analysing data through to computational data analysis and the publication of high-quality graphical output in an efficient way.

While the collection of tools and techniques presented here have been shown to work well for most climate computing tasks it should be noted that there are many roads to get from A to B and there is no doubt that scientists around the world have created data analysis environments and programming solutions that differ from what is presented here. Where appropriate references to additional tools or solutions are given.

1.2 Concept of Local and Remote Machines

It is assumed that students are familiar with working on a laptop or desktop computer running either a Microsoft Windows, macOS or Linux operating system. These computers are normally owned by the user or provided by the work place and are generally referred to as local computers or local machines.

It is also assumed that the climate data analysis and visualisation tasks will be performed on a server or server cluster running Unix/Linux. A server can be thought of as a more powerful computer with extended disk arrays attached for storage. A server may also be referred to as a remote server or remote machine because they tend to be located physically in a different place from your local machine such as in a different building or in a research centre somewhere else in the world. When multiple servers are combined to create a more powerful setup then this is referred to as a server cluster or a computational research cluster.

In general, the local machine is used to connect to the remote server. This means that it is possible to work from anywhere in the world as long as a reasonably fast and stable internet connection is available.

1.3 Software

The software that is required on the local machine that allows to connect to the remote server differs between operating systems. The software will be introduced in [Section 3.2](#) and will be discussed separately for each operating system. Every aspect of climate computing discussed in this book can be achieved using open source software.

The administrator rights for the installation of software on local machines will very likely lie with either the user or with IT office of the institution that provides the computer (e.g., department or research centre). In the latter case, it may be necessary to contact the IT administrator to install the required software.

With regards to software on the remote server, users will have no or only very limited control over the software installed and have to rely on the remote server system administrator. However, it is very likely that most, if not all, software is already installed on the remote server if that server is frequently used for climate data analysis.

In exceptional circumstances, where a remote server is not available or accessible and the climate data to be analysed are small enough then a local machine (PC or laptop) may be used for data analysis. While Python can be installed on any operating system (Windows, macOS or Linux) some of the other software tools such as CDO, ncdump or ncview works best on a Linux system.

2. Climate Data

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

2.1 Climate Data Overview

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

2.2 Data Use Licences

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

2.3 Data Quality

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

2.4 Accessing Climate Data

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

2.5 Types of Climate Data

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

2.5.1 Analyses and Reanalyses Products

In order to predict future states of the atmosphere, numerical weather prediction (NWP) models require as input spatially varying meteorological fields that describe the state of the atmosphere at the time of model initialisation. A complete and spatiotemporally consistent observational dataset without gaps is needed here. This is achieved by assimilating point observations from weather stations, buoys and ships as well as satellite retrievals into gridded observational products by means of modelling and statistical methods. The output from this process can then be used to initialise the forecast simulation. These gridded observation-based data products are called *analyses*.

A gridded observational dataset without gaps has considerable value for the study of climate. However, due to model updates and continuous improvements in the assimilation process, analysis products can develop inconsistencies through time. For this reason initiatives have been set up to regenerate observational input fields over extended periods (usually decades) using a ‘frozen’ (fixed) version of the assimilation and model code. These products are called *reanalyses*. Reanalysis products also contain model-generated fields that are not based on observations. Because reanalyses are internally consistent over time they are often used to study climate processes and variability from the recent past. Some of the latest reanalysis products and their properties are listed in Table 2.5.1.1.

Table 2.5.1.1: Some of the reanalyses commonly used in climate science and modelling.

Institution	Name	Period	Resolution	Reference
ECMWF	ERA-40	1957 - 2002	1.125 x 1.125 x 60	Uppala et al., 2005 ¹
ECMWF	ERA-Interim	1979 - 2018	0.75 x 0.75 x 60	Dee et al., 2011 ²
ECMWF	ERA-5	1950 - present	0.28125 x 0.28125 x 137	Hersbach et al., 2020 ³
ECMWF	ERA-20CM	1900 - 2010	0.75 x 0.75 x 137	Hersbach et al., 2015 ⁴
NCEP/DOE	Reanalysis 2	1979 - present	2.5 x 2.5 x 28	Kanamitsu et al., 2002 ⁵

¹<https://doi.org/10.1256/qj.04.176>

²<https://doi.org/10.1002/qj.828>

³<https://doi.org/10.1002/qj.3803>

⁴<https://doi.org/10.1002/qj.2528>

⁵<https://doi.org/10.1175/BAMS-83-11-1631>

Table 2.5.1.1: Some of the reanalyses commonly used in climate science and modelling.

Institution	Name	Period	Resolution	Reference
NCEP	CFSR	1979 - present	0.5 x 0.5	Saha et al., 2010 ⁶
NASA	MERRA	1979 - 2016	0.667 x 0.5 x 42	Rienecker et al., 2011 ⁷
NASA	MERRA-2	1980 - present	0.625 x 0.5 x 42	Gelaro et al., 2017 ⁸
JMA	JRA-55	1958 - present	? x ? x 60	Kobayashi et al., 2015 ⁹

2.5.2 Climate and NWP Model Output

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

2.5.3 Point observations

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

2.6 Data File Formats

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

2.6.1 Plain Text and ASCII

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

⁶<https://doi.org/10.1175/2010BAMS3001.1>

⁷<https://doi.org/10.1175/JCLI-D-11-00015.1>

⁸<https://doi.org/10.1175/JCLI-D-16-0758.1>

⁹<https://doi.org/10.2151/jmsj.2015-001>

2.6.2 Binary

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

2.6.3 GRIB

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

2.6.4 netCDF

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

2.6.5 PP

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3. Unix

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.1 Introduction to Unix

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.1.1 Linux Distributions

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.1.2 Desktop versus Server

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.1.3 High Performance Computing on a Server

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.2 Accessing a Remote Server

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.2.1 Remote Server Login Details

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.2.2 Virtual Private Network (VPN)

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.2.3 X Window System (X11 forwarding)

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.2.3.1 X Window System on Windows OS

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.2.3.2 X Window System on macOS

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.2.3.3 X Window System on Linux

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.2.4 Connecting to a Remote Server

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.2.4.1 Connecting to a Remote Server from Windows OS

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.2.4.2 Connecting to a Remote Server from macOS

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.2.4.3 Connecting to a Remote Server from Linux OS

For users working on a Linux OS such as *Ubuntu* or *Mint* the communication between the local machine and remote server is relatively straightforward. Access the remote server from a Linux machine by following the steps outlined below.

1. Open a command line interface (CLI) by starting the program *Terminal*. It should be available in all Linux distributions by default.
2. Use the command below to connect to the remote server. `ssh` starts a Secure Shell connection. `-Y` enables *X11 forwarding*.

```
ssh -Y jsmith@linux.ouce.ox.ac.uk
```

3. `username` is the username of user's Unix server account. `servername` is the name of the Unix server.
4. The user will be prompted to enter a password.

Upon first login to a remote server the following prompt may appear.

```
The authenticity of host 'servername (163.1.38.97)' can't
be established. RSA key fingerprint is
4d:fa:ab:36:c0:c4:5f:c2:e6:a6:0f:2a:d4:48:af:24. Are you
sure you want to continue connecting (yes/no)?
```

Confirm this by typing `yes`. This message will not appear on subsequent logins.

3.3 First Steps on the Unix server

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.3.1 The Terminal Window

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.3.2 The Shell

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.3.3 Linux Directory Structure and Home Directory

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.3.4 Quota

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.3.5 File Transfer to and from the Server

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.3.5.1 File Transfer between Windows OS and Remote Server

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.3.5.2 File Transfer on the Command Line for macOS and Linux

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.3.6 Mapping the Linux Home Directory as a Remote Network Drive

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.3.6.1 Mapping Home Directory on Windows

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.3.6.2 Mapping Home Directory on macOS

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.3.6.3 Mounting Home Directory on Linux

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.4 Some More Unix Server Basics

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.4.1 Unix Command Syntax}

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.4.2 Manual Pages

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.4.3 Editing Text Files

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.4.4 Full versus Relative Paths

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.4.5 Special Characters

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.5 Working with Files and Directories

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.5.1 Creating Text Files and Directories

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.5.2 Listing Files and Directories

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.5.3 Moving Around in the Directory Tree

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.5.4 Copying, Moving, Renaming and Deleting Files and Directories

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.6 Advanced Unix Commands

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.6.1 Examining Text Files

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.6.2 File and Directory Properties

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.6.3 File Permissions

Understanding the permission part of the file properties (first line in [Table 3.6.2.1](#)) can be challenging at first. However, it is important to understand file permissions as they control who can read, edit and execute the file.

File permission are divided into four sections and contain a total of ten characters [Figure 3.6.3.1](#). The first section (yellow) is a single character that shows the file type.

The letter `d` indicates a *directory*, a hyphen (-) indicates a *file* and the letter `l` indicates a link.

The following three sections contain sets of three characters showing the permissions for the *user* (blue), *group* (green) and *others* (orange) (Figure 3.6.3.1). The *user* is also sometime referred to as the *owner*.

