


Design Patterns in C#

Dmitri Nesteruk

This book is for sale at http://leanpub.com/csharp_patterns

This version was published on 2020-05-13

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until
you have the right book and build traction once you do.

© 2016 - 2020 Dmitri Nesteruk

http://leanpub.com/csharp_patterns
http://leanpub.com/
http://leanpub.com/manifesto


Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Who This Book Is For . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
On Code Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Preface to the 2nd Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Simple Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Fluent Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Communicating Intent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Composite Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Builder Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Builder Extension with Recursive Generics . . . . . . . . . . . . . . . . . . . 16
Lazy Functional Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DSL Construction in F# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



Introduction
The topic of Design Patterns sounds dry, academically dull and, in all honesty,
done to death in almost every programming language imaginable – including
programming languages such as JavaScript which aren’t even properly object-
oriented programming (OOP)! So why another book on it? I know that if you’re
reading this, you probably have a limited amount of time to decide whether this
book is worth the investment.

I decided to write this book to fill a gap left by the lack of in-depth patterns books
in the .NET space. Plenty of books have been written over the years, but few have
attempted to research all the ways in which modern C# and F# language features
can be used to implement design patterns, and to present corresponding examples.
Having just completed a similar body of work for C++1, I thought it fitting to
replicate the process with .NET.

Now, on to design patterns – the original Design Patterns book2was publishedwith
examples in C++ and Smalltalk and, since then, plenty of programming languages
have incorporated certain design patterns directly into the language. For example,
C# directly incorporated the Observer pattern with its built-in support for events
(and the corresponding event keyword).

DesignPatterns are also a fun investigation of howaproblemcan be solved inmany
different ways, with varying degrees of technical sophistication and different sorts
of trade-offs. Some patterns are more or less essential and unavoidable, whereas
other patterns are more of a scientific curiosity (but nevertheless will be discussed
in this book, since I’m a completionist).

Readers should be aware that comprehensive solutions to certain problems often
result in overengineering, or the creation of structures and mechanisms that
are far more complicated than is necessary for most typical scenarios. Although
overengineering is a lot of fun (hey, you get to fully solve the problem and impress
your co-workers), it’s often not feasible due to time/cost/complexity constraints.

1Dmitri Nesteruk, Design Patterns in Modern C++ (New York, NY: Apress, 2017).
2Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software (Reading, MA: Addison Wesley, 1994).



Introduction 2

Who This Book Is For

This book is designed to be amodern-day update to the classic GoF book, targeting
specifically the C# and F# programming languages.My focus is primarily on C# and
the object-oriented paradigm, but I thought it fair to extend the book in order to
cover some aspects of functional programming and the F# programming language.

The goal of this book is to investigate how we can apply the latest versions of C#
and F# to the implementation of classic design patterns. At the same time, it’s also
an attempt to flesh out any new patterns and approaches that could be useful to
.NET developers.

Finally, in some places, this book is quite simply a technology demo for C# and F#,
showcasing how some of the latest features (e.g., default interface methods) make
difficult problems a lot easier to solve.

On Code Examples

The examples in this book are all suitable for putting into production, but a few
simplifications have been made in order to aid readability:

• I use public fields. This is not a coding recommendation, but rather an
attempt to save you time. In the real world, more thought should be given to
proper encapsulation and, in most cases, you probably want to use properties
instead.

• I often allow too much mutability either by not using readonly or by
exposing structures in such a way that their modification can cause threading
concerns. We cover concurrency issues for a few select patterns, but I haven’t
focussed on each one individually.

• I don’t do any sort of parameter validation or exception handling, again to
save some space. Some very clever validation can be done using C# 8 pattern
matching, but this doesn’t have much to do with design patterns.

You should be aware that most of the examples leverage the latest version of C#
and generally use the latest C# language features that are available to developers.
For example, I use dynamic, pattern matching and expression-bodied members
liberally.



Introduction 3

At certain points in time, I will be referencing other programming languages
such as C++ or Kotlin. It’s sometimes interesting to note how designers of other
languages have implemented a particular feature. C# is no stranger to borrowing
generally available ideas from other languages, so I will mention those when we
come to them.

