D3 on Angularjs

Create Dynamic Visualizations
. Wlth Angular]s

& FULLSTACK.io Ari Lerner | Victor-Powell

D3 on AngularjS

Create Dynamic Visualizations with Angular]S

Ari Lerner and Victor Powell
This book is for sale at http://leanpub.com/d3angularjs

This version was published on 2014-06-06

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2013 - 2014 Ari Lerner and Victor Powell

http://leanpub.com/d3angularjs
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!

Please help Ari Lerner and Victor Powell by spreading the word about this book on Twitter!
The suggested hashtag for this book is #d3angular.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#d3angular

http://twitter.com
https://twitter.com/search?q=%23d3angular
https://twitter.com/search?q=%23d3angular

Contents

Introducing D3. A simple example

In this chapter, we’ll go over what D3 is and what makes it such a powerful tool for data visualization.
We'll also introduce a simple ‘Hello World’ style example that shows how to get quickly get setup
and running with D3.

What is it?

D3 (or Data-Driven Documents) is a library written by Mike Bostock® for “manipulating documents
based on data.” This means D3’s primary job is to take data and produce structured documents such
as HTML or SVG with respect to data. Unlike most visualization libraries, D3 is not a ready-made
collection of common graphs and widgets. It’s common to use D3 to make common graphs, like bar
charts and pie charts, but the real power is in its flexibility and fine-grain control over the final
result.

D3 works well with other established web technologies like CSS and SVG because it doesn’t attempt
to abstract away the DOM, like many other graphing libraries. This also means D3 will continue to
be useful as browsers incorporate new features.

If we’re just looking for a particular graph type like, say, a bar chart, and don’t care how exact it
ends up looking, D3 might not be the right library for the job. Several other ready-made libraries
exist for creating simple, cookie-cutter charts, such as HighCharts® or Chart.js> or Google Charts
API* If, on the other hand, we have strong requirements for how our visualization should look and
function, D3 is a great choice.

To quickly jump into a real world example of this, take the following interactive visualization
produced by KQED’s blog The Lowdown. It doesn’t fall into a single-chart category and the different
chart components need to communicate with each other, updating dynamically.

"http://bost.ocks.org/mike/
*http://www.highcharts.com/
*http://www.chartjs.org/
“https://developers.google.com/chart/

http://bost.ocks.org/mike/
http://www.highcharts.com/
http://www.chartjs.org/
https://developers.google.com/chart/
https://developers.google.com/chart/
http://bost.ocks.org/mike/
http://www.highcharts.com/
http://www.chartjs.org/
https://developers.google.com/chart/

Introducing D3. A simple example 2

| 2014- M h Data is current as of March 17th, 2014
play - Marc

2010 April July October 2011 april July October 2012 april July October 2013 april July October 2014

Lake Shasta

. Central Valley Project
z - Storage: 2.05M acre-feet

/,—'" Capacity: £55M acre-feet
/-”' Water Source: Sacramento River
.J,,.-' ' 2010
® 2011
= 5
T 2012
. % 0%
X 5 2013
':,_ ; 20%
m 10
a

= i
ncisco g ‘ s Tlen Feb Mar Apr May Jun Jul Aug Sep Ot how Dec

ﬁ Live version of the above interactive visualization®

It was created using a combination of Angular and D3. (source code is available here®).

To illustrate this point, we’ll also walk though a little thought experiment. Imagine we’re working
with a ready-made visualization library. Typical visualization libraries might have a BarChart class
to create a new bar chart which works fine until we want to do something the library didn’t allow to
be configured. For example, say we wanted to change the background color of the legend in our bar
chart. We could take their code and try and modify it to add our needed feature, but that can quickly

*http://blogs.kqed.org/lowdown/2014/03/18/into-the- drought-californias- shrinking-reservoirs/
®https://github.com/vicapow/water-supply

http://blogs.kqed.org/lowdown/2014/03/18/into-the-drought-californias-shrinking-reservoirs/
https://github.com/vicapow/water-supply
http://blogs.kqed.org/lowdown/2014/03/18/into-the-drought-californias-shrinking-reservoirs/
https://github.com/vicapow/water-supply

© 00 N O O & W N =

Introducing D3. A simple example 3

get very messy and cumbersome. We might have to create a new subclass of the BarChart or it could
be that the original BarChart class wasn’t written in a way to be easily extensible. Alternatively, we
can use D3 to quickly, and in a only few lines, create our own custom bar chart were we can do
whatever we’d like to our legend or any other component.