The order of the three characters in each section shows the permissions for *read* (r, first character), *write* (w, second character) and *execute* (x, third character). If the letter r, w or x is set then read, write and execute permission have been granted. If, instead of a letter, a hyphen (-) is shown then the specific permission has not been granted.

The example shown in Figure 3.6.3.1 (`-rwxr-xr-x`) is a very commonly used set of permissions that allows the user to read, write and execute the file and members of the group and others (everyone else on the system) to only read and execute the file. This means that no one apart from the user can modify the file but everyone else can read, copy and execute it.

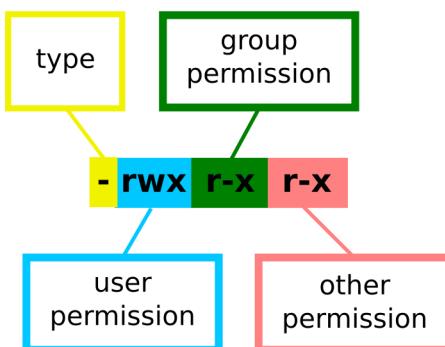


Figure 3.6.3.1: Unix file permissions.

In some cases a plus symbol (+) is shown as an eleventh character indicating that extended file permissions have been set using *Access Control Lists* (not covered in this book).

3.6.4 Changing File Permissions and Ownership

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.6.5 Changing the Unix Account Password

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.6.6 Redirecting Command Output

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.6.7 Finding Files

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.6.8 File Compression and Archives

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.6.9 Download Files from the Command Line

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.7 Long-running Jobs

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

3.7.1 GNU Screen (recommended)

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

4. Multi-dimensional Gridded Datasets

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

4.1 The Earth's Coordinate System and Realms

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

4.2 The Model Grid

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

4.3 Grid Indexing and Geographical Referencing of Data Points

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

4.4 The Time Dimension

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

4.5 Horizontal Resolutions and Grid Types

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

4.5.1 Spectral Resolution

The atmospheric part of most global climate models consists of a spectral model that uses spherical harmonics to calculate model variables instead of calculating them for grid points. Spectral models are computationally more efficient than grid point models. The model resolution is usually expressed in the form $T \times L$ where T is the spectral resolution of the model and L is the number of vertical levels. The vertical levels part is, however, often omitted. The spectral resolution of some reanalysis models is listed in [Table 4.5.1.1](#).

Table 4.5.1.1: Spectral resolution of some reanalysis models.

Parameter	Spectral Resolution	Resolution [km]	Grid Resolution [°]
ERA-40	T159L60	125	1.125 x 1.125
ERA-Interim	T255L60	80	0.75 x 0.75
ERA5	T639L137	30	0.28125 x 0.28125
NCEP CFSR	T382L64	38	0.25 x 0.25, 0.5 x 0.5
NCEP-DOE R2	T62L28		2.5 x 2.5
MERRAv2		50	0.5 x 0.625
JRA-55	TL319L60	55	1.25 x 1.25

4.5.2 Full and Reduced Gaussian Grid

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

4.5.3 Regular latitude-longitude Grid

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

4.6 Vertical Level Types

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

4.6.1 Pressure, Potential Temperature and Potential Vorticity Levels

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

4.6.2 Sigma (Model) Levels

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

4.6.3 Sigma-Hybrid Levels

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

5. The netCDF File Format

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

5.1 Introduction to the netCDF File Format

The netCDF file format (Section 2.6.4) has become the most commonly used data file format for saving gridded climate data in recent years. The first step in climate data analysis after obtaining access to data files is to get a good understanding of the contents of the file. It is essential to understand how the data stored within netCDF files are organised and what the data represent as this is the basis for any subsequent data operations. The most important questions to ask of a data file are as follows:

- What temporal and spatial dimensions are associated with the data fields?
- What is the spatial resolution and what spatial domain is covered?
- What is the temporal resolution and what time period is covered?
- Which data variables are saved in the file?
- What units are the data variables saved in?

The variable names and variable dimensions are especially important as these are needed to read in the data correctly into analysis software packages such as Python. In addition, it may be helpful to find out what the time unit and the reference time used is (discussed later in more detail). All the information needed to answer the above questions is stored in the netCDF file headers, sometimes also called file metadata. The netCDF file headers describe most aspects of the data the file contains, hence why this data format is referred to as *self-describing*.

5.2 netCDF File Headers

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

5.2.1 Exploring netCDF File Headers with ncdump

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

5.2.2 Exploring netCDF File Headers with CDO

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

5.2.3 Exploring netCDF File Headers with ncview

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

5.3 Packed netCDF Files

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

5.4 netCDF File Format Conventions

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6. Python - Concepts and Work Environment

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.1 Python Overview

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.2 Python Concepts

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.2.1 Python Modules and Packages

The concept of modular building blocks underpins Python software development. The smallest building block is a Python *module* which is just a single file that contains valid Python code (a Python module can also be written in the C programming language). Python files have the file extension `.py`. It is unpractical to write large Python applications in single files and therefore they tend to be split up into individual modules (files). Combining different modules to create a larger application is referred to as *packaging*. The result is a Python *package*.

100K+ Python packages have been developed over the years for all kinds of purposes. Some are well supported and being actively developed while others are not. The latter tend to not stand the test of time. For the purpose of climate computations

and visualisation only a small number of well-supported Python packages is needed with each package serving a specific purpose (Table 6.2.1.1). For instance, the *NumPy* package allows computations with multi-dimensional number arrays while the *Matplotlib* package provides functionality for everything related to plotting data.

Table 6.2.1.1: Some of the Python packages commonly used in climate computing and visualisation.

Package	Purpose
Cartopy¹	Geospatial data processing for creating maps and other geospatial data analyses.
IPython²	Powerful shell for interactive computing.
Iris³	Powerful, format-agnostic interface for working with multi-dimensional earth science data.
Matplotlib⁴	Cross-platform 2D plotting library and interactive environments.
MetPy⁵	Reading, visualizing, and performing calculations with weather data.
netCDF4⁶	Object-oriented python interface to the netCDF version 4 library.
NumPy⁷	Powerful scientific computing on N-dimensional arrays.
Pandas⁸	Data analysis and manipulation tool.
SatPy⁹	Reading, manipulating, and writing data from remote-sensing earth-observing satellite instruments.
Scikit Learn¹⁰	Machine learning library.

¹<https://scitools.org.uk/cartopy/docs/latest/>

²<https://ipython.org>

³<https://scitools.org.uk/iris/docs/latest>

⁴<https://matplotlib.org>

⁵<https://unidata.github.io/MetPy/latest/index.html>

⁶<https://unidata.github.io/netcdf4/latest/>

⁷<https://numpy.org/>

⁸<https://pandas.pydata.org>

⁹<https://satpy.readthedocs.io/en/stable/>

¹⁰<https://scikit-learn.org/stable>

Table 6.2.1.1: Some of the Python packages commonly used in climate computing and visualisation.

Package	Purpose
SciPy ¹¹	Libraries for mathematics, science, and engineering.
Xarray ¹²	Working with labelled multi-dimensional arrays such as data from netCDF files.

The modular Python building blocks concept can be taken one step further by combining packages to create even larger and more complex applications. This creates a semi-layered structure of lower to higher level Python packages as shown in Figure 6.2.1.1. The links between packages are further explored in the following section (Section 6.2.2).

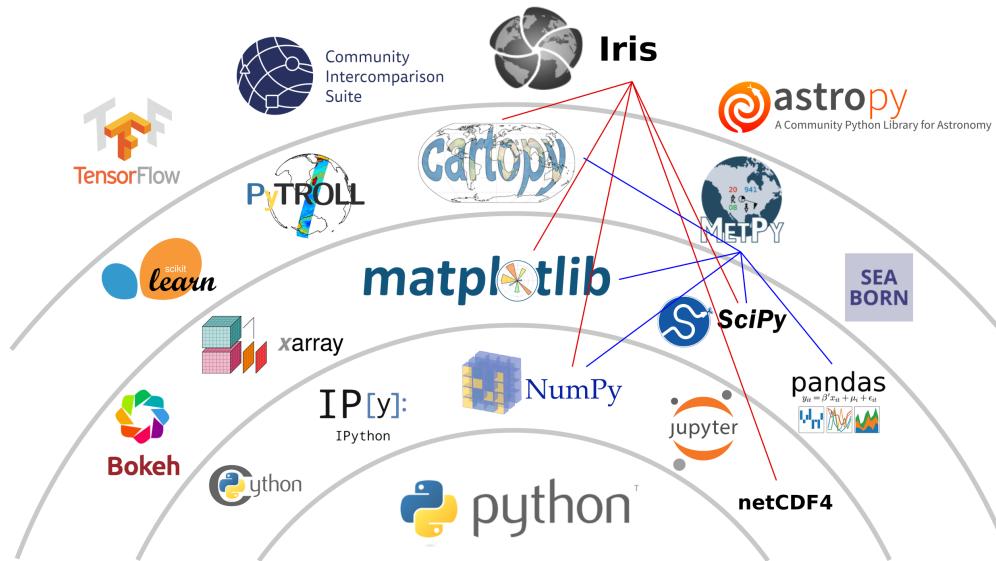


Figure 6.2.1.1: Schematic showing the semi-layered structure of Python packages from lower-level (bottom) to higher-level (top). Examples of dependencies are indicated for Iris (red lines) and MetPy (blue lines).

