
Daily Programming Challenges from Reddit

February 11, 2018

2

Contents

1 Introduction 9
1.1 Introduction . 9

1.1.1 How to Use This Book . 9
1.1.2 A Note on Solutions . 10

2 Easy 11
2.1 Introduction . 11
2.2 3SUM . 11
2.3 Abundant and Deficient Numbers 13
2.4 Detecting Alliteration . 14
2.5 Anagram Detector . 16
2.6 Approximate PI . 17
2.7 Atbash Cipher . 18
2.8 Balancing Words . 20
2.9 Baum-Sweet Sequence . 22
2.10 Gold and Treasure: The Beale Cipher 23
2.11 Broken Keyboard . 29
2.12 Cellular Automata: Rule 90 . 30
2.13 Concatenated Integers . 32
2.14 Condensing Sentences . 33
2.15 Garland Words . 34
2.16 Basic Graph Statistics: Node Degrees 35
2.17 Jolly Jumper . 40
2.18 Kaprekar Numbers . 41
2.19 L33tspeak Translator . 42
2.20 Letters in Alphabetical Order . 44
2.21 In what year were most presidents alive? 45
2.22 Making numbers palindromic . 50
2.23 Pandigital Roman Numbers . 51
2.24 Pronouncing Hexadecimal . 51
2.25 Reverse Factorial . 53
2.26 Roller Coaster Words . 54
2.27 Ruth-Aaron Pairs . 54
2.28 Calculating Shannon Entropy of a String 57

3

4 CONTENTS

2.29 Shu✏ing a List . 58
2.30 Spelling with Chemistry . 60
2.31 Playing the Stock Market . 63
2.32 Thue-Morse Sequence Generator 65
2.33 Vampire Numbers . 66
2.34 XOR Multiplication . 68
2.35 Finding Amicable Numbers . 70
2.36 Making Imgur-style Links . 71
2.37 Capitalize The First Letter of Every Word 72
2.38 Closest String . 73
2.39 Collatz Conjecture . 76
2.40 Double (or More) Knots . 77
2.41 Emirp Numbers . 78
2.42 Evil Numbers . 79
2.43 Extravagant Numbers . 80
2.44 Finding the Freshest Eggs . 82
2.45 Harshad Number . 83
2.46 Integer Sequence Search Part 1 . 84
2.47 Isomorphic Words . 85
2.48 Kolakoski Sequence Generator . 87
2.49 Lipogram Detector . 88
2.50 Longest Palindromic Substring . 90
2.51 Longest Repeated Substring . 91
2.52 Narcissistic numbers . 92
2.53 Regular Paperfold Sequence Generator 94
2.54 Pell Numbers . 95
2.55 Perfect Numbers . 96
2.56 Primes in Grids . 98
2.57 Summing Across the Rudin-Shapiro Sequence 99
2.58 Safe Prime Numbers . 100
2.59 Typo Maker . 102
2.60 Wedderburn-Etherington Sequence 103

3 Intermediate 105
3.1 Introduction . 105
3.2 Anagram Maker . 105
3.3 ASCII85 Encoding and Decoding 106
3.4 ASCII Histogram Maker: Part 1 - The Simple Bar Chart 107
3.5 Where Should Grandma’s House Go? 108
3.6 Connect Four . 112
3.7 Calculating De Bruijn sequences 114
3.8 Detecting Four Sided Figures . 115
3.9 Bioinformatics 2: DNA Restriction Enzymes 116
3.10 Elggob - Make a Boggle Layout . 119
3.11 Balancing My Spending . 120
3.12 Maximizing Crop Irrigation . 124