Preface to the 2nd Edition

As I write this book, the streets outside are almost empty. Shops are closed, cars
are parked, public transport is rare and empty too. Life is almost at a standstill as
the country endures its first ‘non-working month’, a curious occurence that one
(hopefully) only encounters once in a lifetime. The reason for this is, of course,
the COVID-19 pandemic that will go down in the history books. We use the phrase
‘stop the world’ a lot when talking about the Garbage Collector, but this pandemic
is a real ‘stop the world’ event.

Of course, it’s not the first. In fact, there’s a pattern there too: a virus emerges, we
pay little heed until it’s spreading around the globe. Its exact nature is different
in time, but the mechanisms for dealing with it remain the same: we try to stop
it from spreading and look for a cure. Only this time round it seems to have really
caught us off-guard and now the whole world is suffering.

What’s the moral of the story? Pattern recognition is critical for our survival.
Just as the hunters and gatherers needed to recognize predators from prey and
distinguish between edible and poisonous plants, sowe learn to recognize common
engineering problems – good and bad – and try to be ready for when the need
arises.



Builder
The Builder pattern is concerned with the creation of complicated objects, i.e.,
objects that cannot be built up in a single-line constructor call. These types of
objectsmay themselves be composed of other objects andmight involve less-than-
obvious logic, necessitating a separate component specifically dedicated to object
construction.

I suppose it’s worth noting beforehand that, while I said the Builder is concerned
with complicated objects, we’ll be taking a look at a rather trivial example. This is
done purely for the purposes of space optimization, so that the complexity of the
domain logic doesn’t interfere with the reader’s ability to appreciate the actual
implementation of the pattern.

Scenario

Let’s imagine that we are building a component that renders web pages. A page
might consist of just a single paragraph (let’s forget all the typical HTML trappings
for now), and to generate it, you’d probably write something like the following:

var hello = "hello";

var sb = new StringBuilder();

sb.Append("<p>");

sb.Append(hello);

sb.Append("</p>");

WriteLine(sb);

This is some serious overengineering, Java-style, but it is a good illustration of
one Builder that we’ve already got in the .NET Framework: the StringBuilder!
StringBuilder is, of course, a separate component that is used for concatenat-
ing strings. It has utility methods such as AppendLine() so you can append both
the text as well as a line break (as inEnrivonment.NewLine). But the real benefit
to a StringBuilder is that, unlike string concatenation which results in lots of



Builder 5

temporary strings, it just allocates a buffer and fills it up with text that is being
appended.

So how about we try to output a simple unordered (bulleted) list with two items
containg the words hello and world? A very simplistic implementation might look
as follows:

var words = new[] { "hello", "world" };

sb.Append("<ul>");

foreach (var word in words)

{

sb.AppendFormat("<li>{0}</li>", word);

}

sb.Append("</ul>");

WriteLine(sb);

This does in fact give us what we want, but the approach is not very flexible. How
would we change this from a bulleted list to a numbered list? How can we add
another item after the list has been created? Clearly, in this rigid scheme of ours,
this is not possible once the StringBuilder has been initialized.

We might, therefore, go the OOP route and define an HtmlElement class to store
information about each HTML tag:

class HtmlElement

{

public string Name, Text;

public List<HtmlElement> Elements = new List<HtmlElement>();

private const int indentSize = 2;

public HtmlElement() {}

public HtmlElement(string name, string text)

{

Name = name;

Text = text;

}

}

This class models a single HTML tag which has a name and can also contain either



Builder 6

text or a number of children, which are themselves HtmlElements. With this
approach, we can now create our list in a more sensible fashion:

var words = new[] { "hello", "world" };

var tag = new HtmlElement("ul", null);

foreach (var word in words)

tag.Elements.Add(new HtmlElement("li", word));

WriteLine(tag); // calls tag.ToString()

This works fine and gives us a more controllable, OOP-driven representation of
a list of items. It also greatly simplifies other operations, such as the removal
of entries. But the process of building up each HtmlElement is not very con-
venient, especially if that element has children or some special requirements.
Consequently, we turn to the Builder pattern.