¹¹<https://www.scipy.org>

¹²<https://docs.xarray.dev/en/stable/>

6.2.2 Package Dependencies

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.2.3 Package Managers, Repositories and Channels

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.2.4 Virtual Environments for Python

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.2.5 Conda, Mamba or Micromamba?

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.2.6 Micromamba

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.2.6.1 Creating a Micromamba Environment

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.2.6.2 Activating and Deactivating Micromamba Environments

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.2.6.3 Installing Python Packages with Micromamba

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.2.6.4 Listing and Deleting Micromamba Environments

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.2.7 Conda

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.2.7.1 Creating a Conda Environment

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.2.7.2 Activating and Deactivating Conda Environments

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.2.7.3 Installing Python Packages

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.2.7.4 Listing and Deleting Conda Environments

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.3 Python Code Development Solutions

Code written in the Python programming language is saved in plain text files (see [Section 2.6.1](#)) with file names having the extension `.py`. In principle, these files are no different from any other text file. Therefore, any software that allows to create and edit plain text files could in theory be used for Python code development. However, there are many factors to consider, and finding the most effective way to develop, edit, and execute Python code can be challenging and often depends on personal preferences, stability of the sever connection and the implementation of specific features into some of the software solutions.

In the following sub-sections some concepts and options for Python code development are discussed including Python code editors ([Section 6.3.1](#)), integrated development environments ([Section 6.3.2](#)), browser-based solutions ([Section 6.3.3](#)) and the IPython command line [Section 6.3.4](#).

6.3.1 Python Code Editors

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.3.2 Python IDEs

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.3.3 Browser-based Python Code Editing

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.3.3.1 Jupyter Notebooks

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.3.3.2 VS Code (code-server)

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

6.3.4 The IPython Command Line

IPython¹³ is a enhanced Python shell that provides a kernel for Jupyter. IPython is used in Jupyter Notebooks but can also be installed in Conda or Micromamba environment. For instance, IPython can be installed in a Micromamba environment with the following command.

```
micromamba install ipython
```

The IPython command line is extremely useful for working interactively with Python. It is worth working through the official IPython [tutorial](#)¹⁴ but there are also many IPython tutorials available on [YouTube](#)¹⁵.

¹³<https://ipython.org/>

¹⁴<https://ipython.readthedocs.io/en/stable/interactive/index.html>

¹⁵https://www.youtube.com/results?search_query=IPython

7. Python - Programming Basics

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.1 Basic Python Programming Building Blocks

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.1.1 Declaring Variables

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.1.2 Variable Types and Conversion Between them

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.1.2.1 Numbers

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.1.2.2 Strings

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.1.2.3 Lists

Lists can be created using square brackets ([]). The elements in a list are separated by commas (,). The elements in a list often are but do not need to be of the same variable type. Lists containing sequences of numbers or names of models over which to loop are quite common in climate computing. List elements can be referenced using indexes. The following are some examples of indexing and manipulating lists.

```
a = [1, 2, 3, 4, 5]

print(a)          # Print whole list
print(a[0])       # Print 1st list element
print(a[2:3])     # Print 3rd to 4th list element
print(a[-1])      # Print last list element
a.append(100)     # Append value 100 at the end of the list
print(a)
a.insert(2, 50)   # Insert value 50 after the 2nd list element
print(a)
a.remove(50)      # Remove list element specified by it's value
print(a)
del a[3]          # Remove list element specified by it's index
print(a)
```

The methods `append()` and `insert()` in the code examples above are associated with the list variable (python object) `a`. Python object *methods* and *attributes* are discussed in more detail in [Section 7.1.4](#). The above code will generate the following output.

```
[1, 2, 3, 4, 5]
1
[3]
5
[1, 2, 3, 4, 5, 100]
[1, 2, 50, 3, 4, 5, 100]
```

Lists are *mutable* which means that they can be changed after they have been created as shown in the above examples.

A Python object is *mutable* if it can be changed after it was created. Lists are *mutable*. In contrast, Tuples [Section 7.1.2.5](#) are *immutable*.

7.1.2.4 Dictionaries

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.1.2.5 Tuples

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.1.2.6 Booleans

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.1.2.7 Converting Between Variable Types

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.1.3 Functions

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.1.3.1 Built-in Functions

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.1.3.2 User-defined Functions

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.1.4 Methods and Attributes

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.1.5 Controlling the Code Flow

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.1.5.1 *for*-Loops

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.1.5.2 Conditional Statement

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.2 Applying Python in Climate Data Analysis

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.2.1 Error Messages when Running Code

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.2.2 Looping Through Input Files

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.2.2.1 Constructing File Names Manually

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.2.2.2 Constructing File Names Using the Python `glob` Module

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.2.2.3 Constructing File Names Using the Unix `find` Command

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.2.2.4 Looping over Months, Days, Hours

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.2.3 Reading Data Files Into NumPy Variables

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.2.3.1 Reading Data from netCDF Files

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.2.3.2 Reading Data from Formatted ASCII Files

Sometimes climate data are made available as formatted ASCII files (see [Section 2.6.1](#)). The data values tend to be organised in rows and columns sometimes including a few lines in the beginning of the file known as file headers. If the values in each row are separated by commas then they are called *comma-separated values* (CSV files)

and the standard file extension `.csv` should have been used (this is not always done). Other separators are also possible including tabs or white spaces.

The following is an example of a CSV file listing date, time, wind speed and wind direction information for every hour of the year 2011. The file includes two lines at the beginning (the file header) providing the station ID and the column headers.

```
Station ID 65340
date [YYYY/MM/DD], time [hours], wind speed [m/s], wind direction [sector]
2011/01/01, 0, 1.5, N
2011/01/01, 1, 1.8, NE
2011/01/01, 2, 2.1, N
2011/01/01, 3, 2.6, N
2011/01/01, 4, 3.7, NW
2011/01/01, 5, 5.2, W
...
2011/12/31,22, 0.2, W
2011/12/31,23, 0.5, W
2011/12/31,24, 0.3, W
```

The following Python code reads in the CSV file assuming that the data are saved in a file named `wspd_2011.csv`. The `numpy` module is imported in line 1 and given the alias `np`. Line 3 assigns the input file name to the variable `ifile`. In lines 4 to 7 the actual data values are read into the variables `d`, `t`, `wspd` and `wdir`, respectively. The `loadtxt` function from the `np` module requires some arguments (inside brackets) that tell the function how to read in the data. These arguments are the input filename (`ifile`) followed by the data type (`dtype`), the delimiter (`delimiter`), the number of rows to skip in the beginning of the file (`skiprows`) and the column to read in (`usecols`).

```
1 import numpy as np
2
3 ifile = 'long/path/to/file/wspd_2011.csv'
4 d = np.loadtxt(ifile, dtype=str, delimiter=',', skiprows=2, usecols=(0,))
5 t = np.loadtxt(ifile, dtype=int, delimiter=',', skiprows=2, usecols=(1,))
6 wspd = np.loadtxt(ifile, dtype=float, delimiter=',', skiprows=2, usecols=(2,))
7 wdir = np.loadtxt(ifile, dtype=str, delimiter=',', skiprows=2, usecols=(3,))
```

The data are now available for the remaining part of the code as NumPy arrays `d`, `t`, `wspd` and `wdir`.

7.2.3.3 Read Data from an Excel Spreadsheet

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.2.4 Executing Unix System Commands from Within Python

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.3 A Brief Introduction to Numpy

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.3.1 Creating Numpy Arrays

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.3.2 Indexing NumPy Arrays

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.3.3 Saving and Loading NumPy Variables

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.3.4 Some NumPy Solutions

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.3.4.1 Round a Float Value to specified Decimal Degree

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.4 Working with Dates and Times

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.4.1 Creating Date Objects

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.4.2 Converting Datetime Objects to Strings (`strftime`)

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.4.3 Creating a NumPy Array with Datetime Objects

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.5 Tips and Solutions

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.5.1 Managing Paths and Filenames Using `pathlib`

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.5.1.1 Pathlib - Basics

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.5.1.2 Pathlib - Managing Directories

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.5.1.3 Pathlib - Extract Parts from Directory or Filename

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.5.1.4 Pathlib - Glob

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.5.2 String Formatting of Numbers

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.5.3 Zero-padding Integer Values in Filenames

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

7.5.4 Calculate Height from Geopotential with MetPy

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8. Python - Data Analysis with Xarray

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.1 What is Xarray?