CONTENTS 5

3.13 Graph Radius and Diameter . 127
3.14 Gray Code . 131
3.15 IPv4 Subnet Calculator . 133
3.16 Comparing Rotated Words . 134
3.17 Linear Feedback Shift Register . 135
3.18 Training for Summiting Everest . 137
3.19 Generating Text with Markov Processes 138
3.20 Packing a Sentence in a Box . 141
3.21 Packing Stacks of Boxes . 142
3.22 Parsing Postal Addresses . 144
3.23 Generating Polyominoes . 145
3.24 Punch Card Creator . 149
3.25 Scrabble in Reverse . 151
3.26 Finding Legal Reversi Moves . 153
3.27 Set Game Solver . 155
3.28 Write a Web Client . 157
3.29 Listening for Incoming Aircraft . 159
3.30 Red Squiggles . 161
3.31 Simple Stream Cipher . 163
3.32 Use a Web Service to Find Bitcoin Prices 165
3.33 Word Squares Part 1 . 166
3.34 Worm Wars 1 - Basic Epidemiology 167
3.35 Zeckendorf Representations of Positive Integers 168
3.36 Finding Ancestors . 170
3.37 Encoding with the Beale Cipher . 171
3.38 Bifid Cipher . 174
3.39 Sturdy Brick Walls . 175
3.40 Calkin-Wilf Tree . 177
3.41 Change Ringing . 179
3.42 Counting Maximal Length Palindromes 180
3.43 Fencing In the Birds . 181
3.44 Constructing Cyclic Numbers . 182
3.45 Cyclic Words . 183
3.46 Sorting Dienes Tiles . 184
3.47 Tallest Tower from a List of Digits 186
3.48 The Ducci Sequence . 188
3.49 The Ehrenfeucht-Mycielski sequence (0,1-version) 190
3.50 Math Snake . 191
3.51 Calculating the Farey Sequence . 191
3.52 Fibonacci Word Fractals . 192
3.53 Friedman numbers . 193
3.54 Goldbach’s Weak Conjecture . 194
3.55 Hitori Solver . 195
3.56 Laser in a Box . 196
3.57 Longest Alternating Subsequence 197
3.58 Needles in Haystacks . 199

6 CONTENTS

3.59 Magic Squares . 200
3.60 Mathagrams . 201
3.61 Picture Spot . 202
3.62 Finding Numbers with Manners . 203
3.63 Polydivisble Numbers . 204
3.64 Primes in Several Bases . 205
3.65 Singles . 206
3.66 Slitherlink . 207
3.67 Spinning Gears . 210
3.68 Spoonerism . 211
3.69 English Word Syllbalizer . 212
3.70 Tile Shu✏ing . 213
3.71 Trees in the Park . 217
3.72 Two for One . 218
3.73 Calculating Ulam Numbers . 220
3.74 Unique County Names . 221
3.75 Unwrap Some Text . 222
3.76 Vaki Puzzle Solver . 224
3.77 Well, Well, Well . 225
3.78 Longest Word in a Box . 226
3.79 XOR Decoding . 228
3.80 Zombies Invaded my Village . 229

4 Hard 233
4.1 Introduction . 233
4.2 8 Puzzle . 233
4.3 ASCII Histogram Maker: Part 2 - The Proper Histogram 234
4.4 Coiled sentence . 236
4.5 Calculating Costas Arrays . 237
4.6 Customer Unit Delivery Scheduling 238
4.7 DNA Shotgun Sequencing . 239
4.8 Elevator Scheduling . 241
4.9 Finding Friends in the Social Graph 250
4.10 Generate Strings to Match a Regular Expression 256
4.11 Golomb Rulers . 257
4.12 Gophers and Robot Dogs . 259
4.13 The Guards and the Mansion . 260
4.14 Guarding the Coast . 261
4.15 Hue Drops Puzzle . 263
4.16 Kakuro Solver . 264
4.17 Kanoodle Solver . 265
4.18 KenKen Solver . 267
4.19 Severing the Power Grid . 269
4.20 Museum Cameras . 273
4.21 Nonogram Solver . 274
4.22 Finding Point Nemo . 277

CONTENTS 7

4.23 Procedural Dungeon Generation 278
4.24 Bioinformatics 3: Predicting Protein Secondary Structures 280
4.25 Rush Hour Solver . 281
4.26 DNA and Protein Sequence Alignment 283
4.27 Redistricting Voting Blocks . 284
4.28 Snake in a Box . 286
4.29 Eight Husbands for Eight Sisters 287
4.30 Static HTTP Server . 288
4.31 New York Street Sweeper Paths 290
4.32 Subset Sum Automata . 291
4.33 Implementing a Templating Engine 294
4.34 Text Summarizer . 296
4.35 Longest Uncrossed Knight’s Path 298
4.36 Van der Waerden numbers . 299
4.37 Write a Web Crawler . 300
4.38 Word Squares Part 2 . 301
4.39 Worm Wars 2 - Network Epidemiology 303
4.40 Mission Impossible: Fooling the Anomaly Detector and Exfiltrating