As another example, say we wanted to create a new type of visualization that doesn’t even exist yet
(or at least not yet in JavaScript.) This is a perfect example of when we would want to use D3. In
this sense, D3 is a sort of “meta-library”; the kind of library one would want to have if they were
creating a library of new data visualizations. It does this by using a new way of thinking about data
visualizations (but more on that later.) In short, if we're going to be creating data visualizations,
we’ll typically be writing an order of magnitude less code if we use D3 than without.

When it comes to configuring the look and feel of our visualization, we can very easily utilize our
existing knowledge of CSS, so long as we use classes when creating the components that make up
our bar chart. Continuing our thought experiment, something along these lines would be enough to
change the background color of our legend.

.graph .legend{
white;

}

D3’s functional, declarative style permits us to write less code. Less code allows us to make changes
faster and reduces the cognitive load required to remember all the code we’ve written. When code
is shorter, we can remember it better and read it faster later.

Consider the following example that changes all <circle> nodes in an <svg> to be positioned
horizontally occurring to the data array.

Q Don’t worry if this is confusing right now. We’ll walk through how this works in later
chapters. This sample is only to demonstrate D3’s brevity.

Using straight JavaScript, we’ll need to select the <svg> element and select all of the <circle>
elements (assuming they are on the DOM already) and modify their cx attribute, like so:

var data = [10, 20, 30, 40];
var svg = document
.getElementsByTagName('svg')
.item(Q);
var circles = svg.getElementsByTagName('circle');
for(var i = ©; i < circles.length; i++){
var circle = circles.item(i);
circle.setAttribute('cx', data[i]);

}

Using D3 allows us to accomplish the same using less code:

© 00 I O O & W N =

_R
W N O

Introducing D3. A simple example 4

d3.select('svg').selectAll('circle")
.data(/10, 20, 30, 40])
.attr('cx', function(d){ return d; });

‘Hello World’ D3 style

To dive right in, below is a simple ‘Hello World’ style D3 example which simply appends an <h1>
with the text Hello World! to the <body> using D3.

<!DOCTYPE html>
<html>
<head>
<script src="http://d38js.org/d3.v3.min. js" charset="utf-8"></script>
</head>
<body>
<script>
d3.select('body"')
.append('h1")
.text('Hello World!");
</script>
</body>
</html>

ﬁ Live version: http://jsbin.com/uhEmuJI/1/edit’

We just created our first D3 app.

Although this example does not do very much, it highlights the structure we’ll build with our D3
apps; the foundation for most of the examples that follow.

The resulting HTML after our D3 code has executed looks like this.

"http://jsbin.com/uhEmuJI/1/edit

http://jsbin.com/uhEmuJI/1/edit
http://jsbin.com/uhEmuJI/1/edit

<N O O B W N -

Introducing D3. A simple example

<html>
<head> . ..</head>
<body>
<script>...</script>
<h1>Hello World!</hi>
</body>
</html>

Q We can inspect the source of the resulting HTML using the fantastic Chrome developer
tools® Elements tab. We’ll use these tools throughout the book to deeply inspect our running
code.

A Common gotcha

When not using Angular or jQuery, make sure to put any code that depends on the <body>
inside the <body> and not before it (ie., in the <head>.) If the code executes before the body
element, then it will simply fail as the <body> will not have been created yet.

8https://developers.google.com/chrome-developer-tools/

https://developers.google.com/chrome-developer-tools/
https://developers.google.com/chrome-developer-tools/
https://developers.google.com/chrome-developer-tools/

	Table of Contents
	Introducing D3. A simple example
	What is it?
	`Hello World' D3 style