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.2 Xarray Basics

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.2.1 Xarray Terminology

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.2.2 Import Xarray into Python Script

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.3 Reading in netCDF Files Using Xarray

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.3.1 Reading in a Single netCDF File

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.3.2 Reading in Multiple netCDF Files

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.3.3 Reading in Very Large (memory-intensive) netCDF Files

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.3.4 Additional Considerations for Reading in netCDF Files

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.3.4.1 Packed netCDF Files in Xarray

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.3.4.2 netCDF Time Handling in Xarray

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.4 DataSets vs DataArrays

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.5 Exploring File Content

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.5.1 Print DataSet

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.5.2 Print DataArray

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.5.3 Accessing DataArray Elements

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.5.3.1 Accessing DataArray Values

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.5.3.2 Accessing DataArray Dimensions

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.5.3.3 Accessing DataArray Coordinates

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.5.3.4 Accessing DataArray Attributes

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.5.3.5 Accessing DataArray Name

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.6 Dates and Times in Xarray

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.6.1 Retrieving Date/Time Information Using Datetime Accessors

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.6.2 Passing Date/Time Information to DataArray Methods

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.7 Selections

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.7.1 Selecting Variables

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.7.2 sel() vs isel()

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.7.3 Selecting Spatial Subsets (Geographical Regions)

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.7.3.1 Region Longitudes WITHIN Longitude Coordinates Range

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.7.3.2 Region Longitudes OUTSIDE Longitude Coordinates Range

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.7.4 Selecting Vertical Levels

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.7.4.1 Selecting a Single Vertical Level

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.7.4.2 Selecting a Range of Vertical Level

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.7.4.3 Selecting Multiple Non-Sequential Vertical Levels

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.7.5 Selecting Timesteps

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.7.5.1 Selecting a Single Timestep

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.7.5.2 Selecting all Timesteps for Single Day

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.7.5.3 Selecting all Timesteps for a Single Month

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.7.5.4 Selecting a Range of Timesteps

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.7.5.5 Selecting all Timesteps for Non-Sequential Days

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.8 Resampling - Downsampling the Time Dimension

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.8.1 Resampling to Daily Statistics

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.8.2 Resampling to Monthly Statistics

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.8.3 Resampling to Yearly Statistics

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.8.3.1 Resampling to Yearly Statistics - Unweighted

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.8.3.2 Resampling to Yearly - Weighted Means

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.9 Aggregation - Calculating Statistics Over Dimensions

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.9.1 Aggregation Over the Time Domain

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.9.2 Aggregation Over the Spatial Domain

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.9.3 Aggregation Over the Vertical Domain

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.9.4 Aggregation Over the Zonal Domain

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.9.5 Aggregation Over the Meridional Domain

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.9.6 Aggregation for Hovmöller Plots

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.10 The Split-Apply-Combine Concept

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.10.1 Group by Hour

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.10.2 Group by Month

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.10.3 Group by Season

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.10.3.1 Group by Season - Unweighted

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.10.3.2 Group by Season - Weighted Means

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.11 Interpolation

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.11.1 Simple Interpolation Example

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.11.2 Spatial Interpolation

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.11.2.1 Spatial Interpolation to New Custom Grid

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.11.2.2 Spatial Interpolation Fetching Grid Details from Another File

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.11.2.3 Spatial Interpolation to Single Point

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.11.3 Interpolation Between two Geographical Points

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.12 Xarray Computations

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.12.1 Direct Application of Arithmetic Operation

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.12.2 NumPy Universal Functions - `ufunc()`

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.12.3 Xarray Universal Functions - `apply_ufunc()`

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.13 Xarray MetPy Integration

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.14 More Xarray Methods and Attributes to Explore

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.14.1 Some Useful Xarray Methods

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.14.2 Some Useful Xarray Attributes

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.15 Xarray Plotting

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.16 Applying Xarray in Climate Computations

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.16.1 The 1997 Indian Ocean Dipole Event

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.16.2 Rainfall Variability in the Sahel

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

8.16.3 Winds at In Salah (Algeria)

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9. Python - Creating Plots

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.1 Matplotlib

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.1.1 Setting up a Plotting Page (Figure and Axes)

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.1.2 Main Plotting Commands

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.1.3 Colour Names and Colour Maps

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.2 Line Plots

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.2.1 Line Plot with Labels

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.2.2 Line Plot with Arrows

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.2.3 Multiple Lines Plot with Markers and Legend

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.2.4 Multiple Lines Plot with two Scales

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.2.5 Multiple Lines Plot with Standard Deviation

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.3 Scatter Plots

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.3.1 Scatter Plot with a Legend

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.3.2 Scatter Plot with Divergent Colour Bar

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.3.3 Scatter Plot on a Map with Colour Bar and Legend

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.3.4 Adding Trend Line Based on Linear Regression

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.4 Map Plots

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.4.1 Cartopy Map Projections

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.4.2 Cartopy Data Transformations

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.4.3 High-Resolution Map Features

For map plots on global to continental scale the default low resolution of map features such as country borders, rivers and lakes is usually fine. However, when creating map plots on country or sub-country scale a higher resolution of those features is often desirable. Cartopy has a handy *Feature*¹ class that allows to conveniently add and control map features. Those features can be added to a plot using the `ax.add_feature()` method.

Some frequently used features have been pre-defined by Cartopy at a coarse (1:110m) resolution. Those can be added to a plot quite easily after importing the Cartopy Feature class (`import cartopy.feature as cfeature`) as outlined in [Table 9.4.3.1](#)

Table 9.4.3.1: Pre-defined coarse resolution Cartopy map features.

Feature	Description
<code>ax.add_feature(cfeature.BORDERS)</code>	Country boundaries.
<code>ax.add_feature(cfeature.COASTLINE)</code>	Coastlines, including major islands.
<code>ax.add_feature(cfeature.LAKES)</code>	Natural and artificial lakes.
<code>ax.add_feature(cfeature.LAND)</code>	Land polygons, including major islands.
<code>ax.add_feature(cfeature.OCEAN)</code>	Ocean polygons.
<code>ax.add_feature(cfeature.RIVERS)</code>	Single-line drainages, including lake centrelines.

High-resolution map features can be obtained from either [Natural Earth](#)² or NOAA's Global Self-consistent, Hierarchical, High-resolution Geography ([GSHHG](#)³) database directly via Cartopy Feature subclasses. The remainder of this section will focus on Natural Earth features.

Nature Earth features are available on three scales: 1:10,000,000, 1:50,000,000, and 1:110,000,000 which correspond to the keyword attributes `10m`, `50m` and `110m`, respectively. The features are available in the form of shapefiles (file extension `.shp`). The shapefiles do not need to be downloaded manually. The first time a high-resolution features is requested by the Cartopy Feature class it will be downloaded automatically (working internet connection is required).

¹https://scitools.org.uk/cartopy/docs/latest/matplotlib/feature_interface.html

²<https://www.naturalearthdata.com>

³<https://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html>

The `cartopy.feature.NaturalEarthFeature()` subclass requires at least three keyword arguments as input. First, the *category* can be either `cultural` or `physical`. Second, the *name* which depends on the category (e.g., `admin_0_boundary_lines_land` for the name `cultural`). Check the Natural Earth website for correct names. And, third, the *scale* which can be either `10m`, `50m` or `110m`. All other keyword control the style of the feature such as colour, linewidth or line style.

The following [Code 9.4.3.1](#) shows how to plot high-resolution border, lake and river features at a 1:10,000,000 scale using Natural Earth data and how to control the feature styles.