Data . 305
4.41 Chess Solitaire . 306
4.42 Calculate Graph Chromatic Number 308
4.43 Congruent Numbers . 313
4.44 Glass Cutting Optimization . 314
4.45 Drainage Ditches . 315
4.46 Comparing Graphs . 316
4.47 Buying Groceries . 317
4.48 Integer Sequence Search Part 2 . 318
4.49 Number Grid Puzzles . 320
4.50 Nurikabe Puzzle Solver . 321
4.51 Implement Basic RSA Public Key Encryption 322

8 CONTENTS

Chapter 1

Introduction

1.1 Introduction

I wrote this book originally inspired by the idea of a comparitive languages book,
comparing the approaches of multiple programming paradigms: functional, object
oriented, imperative, logic (e.g. Prolog), and the like. What I wound up with,
instead, was a collection of programming challenges I put together over a couple of
years for the Reddit /r/dailyprogrammer community.

I wrote each of these challenges in this book, although I certainly had inspiration
from elsewhere in some cases. On the one hand I own the copyright for these
challenges outright. On the other hand you wind up with a slightly narrow diversity
in challenges.

As you’ll see, I tend to favor things like graph theory, number theory (especially
the generation of integer sequences), and puzzles. One of the other moderators
introduced me to computational geometry and so I later threw a few of those in
there. Other moderators got me thinking about computer science and algorithm
fundamentals, so there are some challenges in that vein but they’re not all that
common. I threw in some challenges with ciphers and encryption algorithms to help
illustrate the history of the field and also how approachable encryption can be.

But overall you’ll find a bunch of challenges that remain variants on a theme:
dynamic programming, constraint satisfaction, and such.

1.1.1 How to Use This Book

This book isn’t meant to be read end to end, but instead picked from here and
there. While challenges get harder through the book - progressing from easy to
intermediate to hard - they don’t follow a strict set of requirements for categorizing.
Don’t be discouraged, sometimes you can come back to a harder one after some
thought and practice.

A good thing to keep in mind is that you should your time to design a solution
first, then implement it. As you progress you’ll learn how to exploit the features of
your language of choice and improve your coding.

9

10 CHAPTER 1. INTRODUCTION

1.1.2 A Note on Solutions

While working on this book, and through the Reddit community, I used these chal-
lenges to work on a few langages. As such, I wrote some code here and there to
solve various challenges, although not all. Remember, I had originally planned a
book comparing di↵erent programming paradigms.

Solutions to some of these challenges appear peppered throughout the book.
Here are some of the languages I used while coding and a brief bit about their style
and such.

Python - a popular scripting language supporting object oriented and imperative
paradigms. Python is a popular language for beginners and experts alike. I tend
to write small prototypes in Python. Python has a lot of built-in features in many
places.

FSharp - a mixed paradigm language from Microsoft that runs on the DotNet
runtime. It’s essentially OCaml for DotNet, mixing imperative, objects, and func-
tional programming paradigms. I tend to favor the functional programming aspects
of the language. FSharp has become my go-to functional programming language.

Go - an imperative language from Google, written in part by some of the original
C and UNIX developers.

Scala - a mix-model programming language that runs on the JVM, mixing
functional and object oriented aspects. While a lot of people tend to write more
compact OOP in Scala, I tend to try and use it for functional programming aspects.

2.16. BASIC GRAPH STATISTICS: NODE DEGREES 35

Challenge Input

Our much-loved enable1.txt.
Try some other dictionaries in other languages to see if you can find the highest-

degree garland word in any human language.

Bonus Challenge

Find all garland words that have at least two di↵erent degrees.

Notes

This challenge was suggested by user /u/skeeto. If you have your own idea for a
challenge, submit it to /r/DailyProgrammer Ideas, and there’s a good chance we’ll
post it.

2.16 Basic Graph Statistics: Node Degrees

Description

In graph theory, the degree of a node is the number of edges coming into it or going
out of it - how connected it is. For this challenge you’ll be calculating the degree
of every node.