Simple Builder

The Builder pattern simply tries to outsource the piecewise construction of an
object into a separate class. Our first attempt might yield something like this:

class HtmlBuilder

{

protected readonly string rootName;

protected HtmlElement root = new HtmlElement();

public HtmlBuilder(string rootName)

{

this.rootName = rootName;

root.Name = rootName;

}

public void AddChild(string childName, string childText)

{

var e = new HtmlElement(childName, childText);

root.Elements.Add(e);

}



Builder 7

public override string ToString() => root.ToString();

}

This is a dedicated component for building up an HTML element. The constructor
of the builder takes arootName, which is the nameof the root element that’s being
built: this can be "ul" if we are building an unordered list, "p" if we’re making a
paragraph, and so on. Internally, we store the root as an HtmlElement, and assign
its Name in the constructor. But we also keep hold of the rootName so we can reset
the builder later on if we wanted to.

The AddChild() method is the method that’s intended to be used to add addi-
tional children to the current element, each child being specified as a name-text
pair. It can be used as follows:

var builder = new HtmlBuilder("ul");

builder.AddChild("li", "hello");

builder.AddChild("li", "world");

WriteLine(builder.ToString());

You’ll notice that, at the moment, the AddChild() method is void-returning.
There are many things we could use the return value for, but one of the most
common uses of the return value is to help us build a fluent interface.

Fluent Builder

Let’s change our definition of AddChild() to the following:

public HtmlBuilder AddChild(string childName, string childText)

{

var e = new HtmlElement(childName, childText);

root.Elements.Add(e);

return this;

}

By returning a reference to the builder itself, the builder calls can now be chained.
This is what’s called a fluent interface:



Builder 8

var builder = new HtmlBuilder("ul");

builder.AddChild("li", "hello").AddChild("li", "world");

WriteLine(builder.ToString());

The “one simple trick” of returning this allows you to build interfaces where sev-
eral operations can be crammed into one statement. Note that StringBuilder
itself also exposes a fluent interface. Fluent interfaces are generally nice, but
making decorators that use them (e.g., using an automated tool such as ReSharper
or Rider) can be a problem – we’ll encounter this later.

Communicating Intent

We have a dedicated Builder implemented for an HTML element, but how will the
users of our classes know how to use it? One idea is to simply force them to use the
builder whenever they are constructing an object. Here’s what you need to do:

class HtmlElement

{

protected string Name, Text;

protected List<HtmlElement> Elements = new List<HtmlElement>();

protected const int indentSize = 2;

// hide the constructors!

protected HtmlElement() {}

protected HtmlElement(string name, string text)

{

Name = name;

Text = text;

}

// factory method

public static HtmlBuilder Create(string name) => new HtmlBuilder(name);

}

Our approach is two-pronged. First, we have hidden all constructors, so they are
no longer available.We have also hidden the implementation details of the Builder



Builder 9

itself, something we haven’t done previously. We have, however, created a Factory
Method (this is a design pattern we shall discuss later) for creating a builder right
out of the HtmlElement. And it’s a static method, too! Here’s how one would go
about using it:

var builder = HtmlElement.Create("ul");

builder.AddChild("li", "hello")

.AddChild("li", "world");

WriteLine(builder);

In the example above, we are forcing the client to use the static Create()method
because, well, there’s really no other way to construct an HtmlElement – after all,
all the constructors are protected. So the client creates an HtmlBuilder and is
then forced to interact with it in the construction of an object. The last line of the
listing simply prints the object being constructed.