Code 9.4.3.1: Plotting high-resolution country borders, lakes and rivers.

```
1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib.ticker as mplticker
4 import cartopy.crs as ccrs
5 import cartopy.feature as cfeature
6 from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
7
8 # set up figure and map projection
9 fig, ax = plt.subplots(figsize=(5.5, 3.98),
10                         subplot_kw={'projection':ccrs.PlateCarree()})
11
12 # get hi-res features from Natural Earth and define plotting styles
13 borders = cfeature.NaturalEarthFeature(category='cultural',
14                                         name='admin_0_boundary_lines_land',
15                                         scale='10m', facecolor='none',
16                                         edgecolor='black', linestyle=':',
17                                         linewidth=0.5, alpha=0.8, zorder=2)
18 lakes = cfeature.NaturalEarthFeature(category='physical', name='lakes',
19                                         scale='10m', edgecolor='none', alpha=1.0,
20                                         facecolor='navy', linewidth=0.5, zorder=1)
21 rivers = cfeature.NaturalEarthFeature(category='physical',
22                                         name='rivers_lake_centerlines',
23                                         scale='10m', facecolor='none',
24                                         edgecolor='navy', linewidth=0.25,
25                                         alpha=1.0, zorder=1)
26
27 # define spatial domain [lon0, lon1, lat0, lat1]
```

```
28 ax.set_extent([26, 46, -7, 6], crs=ccrs.PlateCarree())
29
30 # add filled land and ocean; draw coastlines, country borders, lakes and rivers
31 ax.add_feature(cfeature.LAND)
32 ax.add_feature(cfeature.OCEAN)
33 ax.add_feature(borders)
34 ax.add_feature(lakes)
35 ax.add_feature(rivers)
36 ax.coastlines(linewidth=0.5)
37
38 # add title
39 ax.set_title('High-Resolution (1:10m) Cartopy Map Features', fontsize=8)
40
41 # format gridlines and labels
42 gl = ax.gridlines(draw_labels=True, linewidth=0.0, color='black', alpha=0.5,
43                   linestyle=':')
44 gl.top_labels = False
45 gl.xlocator = mplticker.FixedLocator(np.arange(-180, 180, 2))
46 gl.xformatter = LONGITUDE_FORMATTER
47 gl.xlabel_style = {'size':6, 'color':'black'}
48 gl.right_labels = False
49 gl.ylocator = mplticker.FixedLocator(np.arange(-90, 90, 2))
50 gl.yformatter = LATITUDE_FORMATTER
51 gl.ylabel_style = {'size':6, 'color':'black'}
52
53 # add marker for Marsabit
54 ax.plot(37.973488, 2.339599, marker='s', color='red', markersize=0.8)
55 ax.text(37.973488+0.15, 2.339599+0.15, 'Marsabit', fontsize=4)
56
57 # optimise layout
58 plt.tight_layout()
59
60 # save plot to png file
61 plt.savefig('../images/8_python_cartopy_hires_300dpi.png', dpi=300)
62
63 # close file
64 plt.close()
```

All necessary packages are imported in lines 1 to 7 including Cartopy's Feature

subclass (line 5).

A figure and axis is set up in line 9 to 10 with the projections set to `PlateCarree()`.

1:10000000 resolution border data are requested from Natural Earth in lines 13 to 17 using the category `cultural`, name `admin_0_boundary_lines_land` and scale `10m` keyword arguments. The line style is set to a dotted line `(:)` with a linewidth of `0.5`. The line is semitransparent with the alpha value set to `0.8`. The whole border definition is saved in the Python object `borders`.

Similarly, lakes are defined in lines 18 to 20 using the category `physical`, name `lakes` and scale `10m`.

And rivers are defined in lines 21 to 25 with the category `physical`, name `lakes` and the scale, same as for borders and lakes, `10m`.

Note the `zorder` keyword which is set to `2` for borders and `1` for lakes and rivers. This makes sure that country borders are drawn on top of lakes (see [Figure 9.4.3.1](#)).

The geographical extent of the map area is defined in line 28.

Next, map features are added to the plot by passing Cartopy Features to the `ax.add_feature()` method. In the absence of data to be plotted, the default coarse resolution polygons for `LAND` and `OCEAN` are added here in lines 31 and 32, respectively. By default, the ocean area is coloured in a light blue and land in beige. Then, the previously defined features `borders`, `lakes` and `rivers` are added in lines 33, 34 and 35, respectively. In addition, coast lines are drawn with a `linewidth` of `0.5` in line 36. Note the high resolution of these features in [Figure 9.4.3.1](#).

A title is added in line 39.

The grid lines and grid labels are configured in lines 42 to 51. Setting the `linewidth` to `0.0` in line 42 means that no gridlines are being drawn. However, grid labels are plotted on the left and bottom only because `gl.top_labels` and `gl.right_labels` are set to `False` in lines 44 and 48, respectively.

A marker and label for the town of Marsabit are added in lines 54 and 55, respectively.

The plot is optimised in line 58, saved to a PNG file in line 61 and the closed in line 64.

The [Code 9.4.3.1](#) generates the following [Figure 9.4.3.1](#).

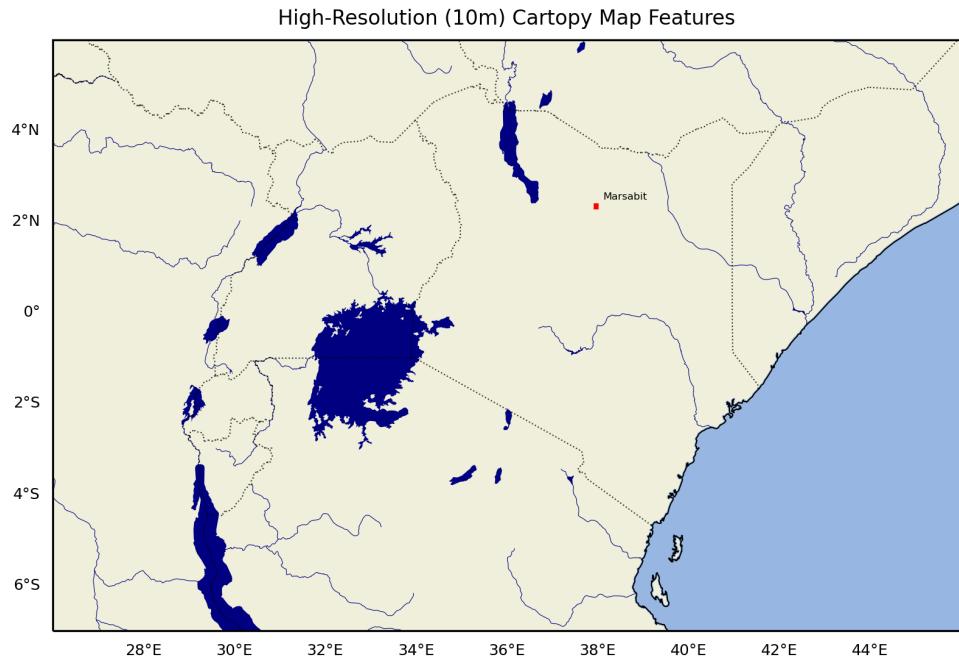


Figure 9.4.3.1: High-resolution (10m) map features such as country borders, lakes and rivers added from Natural Earth to a map of eastern Africa.

9.4.4 Simple Map of SST Anomalies

The following [Code 9.4.4.1](#) demonstrates how to plot a map of SST anomalies over the Indian Ocean domain. HadISST v1.1 SST data were used to calculate the November 1979 anomaly compared to the 1980–2010 November mean.

Code 9.4.4.1: Plotting Indian Ocean Dipole with stock background image.

```
1 import xarray as xr
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import matplotlib.ticker as mplticker
5 import cartopy.crs as ccrs
6 from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
7
8 # reading in netCDF file
9 ds = xr.open_dataset('../data/HadISST_sst_Nov1997_anom.nc')
10 field = ds['sst'].squeeze().values
11 lons = ds['longitude'].values
12 lats = ds['latitude'].values
13
14 # set up figure and map projection
15 fig, ax = plt.subplots(figsize=(5.5, 4.6),
16                         subplot_kw={'projection':ccrs.PlateCarree()})
17
18 # define contour levels
19 levels = np.linspace(-2, 2, 17)
20
21 # contour data
22 mymap = ax.contourf(lons, lats, field, levels, transform=ccrs.PlateCarree(),
23                      cmap=plt.cm.RdBu_r, extend='both')
24
25 # add coastlines and stock image
26 ax.stock_img()
27 ax.coastlines()
28 ax.set_extent([29.99, 120.01, -30.01, 30.01], crs=ccrs.PlateCarree())
29
30 # format gridlines and labels
31 gl = ax.gridlines(draw_labels=True, linewidth=0.5, color='black', alpha=0.5,
32                    linestyle=':')
33 gl.top_labels = False
34 gl.xlocator = mplticker.FixedLocator(np.arange(-180, 180, 30))
35 gl.xformatter = LONGITUDE_FORMATTER
36 gl.xlabel_style = {'size':7, 'color':'black'}
37 gl.right_labels = False
38 gl.ylocator = mplticker.FixedLocator(np.arange(-90, 90, 30))
```

```
39 gl.yformatter = LATITUDE_FORMATTER
40 gl.ylabel_style = {'size':7, 'color':'black'}
41
42 # add colorbar
43 cbar = plt.colorbar(mymap, orientation='horizontal', shrink=0.7, pad=0.07)
44 cbar.set_label('SST [C]', rotation=0, fontsize=10)
45 cbar.ax.tick_params(labelsize=5, length=0)
46
47 # add title
48 ax.set_title('HadISST SST Nov 1997 anomaly (1980-2010)', fontsize=10)
49
50 # save plot
51 plt.tight_layout()
52 plt.savefig('../images/9_python_simple_map_plot_sst_anoms_300dpi.png',
53             format='png', dpi=300)
54 plt.close()
```

All packages and functions used in the script are imported in lines 1 to 6.

The pre-calculated SST anomalies are read in from netCDF file in lines 9 using Xarray saving the field as DataSet `ds`. The variables `sst`, `longitude` and `latitude` are extracted from the DataSet `ds` and saved as NumPy arrays `field`, `lons` and `lats`, respectively (lines 10 to 12).