Input Description

First you’ll be given an integer, N, on one line showing you how many nodes to
account for. Next you’ll be given an undirected graph as a series of number pairs,
a and b, showing that those two nodes are connected - an edge. Example:

3
1 2
1 3

Output Description

Your program should emit the degree for each node. Example:

Node 1 has a degree of 2
Node 2 has a degree of 1
Node 3 has a degree of 1

36 CHAPTER 2. EASY

Challenge Input

This data set is an social network of tribes of the Gahuku-Gama alliance structure
of the Eastern Central Highlands of New Guinea, from Kenneth Read (1954). The
dataset contains a list of all of links, where a link represents signed friendships
between tribes. It was downloaded from the network repository8.

16
1 2
1 3
2 3
1 4
3 4
1 5
2 5
1 6
2 6
3 6
3 7
5 7
6 7
3 8
4 8
6 8
7 8
2 9
5 9
6 9
2 10
9 10
6 11
7 11
8 11
9 11
10 11
1 12
6 12
7 12
8 12
11 12
6 13
7 13
9 13
10 13
11 13
5 14
8 14
12 14
13 14

8http://networkrepository.com/soc_tribes.php

http://networkrepository.com/soc_tribes.php

2.16. BASIC GRAPH STATISTICS: NODE DEGREES 37

1 15
2 15
5 15
9 15
10 15
11 15
12 15
13 15
1 16
2 16
5 16
6 16
11 16
12 16
13 16
14 16
15 16

Challenge Output

Node 1 has a degree of 8
Node 2 has a degree of 8
Node 3 has a degree of 6
Node 4 has a degree of 3
Node 5 has a degree of 7
Node 6 has a degree of 10
Node 7 has a degree of 7
Node 8 has a degree of 7
Node 9 has a degree of 7
Node 10 has a degree of 5
Node 11 has a degree of 9
Node 12 has a degree of 8
Node 13 has a degree of 8
Node 14 has a degree of 5
Node 15 has a degree of 9
Node 16 has a degree of 9

Bonus: Adjacency Matrix

Another tool used in graph theory is an adjacency matrix, which is an N by N matrix
where each (i,j) cell is filled out with the degree of connection between nodes i and
j. For our example graph above the adjacency matrix would look like this:

0 1 1
1 0 0
1 0 0

Indicating that node 1 is connected to nodes 2 and 3, but nodes 2 and 3 do not
connect. For a bonus, create the adjacency matrix for the challenge graph.

38 CHAPTER 2. EASY

Scala Solution

1 def degree(edges:String) =

2 edges.

3 split("\n").

4 map(_.split(" ").filter(_.length>0)).

5 toSet.

6 toList.

7 flatten.

8 groupBy(_.toString).

9 mapValues(_.size)

10

11 def adj_matrix(edges:String, n:Int):String = {

12 val m = Array.ofDim[Int](n,n)

13 val es = edges.

14 split("\n").

15 map(_.split(" ").filter(_.length>0)).

16 map(_.map(_.toInt))

17 for (e <- es) { m(e(0)-1)(e(1)-1) = 1; m(e(1)-1)(e(0)-1) = 1 }

18 m.map(_.mkString(" ")).mkString("\n")

19 }

20

21 def challenge(edges:String) =

22 degree(edges).foreach { kv => println(kv._1 + " has a degree of " +

kv._2) },!

23

24 def bonus(edges:String, n:Int) = {

25 challenge(edges)

26 println(adj_matrix(edges, n))

27 }

Go Solution

1 package main

2

3 import (

4 "fmt"

5 "io/ioutil"

6 "os"

7 "strconv"

8 "strings"

9)

10

11 func check(e error) {

12 if e != nil {

13 panic(e)

2.16. BASIC GRAPH STATISTICS: NODE DEGREES 39

14 }

15 }

16

17 func main() {

18 bdata, err := ioutil.ReadFile(os.Args[1])

19 check(err)

20

21 data := string(bdata)

22 var nodes map[string]int

23 nodes = make(map[string]int)

24

25 // calcuate node degree

26 lines := strings.Split(data, "\n")