But let’s not forget that our ultimate goal is to build an HtmlElement, and so far
we have no way of getting to it! So the icing on the cake can be an implementation
of implicit operator HtmlElement on the builder to yield the final value:

protected HtmlElement root = new HtmlElement();

public static implicit operator HtmlElement(HtmlBuilder builder)

{

return builder.root;

}

The addition of the operator allows us to write the following:

HtmlElement root = HtmlElement

.Create("ul")

.AddChildFluent("li", "hello")

.AddChildFluent("li", "world");

WriteLine(root);

Regrettably, there is no way of explicitly telling other users to use the API in this
manner. Hopefully the restriction on constructors coupledwith the presence of the
static Create()method encourages the user to use the builder, but, in addition to
the operator, it might make sense to also add a corresponding Build() function
to HtmlBuilder itself:



Builder 10

public HtmlElement Build() => root;

Composite Builder

Let us continue the discussion of the Builder pattern with an example where
multiple builders are used to build up a single object. This scenario is relevant
to situations where the building process is so complicated that the builder itself
becomes subject to the Single Responsibility Principle and needs to be framented
into smaller parts.

Let’s say we decide to record some information about a person:

public class Person

{

// address

public string StreetAddress, Postcode, City;

// employment info

public string CompanyName, Position;

public int AnnualIncome;

}

There are two aspects to Person: their address and employment information.
What if we want to have separate builders for each – how can we provide the most
convenient API? To do this, we’ll construct a composite builder. This construction
is not trivial, so pay attention: even though we want two separate builders for job
and address information, we’ll spawn no fewer than three distinct classes.

We’ll call the first class PersonBuilder:



Builder 11

public class PersonBuilder

{

// the object we're going to build

protected Person person; // this is a reference!

public PersonBuilder() => person = new Person();

protected PersonBuilder(Person person) => this.person = person;

public PersonAddressBuilder Lives => new PersonAddressBuilder(person);

public PersonJobBuilder Works => new PersonJobBuilder(person);

public static implicit operator Person(PersonBuilder pb)

{

return pb.person;

}

}

This ismuchmore complicated than our simple Builder earlier, so let’s discuss each
member in turn:

• The reference person is a reference to the object that’s being built. This field
is marked protected, and this is done deliberately for the sub-builders. It’s
worth noting that this approach only works for reference types - if person
were a struct, we would encounter unnecessary duplication.

• Lives and Works are properties returning builder facets: those sub-builders
that initialize the address and employment information separately.

• operator Person is a trick that we’ve used before.

One very important point to note is the constructors: instead of just initializing the
person reference with a new Person() everywhere, we only do so in the public,
parameterless constructor. There is another constructor that takes a reference and
saves it – this constructor is designed to be used by inheritors and not by the client,
that’s why it is protected. The reason why things are set up this way is so that a
Person is instantiated only once per use of the builder, even if the sub-builders
are used.

Now, let’s take a look at the implementation of a sub-builder class:



Builder 12

public class PersonAddressBuilder : PersonBuilder

{

public PersonAddressBuilder(Person person) : base(person)

{

this.person = person;

}

public PersonAddressBuilder At(string streetAddress)

{

person.StreetAddress = streetAddress;

return this;

}

public PersonAddressBuilder WithPostcode(string postcode)

{

person.Postcode = postcode;

return this;

}

public PersonAddressBuilder In(string city)

{

person.City = city;

return this;

}

};

As you can see, PersonAddressBuilder provides a fluent interface for build-
ing up a person’s address. Note that it actually inherits from PersonBuilder
(meaning it has acquired the Lives and Works properties). It has a constructor
that takes and stores a reference to the object that’s being constructed, so when
you use these sub-builders, you are always working with just a single instance
of Person - you are not accidentally spawning multiple instances. It is critical
that the base constructor is called – if it is not, the sub-builder will call the
parameterless constructor automatically, causing the unnecessary instantiation
of additional Person instances.

As you can guess, PersonJobBuilder is implemented in identical fashion, so I’ll
omit it here.