In line 15, the plot figure (`figure`) and axis (`ax`) are set up. Note that the map projection (`projection':ccrs.PlateCarree()`) is passed to the `plt.subplots()` function via the `subplot_kw` keyword.

Contour levels ranging from -2 to 2 in steps of 0.25 are defined in line 19 using the `np.linspace()` function.

Filled contours of the SST anomalies are plotted in lines 22 to 23. As the data are on a regular lat/lon grid the data projection `ccrs.PlateCarree()` is passed to `ax.contourf()` via the `transform` keyword. The colour map red to blue reversed (`plt.cm.RdBu_r`) is used and the colour scale is extended at both ends for lower and higher values (`extend='both'`).

The map is customised by adding the standard background image (line 26) and coastlines (line 27). The plot domain is set for the Indian Ocean in line 28. Note that the coordinate reference system is set to `crs=ccrs.PlateCarree()` to make sure

the values presented to the `ax.set_extent()` function are projected correctly in line with the map projection defined in line 22.

The map is further customised in lines 31 to 40. Black (`color='black'`) semi-transparent (`alpha=0.5`) dotted (`linestyle=':'`) grid lines are added in lines 34 and 35 and axis labels are switched on (`draw_labels=True`). Labels are switched off for the top and right of the map in lines 33 and 47, respectively. The plotting of major ticks and grid line positions is handled in lines 34 and 35 for meridians and in lines 38 and 39 for parallels. Label properties are set in lines 36 and 40 for x-axis and y-axis labels, respectively.

The functions `ax.set_xlabel()` and `ax.set_ylabel()` are currently not supported in cartopy map projections.

A horizontal colour bar is added and customised in lines 43 to 45. Note that the handle `mymap` created in line 22 is passed to the `plt.colorbar()` function in line 43. The new handle `cbar` is then used to customise colour bar properties.

A plot title is added in line 48

The map plot layout is optimised, saved and closed in lines 51 to 54.

The [Code 9.4.4.1](#) generates the following [Figure 9.4.4.1](#).

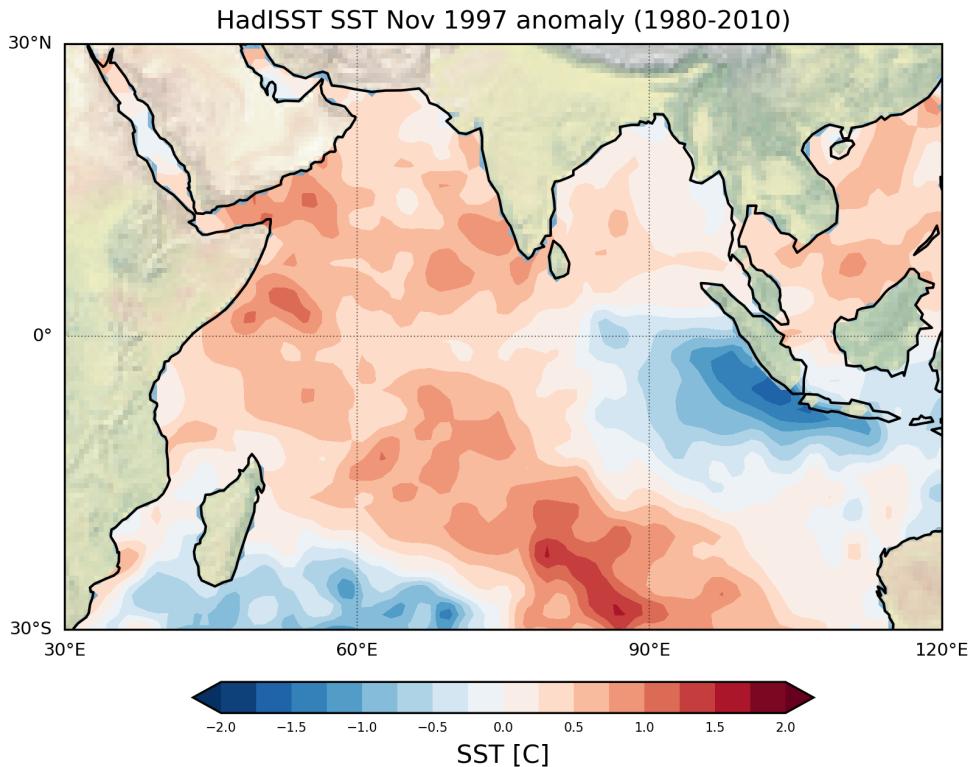


Figure 9.4.4.1: Indian Ocean Dipole (IOD) November 1997 SST anomalies (reference period 1980-2010) calculated from HadISST observed SSTs.

Figure 9.4.4.1 shows the Indian Ocean Dipole (IOD⁴) as represented with November 1997 SST anomalies. In November 1997, the IOD was in an extreme positive (negative) state with above (below) average SSTs in the western (eastern) Pacific.

9.4.5 Map with Stipples for Statistical Significance

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

⁴https://en.wikipedia.org/wiki/Indian_Ocean_Dipole

9.5 Bar Graphs

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.5.1 Anomalies Bar Graph

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.6 Hovmöller Plots

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.6.1 Hovmöller Plot with Time as a Function of Latitude

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.6.2 Hovmöller Plot with Time as a Function of Pressure

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.7 Vertical Cross-Section Plots

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.7.1 Meridional Cross-Section

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.7.2 Vertical Cross-Section Between two Points

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.8 Skew-T Plots

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.8.1 Brief Introduction to Skew-T Plots

Skew-T plots are used in meteorology and climate studies to visualise the complex relationships between pressure, temperature and moisture as well as wind speed and direction within the atmospheric column at a specific location and point in time. They can be used to assess atmospheric stability. Atmospheric profiles are often obtained from radiosondes (sondes attached to weather balloons) or dropsondes (sondes attached to parachutes released from aircraft). Atmospheric profiles may also be derived from model simulations and reanalyses.

Several online resources are available to obtain radiosonde measurements. The most popular resources are the archive of global radiosonde observations maintained by the University of Wyoming [Department of Atmospheric Science](http://weather.uwyo.edu/upperair/sounding.html)⁵ and the Integrated Global Radiosonde Archive Version 2 ([IGRA v2](https://data.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00975)⁶) maintained by the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI). The Python package [Siphon](https://unidata.github.io/siphon/latest/index.html)⁷ provides an easy interface to pull

⁵<http://weather.uwyo.edu/upperair/sounding.html>

⁶<https://data.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00975>

⁷<https://unidata.github.io/siphon/latest/index.html>

radiosonde data directly from these remote data services (see examples in [Section 9.8.2](#) and [Section 9.8.3](#)) removing the need to download and store data locally.

The *Siphon* package allows to pull radiosonde data directly from remote archives. Siphon with the following command: `pip install siphon`.

Unidata have put together some excellent instructional video tutorials as part of their [MetPy Mondays](#)⁸ series. In the playlist, the videos 11 to 14 and 144 explain how to use MetPy to develop Skew-T plots.

The complexity of a Skew-T plots can be quite daunting for a beginner. [Figure 9.8.1.1](#) is a reminder of what the different plot features represent. Shown here is a Skew-T plot for a radiosonde released from Ndjamena (Chad) at 12 UTC on 9 July 2020. In the following subsections the use of the Python packages Siphon and MetPy for creating Skew-T plots is discussed in more detail.

⁸<https://www.youtube.com/playlist?list=PLQut5OXpV-0ir4IdlSt1iEZKTwFBa7kO>

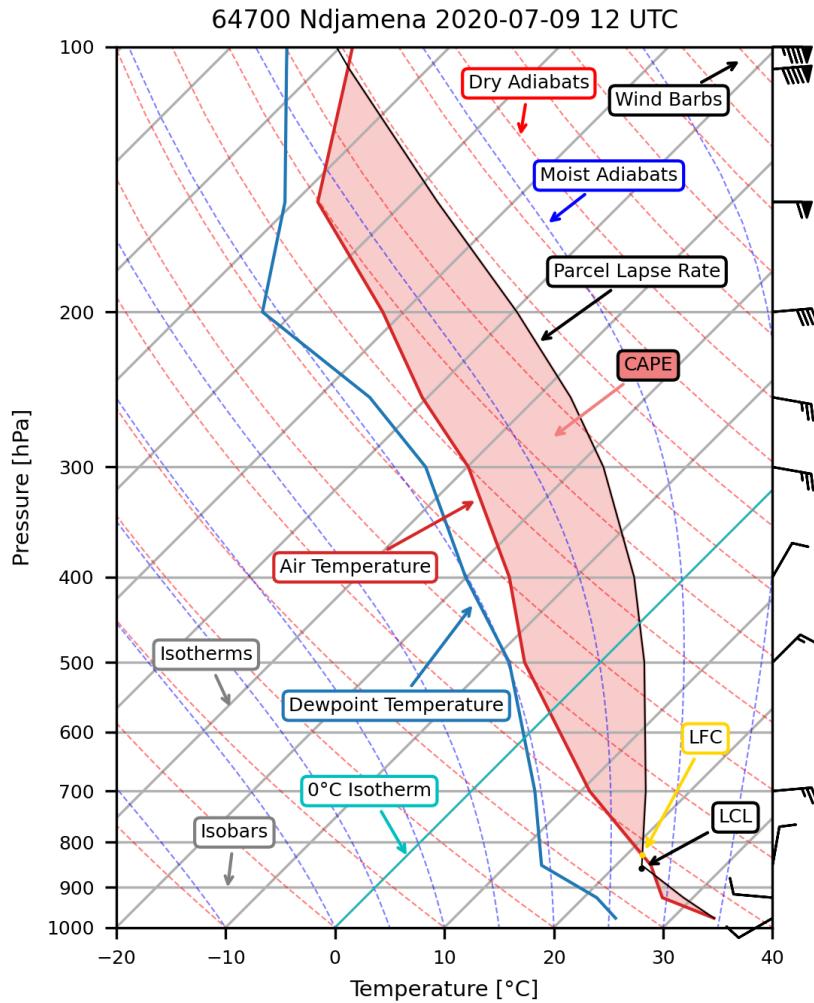


Figure 9.8.1.1: Example Skew-T plot with labels (CAPE = Convective Available Potential Energy, LFC = Level of Free Convection, LCL = Lifted Condensation Level).