27 for _, line := range lines {

28 vals := strings.Split(line, " ")

29 if len(vals) == 2 {

30 nodes[vals[0]] = nodes[vals[0]] + 1

31 nodes[vals[1]] = nodes[vals[1]] + 1

32 }

33 }

34 i := 0

35 for k, v := range nodes {

36 fmt.Printf("Node %s has a degree of %d\n", k, v)

37 i = i + 1

38 }

39

40 // bonus adjacency matrix

41 adjm := make([][]string, i)

42 for n := range adjm {

43 adjm[n] = make([]string, i)

44 for m := range adjm[n] {

45 adjm[n][m] = "0"

46 }

47 }

48 for _, line := range lines {

49 vals := strings.Split(line, " ")

50 if len(vals) == 2 {

51 x, err := strconv.ParseUint(vals[0], 10, 32)

52 check(err)

53 y, err := strconv.ParseUint(vals[1], 10, 32)

54 check(err)

55 adjm[x-1][y-1] = "1"

56 adjm[y-1][x-1] = "1"

57 adjm[x-1][x-1] = "1"

58 }

59 }

60

40 CHAPTER 2. EASY

61 for n := 0; n < i; n++ {

62 fmt.Printf("%q\n", strings.Join(adjm[n], " "))

63 }

64 }

2.17 Jolly Jumper

Description

A sequence of n > 0 integers is called a jolly jumper if the absolute values of the
di↵erences between successive elements take on all possible values through n - 1
(which may include negative numbers). For instance,

1 4 2 3

is a jolly jumper, because the absolute di↵erences are 3, 2, and 1, respectively.
The definition implies that any sequence of a single integer is a jolly jumper. Write
a program to determine whether each of a number of sequences is a jolly jumper.

Input Description

You’ll be given a row of numbers. The first number tells you the number of integers
to calculate over, N, followed by N integers to calculate the di↵erences. Example:

4 1 4 2 3
8 1 6 -1 8 9 5 2 7

Output Description

Your program should emit some indication if the sequence is a jolly jumper or not.
Example:

4 1 4 2 3 JOLLY
8 1 6 -1 8 9 5 2 7 NOT JOLLY

Challenge Input

4 1 4 2 3
5 1 4 2 -1 6
4 19 22 24 21
4 19 22 24 25
4 2 -1 0 2

Challenge Output

164 CHAPTER 3. INTERMEDIATE

• A “decrypt” function (or method) that takes a key and the ciphertext and
returns the plaintext.

Python Solution

1 import sys

2

3 # def xor(b, s): return "".join(map(lambda x: chr(x^b), map(lambda x: ord(x),

s))),!

4 def xor(b, s): return list(map(lambda x: x^b, map(lambda x: ord(x), s)))

5

6 M = sys.maxsize

7 M = 128

8

9 def lcg(m, a, c, x): return (a*x + c) % m

10

11 def enc(msg, seed):

12 res = []

13 for ch in msg:

14 res.extend(xor(lcg(M, 1664525, 1013904223, seed), ch))

15 seed = lcg(M, 1664525, 1013904223, seed)

16 return res

17

18 def dec(msg, seed):

19 res = []

20 for ch in msg:

21 res.append(lcg(M, 1664525, 1013904223, seed)^ch)

22 seed = lcg(M, 1664525, 1013904223, seed)

23 return ’’.join(map(chr, res))

Scala Solution

1 def lcg(m:Int, a:Int, c:Int, x:Int)= (a*x + c) % m

2

3 def enc(s:String, key:Int): List[Int] =

4 (0 to s.length).toList.foldLeft[List[Int]](List()){(acc, x) => if

(acc.isEmpty) {List(lcg(128,664525, 1013904223,key))} else

{lcg(128,664525, 1013904223,acc.head)::acc}}.zip(s.toCharArray).map(x

=> x._1^x._2)

,!

,!

,!

5

6 def dec(msg:List[Int], key:Int): String =

7 (0 to msg.length).toList.foldLeft[List[Int]](List()){(acc, x) => if

(acc.isEmpty) {List(lcg(128,664525, 1013904223,key))} else

{lcg(128,664525, 1013904223,acc.head)::acc}}.zip(msg).map(x =>

x._1^x._2).map(_.toChar).mkString

,!