And now, the moment you’ve been waiting for – an example of these builders in



Builder 13

action:

var pb = new PersonBuilder();

Person person = pb

.Lives

.At("123 London Road")

.In("London")

.WithPostcode("SW12BC")

.Works

.At("Fabrikam")

.AsA("Engineer")

.Earning(123000);

WriteLine(person);

// StreetAddress: 123 London Road, Postcode: SW12BC, City: London,

// CompanyName: Fabrikam, Position: Engineer, AnnualIncome: 123000

Can you see what’s happening here? We make a builder, and then use the Lives
property to get us a PersonAddressBuilder but once we’re done initializing
the address information, we simply call Works and switch to using a PersonJob-
Builder instead. And just in case you need a visual illustration of what we just
did, it’s rather uncomplicated:

When we’re done with the building process, we use the same implicit conversion
trick as before to get the object being built-up as a Person. Alternatively, you can
invoke Build() to get the same result.



Builder 14

There’s one fairly obvious downside to this approach: it’s not extensible. Generally
speaking, it’s a bad idea for a base class to be aware of its own subclasses, yet this
is precisely what’s happening here – PersonBuilder is aware of its own children
by exposing them through special APIs. If you wanted to have an additional sub-
builder (say, a PersonEarningsBuilder), you would have to break OCP and
edit PersonBuilder directly; you cannot simply subclass it to add an interface
member.

Builder Parameter

As I have demonstrated, the only way to coerce the client to use a builder rather
than constructing the object directly is to make the object’s constructors inacces-
sible. There are situations, however, when you want to explicitly force the user
to interact with the builder from the outset, possibly concealing even the object
they’re actually building.

For example, suppose you have an API for sending emails, where each email is
described internally like this:

public class Email

{

public string From, To, Subject, Body;

// other members here

}

Note that I said internally here – you have no desire to let the user interact with
this class directly, perhaps because there is some additional service information
stored in it. Keeping it public is fine though, provided you expose noAPI that allows
the client to send an Email directly. Some parts of the email (for example, the
Subject) are optional, so the object doesn’t have to be fully specified.

You decide to implement a fluent builder that people will use for constructing an
Email behind the scenes. It may appear as follows:



Builder 15

public class EmailBuilder

{

private readonly Email email;

public EmailBuilder(Email email) => this.email = email;

public EmailBuilder From(string from)

{

email.From = from;

return this;

}

// other fluent members here

}

Now, to coerce the client to use only the builder for sending emails, you can
implement a MailService as follows:

public class MailService

{

public class EmailBuilder { ... }

private void SendEmailInternal(Email email) {}

public void SendEmail(Action<EmailBuilder> builder)

{

var email = new Email();

builder(new EmailBuilder(email));

SendEmailInternal(email);

}

}

As you can see, the SendEmail() method that clients are meant to use takes a
function, not just a set of parameters or a prepackaged object. This function takes
an EmailBuilder and then is expected to use the builder to construct the body of
the message. Once that is done, we use the internal mechanics of MailService
to process a fully initialized Email.

You’ll notice there’s a clever bit of subterfuge here: instead of storing a reference
to an email internally, the builder gets that reference in the constructor argument.



Builder 16

The reason why we implement it this way is so that EmailBuilderwouldn’t have
to expose an Email publicly anywhere in its API.

Here’s what the use of this API looks like from the client’s perspective:

var ms = new MailService();

ms.SendEmail(email => email.From("foo@bar.com")

.To("bar@baz.com")

.Body("Hello, how are you?"));

Long story short, the Builder Parameter approach forces the consumer of your API
to use a builder, whether they like it or not. This Action trick that we employ
ensures that the client has a way of receiving an already-initialized builder object.

Builder Extension with Recursive Generics

One interesting problem that doesn’t just affect the fluent Builder but any class
with a fluent interface is the problem of inheritance. Is it possible (and realistic)
for a fluent builder to inherit from another fluent builder? It is, but it’s not easy.