For completeness, the undocumented code for [Figure 9.8.1.1] can be found in [Code](#)

9.8.1.1 below.

Code 9.8.2.1: Labelled Skew-T plot example.

```
from datetime import datetime
from siphon.simplewebservice.wyoming import WyomingUpperAir
from metpy.units import units
import matplotlib.pyplot as plt
import metpy.plots as mpplots
import metpy.calc as mpcalc
import numpy as np

# define date of interest, time and station ID
doi = datetime(2020, 7, 9, 12)
sid = '64700'
sname = 'Ndjamena'

# read data into a Pandas dataframe
df = WyomingUpperAir.request_data(doi, sid)

# extract variables from dataframe into unit-registered metpy variables
p = df['pressure'].values * units(df.units['pressure'])
t = df['temperature'].values * units(df.units['temperature'])
td = df['dewpoint'].values * units(df.units['dewpoint'])
u = df['u_wind'].values * units(df.units['u_wind'])
v = df['v_wind'].values * units(df.units['v_wind'])

# set up figure and axis adding skewt figure
fig = plt.figure(figsize=(3.98, 5.5))

# set up subplot grid
ax1 = mpplots.SkewT(fig, rotation=45)

# plot data
ax1.plot(p, t, 'tab:red', linewidth=1)
ax1.plot(p, td, 'tab:blue', linewidth=1)

# Calculate LCL height and plot as black dot. Because `p`'s first value is
# ~1000 mb and its last value is ~250 mb, the `0` index is selected for
# `p`, `T`, and `Td` to lift the parcel from the surface. If `p` was inverted,
# i.e. start from low value, 250 mb, to a high value, 1000 mb, the `-1` index
```

```
# should be selected.
lcl_pressure, lcl_temperature = mpcalc.lcl(p[0], t[0], td[0])
ax1.plot(lcl_pressure, lcl_temperature, color='black', marker='o',
         markersize=1, markerfacecolor='black')

# Calculate LFC height and plot as green dot.
lfc_pressure, lfc_temperature = mpcalc.lfc(p, t, td)
ax1.plot(lfc_pressure, lfc_temperature, color='gold', marker='o',
         markersize=1, markerfacecolor='gold', zorder=3)

# Calculate full parcel profile and add to plot as black line
prof = mpcalc.parcel_profile(p, t[0], td[0]).to('degC')
ax1.plot(p, prof, color='black', linewidth=0.5)

# Shade areas of CAPE and CIN
ax1.shade_cape(p, t, prof, color='lightcoral', alpha=0.4)
# ax1.shade_cin(p, t, prof)

# Plot slanted line at constant T (0 degree C isotherm)
ax1.ax.axvline(0, color='c', linestyle='--', linewidth=0.5)

# Add the relevant special lines
t0 = np.arange(-20, 200, 10) * units.degree_Celsius
ax1.plot_dry_adiabats(t0, color='red', linestyle='--', linewidth=0.5)
ax1.plot_moist_adiabats(linestyle='--', linewidth=0.5)

# plot wind barbs
ax1.plot_barbs(p, u, v, color='black', linewidth=0.75, length=5)

## format x-axes
ax1.ax.set_xlim(-20, 40)
ax1.ax.set_xlabel('Temperature [\u00B0C]', fontsize=7)
ax1.ax.tick_params(axis='x', which='major', labelsize=6)

# format y-axis
ax1.ax.set_ylim(1000, 100)
ax1.ax.set_ylabel('Pressure [hPa]', fontsize=7)
ax1.ax.tick_params(axis='y', which='major', labelsize=6)

# add title
```

```
ax1.ax.set_title(f'{sid} {sname} {doi.strftime("%Y-%m-%d %H UTC")}',  
                 fontsize=8)  
  
# annotation for LCL  
arrow_props = dict(color='black', arrowstyle='->')  
bbox_props = dict(boxstyle='round,pad=0.3', fc='white', ec='black', lw=1)  
ax1.ax.annotate('LCL', xy=(lcl_temperature, lcl_pressure), xytext=(25, 750),  
                 fontsize=6, verticalalignment='center', arrowprops=arrow_props,  
                 bbox=bbox_props)  
  
# annotation for LFC  
arrow_props = dict(color='gold', arrowstyle='->')  
bbox_props = dict(boxstyle='round,pad=0.3', fc='white', ec='gold', lw=1)  
ax1.ax.annotate('LFC', xy=(lfc_temperature, lfc_pressure), xytext=(15, 610),  
                 fontsize=6, verticalalignment='center', arrowprops=arrow_props,  
                 bbox=bbox_props)  
  
# annotation for 0 degC T  
arrow_props = dict(color='c', arrowstyle='->')  
bbox_props = dict(boxstyle='round,pad=0.3', fc='white', ec='c', lw=1)  
ax1.ax.annotate('0\u00b0C Isotherm', xy=(0.75, 840), xytext=(-15, 700),  
                 fontsize=6, verticalalignment='center', arrowprops=arrow_props,  
                 bbox=bbox_props)  
  
# annotation for temperature  
arrow_props = dict(color='tab:red', arrowstyle='->')  
bbox_props = dict(boxstyle='round,pad=0.3', fc='white', ec='tab:red', lw=1)  
ax1.ax.annotate('Air Temperature', xy=(-26, 325), xytext=(-38, 390),  
                 fontsize=6, verticalalignment='center', arrowprops=arrow_props,  
                 bbox=bbox_props)  
  
# annotation for dewpoint temperature  
arrow_props = dict(color='tab:blue', arrowstyle='->')  
bbox_props = dict(boxstyle='round,pad=0.3', fc='white', ec='tab:blue', lw=1)  
ax1.ax.annotate('Dewpoint Temperature', xy=(-17, 425), xytext=(-24.5, 560),  
                 fontsize=6, verticalalignment='center', arrowprops=arrow_props,  
                 bbox=bbox_props)  
  
# annotation for isobars  
arrow_props = dict(color='grey', arrowstyle='->')
```

```
bbox_props = dict(boxstyle='round', pad=0.3, fc='white', ec='grey', lw=1)
ax1.ax.annotate('Isobars', xy=(-13, 915), xytext=(-21, 780),
                 fontsize=6, verticalalignment='center', arrowprops=arrow_props,
                 bbox=bbox_props)

# annotation for isotherm
arrow_props = dict(color='grey', arrowstyle='->')
bbox_props = dict(boxstyle='round', pad=0.3, fc='white', ec='grey', lw=1)
ax1.ax.annotate('Isotherms', xy=(-29, 570), xytext=(-41, 490),
                 fontsize=6, verticalalignment='center', arrowprops=arrow_props,
                 bbox=bbox_props)

# annotation for wind barbs
arrow_props = dict(color='black', arrowstyle='->')
bbox_props = dict(boxstyle='round', pad=0.3, fc='white', ec='black', lw=1)
ax1.ax.annotate('Wind Barbs', xy=(-42, 103), xytext=(-50, 115),
                 fontsize=6, verticalalignment='center', arrowprops=arrow_props,
                 bbox=bbox_props)

# annotation for dry adiabats
arrow_props = dict(color='red', arrowstyle='->')
bbox_props = dict(boxstyle='round', pad=0.3, fc='white', ec='red', lw=1)
ax1.ax.annotate('Dry Adiabats', xy=(-55, 128), xytext=(-65, 110),
                 fontsize=6, verticalalignment='center', arrowprops=arrow_props,
                 bbox=bbox_props)

# annotation for moist adiabats
arrow_props = dict(color='blue', arrowstyle='->')
bbox_props = dict(boxstyle='round', pad=0.3, fc='white', ec='blue', lw=1)
ax1.ax.annotate('Moist Adiabats', xy=(-45, 160), xytext=(-50, 140),
                 fontsize=6, verticalalignment='center',
                 arrowprops=arrow_props, bbox=bbox_props)

# annotation for parcel lapse rate
arrow_props = dict(color='black', arrowstyle='->')
bbox_props = dict(boxstyle='round', pad=0.3, fc='white', ec='black', lw=1)
ax1.ax.annotate('Parcel Lapse Rate', xy=(-35, 218), xytext=(-40, 180),
                 fontsize=6, verticalalignment='center', arrowprops=arrow_props,
                 bbox=bbox_props)
```

```
# annotation for CAPE
arrow_props = dict(color='lightcoral', arrowstyle='->')
bbox_props = dict(boxstyle='round,pad=0.3', fc='lightcoral', ec='black', lw=1)
ax1.ax.annotate('CAPE', xy=(-25, 280), xytext=(-25, 230),
                 fontsize=6, verticalalignment='center', arrowprops=arrow_props,
                 bbox=bbox_props)

# save plot
plt.tight_layout()
fig.savefig('../images/9_python_skewt_plot_intro_labels_300dpi.png', dpi=300)
plt.close()
```