,!

,!

3.32. USE A WEB SERVICE TO FIND BITCOIN PRICES 165

3.32 Use a Web Service to Find Bitcoin Prices

Desciption

Modern web services are the core of the net. One website can leverage 1 or more
other sites for rich data and mashups. Some notable examples include the Google
maps API which has been layered with crime data, bus schedule apps, and more.

For this challenge, you’ll be asked to implement a call to a simple RESTful
web API for Bitcoin pricing. This API was chosen because it’s freely available and
doesn’t require any signup or an API key. Other APIs work in much the same way
but often require API keys for use.

The Bitcoin API we’re using is documented30 Specifically we’re interested in the
/v1/trades.csv endpoint.

Your native code API (e.g. the code you write and run locally) should take the
following parameters:

• The short name of the bitcoin market. Legitimate values are:

bitfinex bitstamp btce itbit anxhk hitbtc kraken bitkonan bitbay rock cbx cotr
vcx

• The short name of the currency you wish to see the price for Bitcoin in.
Legitimate values are:

KRW NMC IDR RON ARS AUD BGN BRL BTC CAD CHF CLP CNY CZK
DKK EUR GAU GBP HKD HUF ILS INR JPY LTC MXN NOK NZD PEN
PLN RUB SAR SEK SGD SLL THB UAH USD XRP ZAR

The API call you make to the bitcoincharts.com site will yield a plain text
response of the most recent trades, formatted as CSV with the following fields:
UNIX timestamp, price in that currency, and amount of the trade. For example:

1438015468,349.250000000000,0.001356620000

Your API should return the current value of Bitcoin according to that exchange
in that currency. For example, your API might look like this (in F# notation to
show types and args):

val getCurrentBitcoinPrice : exchange:string -> currency:string -> float

Which basically says take two string args to describe the exchange by name and
the currency I want the price in and return the latest price as a floating point value.
In the above example my code would return 349.25.

Part of today’s challenge is in understanding the API documentation, such as
the format of the URL and what endpoint to contact.

Note

Many thanks to /u/adrian17 for finding this API for this challenge.

30http://bitcoincharts.com/about/markets-api/

http://bitcoincharts.com/about/markets-api/

288 CHAPTER 4. HARD

Challenge Input

A, b, d, g, h, c, j, a, f, i, e
B, f, b, i, g, a, j, h, e, c, d
C, b, i, j, g, h, d, e, f, c, a
D, f, a, e, i, c, j, b, g, d, h
E, f, d, a, e, i, b, c, g, j, h
F, d, f, a, c, j, e, i, b, g, h
G, e, g, c, b, f, d, a, i, j, h
H, f, i, b, c, e, a, h, g, d, j
I, i, a, j, f, c, e, b, g, h, d
J, h, f, c, e, b, a, j, g, d, i
a, J, C, E, I, B, F, D, G, A, H
b, I, H, J, C, D, A, E, B, G, F
c, C, B, I, F, H, A, D, J, G, E
d, F, G, J, D, C, E, I, H, B, A
e, D, G, J, C, A, H, I, E, B, F
f, E, H, C, J, B, F, D, A, G, I
g, J, F, G, E, I, A, H, B, D, C
h, E, C, B, H, I, A, G, D, F, J
i, J, A, F, G, E, D, H, B, I, C
j, E, A, B, C, J, I, G, D, H, F

Challenge Output

(A; h)
(B; j
(C; b)
(D; e)
(F; d)
(G; g)
(H; i)
(I; a)

4.30 Static HTTP Server

Description

I’m willing to bet most of you are familiar with HTTP, you’re using it right now to
read this content. If you’ve ever done any web programming you probably interacted
with someone else’s HTTP server stack - Flask, Apache, Nginx, Rack, etc.

For today’s challenge, the task is to implement your own HTTP server. No
borrowing your language’s built in server (e.g. no, you can’t just use Python’s
SimpleHTTPServer). The rules, requirements, and constraints:

• Your program will implement the bare basics of HTTP 1.0: GET requests
required, any other methods (POST, HEAD, etc) are optional (see the bonus
below).