Here is the problem. Suppose you start out with the following (very trivial) object
that you want to build up:

public class Person

{

public string Name;

public string Position;

}

You make a base class Builder that facilitates the construction of Person objects:



Builder 17

public abstract class PersonBuilder

{

protected Person person = new Person();

public Person Build()

{

return person;

}

}

Followed by a dedicated class for specifying the Person’s name:

public class PersonInfoBuilder : PersonBuilder

{

public PersonInfoBuilder Called(string name)

{

person.Name = name;

return this;

}

}

This works, and there is absolutely no issue with it. But now, suppose we decide
to subclass PersonInfoBuilder so as to also specify employment information.
You might write something like this:

public class PersonJobBuilder : PersonInfoBuilder

{

public PersonJobBuilder WorksAsA(string position)

{

person.Position = position;

return this;

}

}

Sadly, we’ve now broken the fluent interface and rendered the entire set-up
unusable:



Builder 18

var me = Person.New

.Called("Dmitri") // returns PersonInfoBuilder

.WorksAsA("Quant") // will not compile

.Build();

Why won’t the above compile? It’s simple: Called() returns this, which is
an object of type PersonInfoBuilder; that object simply doesn’t have the
WorksAsA()method!

You might think the situation is hopeless, but it’s not: you can design your fluent
APIs with inheritance in mind, but it’s going to be a bit tricky. Let’s take a look
at what’s involved by redesigning the PersonInfoBuilder class. Here is its new
incarnation:

public class PersonInfoBuilder<SELF> : PersonBuilder

where SELF : PersonInfoBuilder<SELF>

{

public SELF Called(string name)

{

person.Name = name;

return (SELF) this;

}

}

If you’re not familiar with recursive generics, the code above might seem rather
overwhelming, so let’s discuss what we actually did and why.

Firstly, we essentially introduced a newgeneric argument,SELF.What’smore curi-
ous is that thisSELF is specified to be an inheritor of PersonInfoBuilder<SELF>;
in other words, the generic argument of the class is required to inherit from this
exact class. This may seem like madness, but is actually a very popular trick for
doing CRTP-style inheritance in C#3. Essentially, we are enforcing an inheritance
chain: we are saying that Foo<Bar> is only an acceptable specialization if Foo
derives from Bar, and all other cases should fail the where constraint.

The biggest problem in fluent interface inheritance is being able to return a this
reference that is typed to the class you’re currently in, even if you are calling a

3The Curiously Recurring Template Pattern (CRTP) is a popular C++ technique that allows you to
inherit from a template (generic) parameter – something that is sadly impossible in C#.



Builder 19

fluent interface member of a base class. The only way to efficiently propagate this
is by having a generic parameter (the SELF) that permeates the entire inheritance
hierarchy.

To appreciate this, we need to look at PersonJobBuilder, too:

public class PersonJobBuilder<SELF>

: PersonInfoBuilder<PersonJobBuilder<SELF>>

where SELF : PersonJobBuilder<SELF>

{

public SELF WorksAsA(string position)

{

person.Position = position;

return (SELF) this;

}

}

Look at its base class! It’s not just an ordinary PersonInfoBuilder as before,
instead it’s a PersonInfoBuilder<PersonJobBuilder<SELF>>! So when we
inherit fromaPersonInfoBuilder, we set itsSELF toPersonJobBuilder<SELF>
so that all of its fluent interfaces return the correct type, not just the type of the
owning class.

Does thismake sense? If not, take your time and look through the source code once
again. Here, let’s test your understanding: suppose I introduce another member
called DateOfBirth and a corresponding PersonDateOfBirthBuilder, what
class would it inherit from?

If you answered

PersonInfoBuilder<PersonJobBuilder<PersonBirthDateBuilder<SELF>>>

then you arewrong, but I cannot blame you for trying. Think about it:PersonJob-
Builder is already a PersonInfoBuilder, so that information doesn’t need to
be restated explicitly as part of the inheritance type list. Instead, you would define
the builder as follows:



Builder 20

public class PersonBirthDateBuilder<SELF>

: PersonJobBuilder<PersonBirthDateBuilder<SELF>>

where SELF : PersonBirthDateBuilder<SELF>

{

public SELF Born(DateTime dateOfBirth)

{

person.DateOfBirth = dateOfBirth;

return (SELF)this;

}

}

The final questionwehave is this: howdowe actually construct such a builder, con-
sidering that it always takes a generic argument? Well, I’m afraid you now need a
new type, not just a variable. So, for example, the implementation of Person.New
(the property that starts off the construction process) can be implemented as
follows:

public class Person

{

public class Builder : PersonJobBuilder<Builder>

{

internal Builder() {}

}

public static Builder New => new Builder();

// other members omitted

}

This is probably the most annoying implementation detail: the fact that you need
to have a non-generic inheritor of a recursive generic type in order to use it.