9.8.2 Simple Skew-T Plot

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.8.3 Multiple Skew-T Plots

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.9 Vector and Streamline Plots

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.9.1 Black Wind Vectors on Filled Colour Contours

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.9.2 Coloured Wind Vectors

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.9.3 Streamline Plot

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.10 Looping Through Multiple Panels

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.10.1 Multiple Line Plots (`axes.flat` method)

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.10.2 Multiple Line Plots (`pop()` function)

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

9.10.3 Multiple Map Plots (`axes.flat` method)

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10. Data Analysis with CDO

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.1 What is CDO?

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.2 Useful CDO Resources

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.3 Basic Syntax of CDO Commands

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.3.1 CDO Options

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.3.2 CDO Operator Categories

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.3.3 Using Multiple CDO Operators

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.3.4 CDO Operator Parameters

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.3.5 CDO Command Input and Output Files

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.4 Merging Files

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.5 Selections

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.5.1 Selecting Variables

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.5.2 Selecting Spatial Subsets (Geographical Regions)

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.5.3 Selecting Vertical Levels

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.5.4 Selecting Time Subsets

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.6 Basic Statistics

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.6.1 Statistics over the Time Domain

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.6.2 Statistics over the Spatial Domain

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.6.3 Statistics over the Vertical Domain

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.6.4 Statistics over the Zonal Domain

The zonal domain refers to the east-west direction of the data field (along the latitude zones). For statistical computations over the zonal domain the CDO operator `zon` combined with the statistic of interest is used (`zon<stat>`).

The following command applies the `zonmean` operator to the same input file used in [Section 10.6.3](#) to calculate global long-term zonal mean specific humidity values. The output is saved in a file named `erai_ltm_q_zonmean.nc`.

```
cd0 zonmean erai_q_ltm.nc erai_ltm_q_zonmean.nc
```

The output of the command `ncdump -h erai_ltm_q_zonmean.nc` looks like the following.

```
netcdf erai_q_ltm_zonmean {
dimensions:
    lon = 1 ;
    lat = 241 ;
    level = 37 ;
    time = UNLIMITED ; // (1 currently)
    bnds = 2 ;
variables:
    double lon(lon) ;
        lon:standard_name = "longitude" ;
        lon:long_name = "longitude" ;
        lon:units = "degrees_east" ;
        lon:axis = "X" ;
    double lat(lat) ;
        lat:standard_name = "latitude" ;
        lat:long_name = "latitude" ;
        lat:units = "degrees_north" ;
        lat:axis = "Y" ;
    double level(level) ;
        level:standard_name = "air_pressure" ;
        level:long_name = "pressure_level" ;
        level:units = "millibars" ;
        level:positive = "down" ;
        level:axis = "Z" ;
    double time(time) ;
```

```
    time:standard_name = "time" ;
    time:long_name = "time" ;
    time:bounds = "time_bnds" ;
    time:units = "hours since 1900-1-1 00:00:00" ;
    time:calendar = "standard" ;
    time:axis = "T" ;
    double time_bnds(time, bnds) ;
    double q(time, level, lat, lon) ;
        q:standard_name = "specific_humidity" ;
        q:long_name = "Specific humidity" ;
        q:units = "kg kg**-1" ;
        q:_FillValue = -32767. ;
        q:missing_value = -32767. ;
    ...
}
```

Note that the `longitude` dimension collapsed to 1 whereas the number of elements of the `latitude`, `level` and `time` dimensions remain unchanged. The output field represents a latitude by height cross section of the atmosphere.

The collapse of the longitude dimension `longitude` is demonstrated visually for a 4D data structure (as used in the example above) in [Figure 10.6.4.1](#) and for a 3D data structure in [Figure 10.6.4.2](#).

Statistics calculated over the zonal domain using the `zon<stat>` operator will result in the collapse of the longitude dimension to 1.

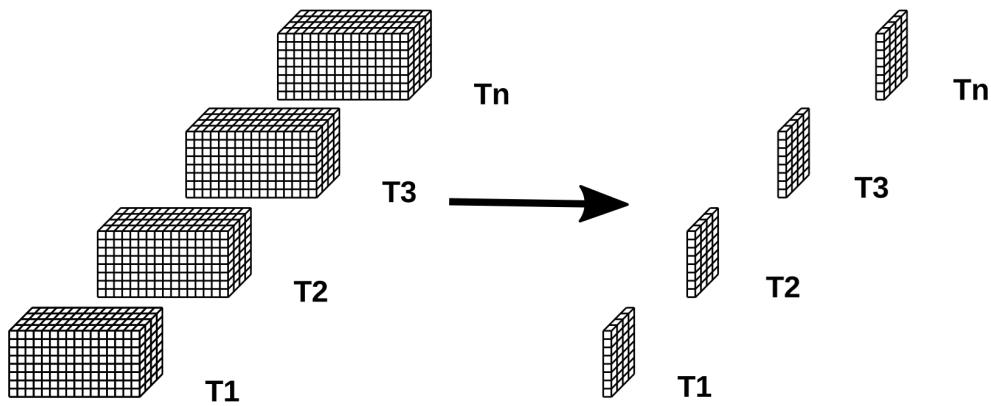


Figure 10.6.4.1: Schematic showing the collapse of the zonal dimension `longitude` when the `zon<stat>` operator is applied to a 4D (longitude, latitude, levels and time) data structure resulting in a 3D (latitude, levels and time) data structure.

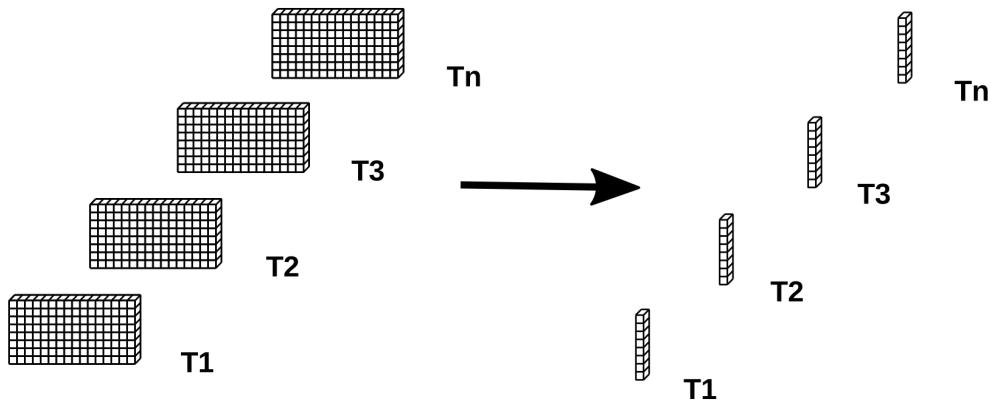


Figure 10.6.4.2: Schematic showing the collapse of the zonal dimension `longitude` when the `zon<stat>` operator is applied to a 3D (longitude, levels and time) data structure resulting in a 2D (levels and time) data structure.

10.6.5 Statistics over the Meridional Domain

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.6.6 Statistics over Ensembles

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.7 Interpolations

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.7.1 Interpolation to a new horizontal grid (remapping)

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.7.2 Interpolation in the Vertical Domain

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.7.3 Interpolation in the Time Domain

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.8 Basic Arithmetic

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.8.1 Arithmetic Between Two Files

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.8.2 Arithmetic Using a Constant Value

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.9 Applying CDO in Climate Computations

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.9.1 Indian Ocean Dipole Example

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.9.2 Sahel Rainfall Variability Example

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.9.3 Creating a Land-Sea Mask File

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

10.10 Using CDO with Python

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

Appendix

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.

List of Acronyms

This content is not available in the sample book. The book can be purchased on Leanpub at <http://leanpub.com/data-analysis-and-visualisation-in-climate-sciences>.