4.30. STATIC HTTP SERVER 289

• You have to write your own network listening code (e.g. socket()) and
handle listening on a TCP port. Most languages support this, you have to
start this low. Yep, learn some socket programming. socket() ... bind()
... listen() ... accept() ... and the like.

• Your server should handle static content only (e.g. static HTML pages or
images), no need to support dynamic pages or even cgi-bin executables.

• Your server should support a document root which contains pages (and paths)
served by the web server.

• Your server should correctly serve content it finds and can read, and yield the
appropriate errors when it can’t: 500 for a server error, 404 for a resource not
found, and 403 for permission denied (e.g. exists but it can’t read it).

• For it to display properly in a browser, you’ll need to set the correct content
type header in the response.

• You’ll have to test this in a browser and verify it works as expected: content
displays right (e.g. HTML as HTML, text as text, images as images), errors
get handled properly, etc.

A basic, bare bones HTTP/1.0 request39 looks like this;

GET /index.html HTTP/1.0

That’s it, no Host header required etc., and all other headers like user-agent
and such are optional. (HTTP/1.1 requires a host header, in contrast.)

A basic, bare bones HTTP/1.0 response40 looks like this:

HTTP/1.0 200 OK
Content-type: text/html

<H1>Success!</H1>

The first line indicates the protocol (HTTP/1.0), the resulting status code (200
in this case means “you got it”), and the text of the status. The next line sets the
content type for the browser to know how to display the content. Then a blank
line, then the actual content. Date, server, etc headers are all optional.

Here’s some basics on HTTP/1.0: http://tecfa.unige.ch/moo/book2/node93.html
Once you have this in your stash, you’ll not only understand what more fully-

featured servers like Apache or Nginx are doing, you’ll have one you can customize.
For example, I’m looking at extending my solution in C with an embedded Lua41

interpreter.

39https://www.w3.org/Protocols/HTTP/1.0/spec.html#Request
40https://www.w3.org/Protocols/HTTP/1.0/spec.html#Response
41https://www.lua.org/

https://www.w3.org/Protocols/HTTP/1.0/spec.html#Request
https://www.w3.org/Protocols/HTTP/1.0/spec.html#Response
https://www.lua.org/

290 CHAPTER 4. HARD

Bonus

Support threading for multiple connections at once.
Support HEAD42 requests.
Support POST43 requests.

C Solution

Years ago I wrote some C code to do this, which you can see in this gist44. It
doesn’t implement error handling well, at all.

4.31 New York Street Sweeper Paths

Description

In graph theory, various walks and cycles occupy a number of theorems, lemmas,
and papers. They have practical value, it turns out, in a wide variety of applications:
computer networking and street sweepers among them.

For this challenge you’re the commissioner of NYC street sweeping. You have
to keep costs down and keep the streets clean, so you’ll minimize the number of
streets swept twice while respecting tra�c directionality. The goal of this challenge
is to visit all edges at least one while minimizing the number of streets swept to the
bare minimum.

Can you find a route to give your drivers?

Input Description

Your program will be given two integers h and w on one line which tell you hot
tall and wide the street map is. On the next line will be a single uppercase letter
n telling you where to begin. Then the ASCII map will begin using the dimensions
you were given hxw). Your tour should end the day at the starting point (n).

You’ll be given an ASCII art graph. Intersections will be named as uppercase
letters A-Z. Streets will connect them. The streets may be bi-directional (- or |)
or one-way (one of ^ for up only, v for down only, < for left only, and > for right
only) and you may not violate the rules of the road as the commissioner by driving
down a one way street the wrong way. Bi-directional streets (- or |) need only be
visited in one direction, not both. You don’t need to return to the starting point.

Output Description

Your program should emit the intersections visited in order and the number of street
segments you swept.

42https://www.w3.org/Protocols/HTTP/1.0/spec.html#HEAD
43https://www.w3.org/Protocols/HTTP/1.0/spec.html#POST
44https://gist.github.com/paralax/6f57e457b5edd7b11aae2988ae8564a0

https://www.w3.org/Protocols/HTTP/1.0/spec.html#HEAD
https://www.w3.org/Protocols/HTTP/1.0/spec.html#POST
https://gist.github.com/paralax/6f57e457b5edd7b11aae2988ae8564a0