That said, putting everything together, you can now use the builder, leveraging all
methods in the inheritance chain:



Builder 21

var builder = Person.New

.Called("Natasha")

.WorksAsA("Doctor")

.Born(new DateTime(1981, 1, 1));

Lazy Functional Builder

The previous example of using recursive generics requires a lot of work. A fair
question to ask is: should inheritance have been used to extend the builders? After
all, we could have used extension methods instead.

If we adopt a functional approach, the implementation becomes a lot simpler,
without the need for recursive generics. Let’s once again build up a Person class
defined as follows:

public class Person

{

public string Name, Position;

}

This time round, we’ll define a lazy builder that only constructs the object when
its Build()method is called. Until that time, it will simply keep a list of Actions
that need to be performed when an object is built:

public sealed class PersonBuilder

{

private readonly List<Func<Person, Person>> actions =

new List<Func<Person, Person>>();

public PersonBuilder Do(Action<Person> action)

=> AddAction(action);

public Person Build()

=> actions.Aggregate(new Person(), (p, f) => f(p));

private PersonBuilder AddAction(Action<Person> action)



Builder 22

{

actions.Add(p => { action(p); return p; });

return this;

}

}

The idea is simple: instead of having a mutable ‘object under construction’ that is
modified as soon as any builder method is invoked, we simply store a list of actions
that need to be applied upon the object whenever someone calls Build(). But
there are additional complications in our implementation.

The first is that the action taken upon the person, while take as an Action<T>
parameter is actually stored as a Func<T,T>. The motivation behind this is that
providing this fluent interface, we’re allowing for the Aggregate() call inside
Build() to work correctly. Of course, we could have used a good old-fashioned
ForEach() instead.

The second complication is that, in order to allow OCP-conformant extensibility,
we really don’t want to expose actions as a public member, since this would
allow far too many operations (e.g., arbitrary removal) on the list that we don’t
necessarily want expose to whoever extends this builder in the future. Instead, we
publicly expose only a single operation, Do(), that allows you to specify an action
to be performed on the object under construction. That action is then added to the
overall set of actions.

Under this paradigm, we can now give this builder a concretemethod for specifying
a Person’s name:

public PersonBuilder Called(string name)

=> Do(p => p.Name = name);

But now, thanks to theway the builder is structured, we can use extensionmethods
instead of inheritance to give the builder additional functionality, such as an ability
to specify a person’s position:



Builder 23

public static class PersonBuilderExtensions

{

public static PersonBuilder WorksAs

(this PersonBuilder builder, string position)

=> builder.Do(p => p.Position = position);

}

With this approach, there are no inheritance issues and no recursive magic. Any
time we want additional behaviors, we simply add them as extension methods,
preserving adherence to the OCP.

And here is how you would use this set-up:

var person = new PersonBuilder()

.Called("Dmitri")

.WorksAs("Programmer")

.Build();

Strictly speaking, the functional approach above can be made into a reusable
generic base class that can be reused for building different objects. The only issue
is that you’ll have to propagate the derived type into the base class which, once
again, requires recursive generics.

You would define the base FunctionalBuilder as:

public abstract class FunctionalBuilder<TSubject, TSelf>

where TSelf: FunctionalBuilder<TSubject, TSelf>

where TSubject : new()

{

private readonly List<Func<TSubject, TSubject>> actions

= new List<Func<TSubject, TSubject>>();

public TSelf Do(Action<TSubject> action)

=> AddAction(action);

private TSelf AddAction(Action<TSubject> action)

{

actions.Add(p => {



Builder 24

action(p);

return p;

});

return (TSelf) this;

}

public TSubject Build()

=> actions.Aggregate(new TSubject(), (p, f) => f(p));

}

With PersonBuilder now simplifying to:

public sealed class PersonBuilder

: FunctionalBuilder<Person, PersonBuilder>

{

public PersonBuilder Called(string name)

=> Do(p => p.Name = name);

}

and the PersonBuilderExtensions class remaining as it was. With this ap-
proach, you could easily reuseFunctionalBuilder as a base class for other func-
tional builders in your application. Notice that, under the functional paradigm,
we’re still sticking to the idea that the derived builders are allsealed and extended
through the use of extension methods.

DSL Construction in F#

Many programming languages (such as Groovy, Kotlin or F#) try to throw in a
language feature that will simplify the process of creatingDSLs—Domain-Specific
Languages, i.e. small languages that help describe a particular problem domain.
Many applications of such embedded DSLs are used to implement the Builder
pattern. For example, if you want to build an HMTL page, you don’t have to fiddle
with classes and methods directly; instead, you can write something which very
much approaches HTML, right in your code!

The way this is made possible in F# is using list comprehensions: the ability to
define lists without any explicit calls to builder methods. For example, if you



Builder 25

wanted to support HTML paragraphs and images, you could define the following
builder functions:

let p args =

let allArgs = args |> String.concat "\n"

["<p>"; allArgs; "</p>"] |> String.concat "\n"

let img url = "<img src=\"" + url + "\"/>"

Notice that whereas the img tag only has a single textual parameter, the <p> tag
accepts a sequence of args, allowing it to contain any number of inner HTML
elements, including ordinary plain text. We could therefore construct a paragraph
containing both text and an image:

let html =

p [

"Check out this picture";

img "pokemon.com/pikachu.png"

]

printfn "%s" html

This results in the following output:

<p>

Check out this picture

<img src="pokemon.com/pikachu.png"/>

</p>

This approach is used in web frameworks such as WebSharper. There are many
variations to this approach, including the use of record types (letting people use
curly braces instead of lists), custom operators for specifying plain text, andmore.4

It’s important to note that this approach is only convenient when we are working
with an immutable, append-only structure. Once you start dealing with mutable
objects (e.g., using a DSL to construct a definition for a Microsoft Project docu-
ment), you end up falling back into OOP. Sure, the end-result DSL syntax is still
very convenient to use, but the plumbing required to make it work is anything but
pretty.

4For an example, see Tomas Petricek’s snippet for an F#-based HTML-constructing DSL at
http://fssnip.net/hf.



Builder 26

Summary

The goal of the Builder pattern is to define a component dedicated entirely to
piecewise construction of a complicated object or set of objects. We have observed
the following key characteristics of a Builder:

• Builders can have a fluent interface that is usable for complicated construc-
tion using a single invocation chain. To support this, builder functions should
return this.

• To force the user of the API to use a Builder, we can make the target class
constructors inaccessible and then define a static Create() function that
returns an instance of the builder. (The naming is up to you, you can call it
Make(), New() or something else.)

• A builder can be coerced to the object itself by defining the appropriate
implicit conversion operator.

• You can force the client to use a builder by specifying it as part of a parameter
function. This way you can hide the object that’s built built entirely.

• A single builder interface can expose multiple sub-builders. Through clever
use of inheritance and fluent interfaces, one can jump from one builder to
another with ease.

• Inheritance of fluent interfaces (not just for builders) is possible through
recursive generics.

Just to re-iterate something that I’ve already mentioned, the use of the Builder
pattern makes sense when the construction of the object is a non-trivial process.
Simple objects that are unambiguously constructed from a limited number of
sensibly named constructor parameters should probably use a constructor (or
dependency injection) without necessitating a Builder as such.


	Table of Contents
	Introduction
	Who This Book Is For
	On Code Examples
	Preface to the 2nd Edition

	Builder
	Scenario
	Simple Builder
	Fluent Builder
	Communicating Intent
	Composite Builder
	Builder Parameter
	Builder Extension with Recursive Generics
	Lazy Functional Builder
	DSL Construction in F#
	Summary


