

Créer votre framework web en Ruby

Xavier Nayrac

Ce livre est en vente à http://leanpub.com/creervotreframeworkwebenruby

Version publiée le 2020-09-14

Ce livre est publié par Leanpub. Leanpub permet aux auteurs et aux éditeurs de bénéficier du Lean
Publishing. Lean Publishing consiste à publier à l’aide d’outils très simples de nombreuses
itérations d’un livre électronique en cours de rédaction, d’obtenir des retours et commentaires des
lecteurs afin d’améliorer le livre.

© 2017 - 2020 Xavier Nayrac

http://leanpub.com/creervotreframeworkwebenruby
http://leanpub.com/
http://leanpub.com/manifesto

Tweet ce livre !
S’il vous plaît aidez Xavier Nayrac en parlant de ce livre sur Twitter !

Le hashtag suggéré pour ce livre est #CreerVotreFrameworkWebEnRuby.

Découvrez ce que les gens disent à propos du livre en cliquant sur ce lien pour rechercher ce
hashtag sur Twitter :

#CreerVotreFrameworkWebEnRuby

http://twitter.com
https://twitter.com/search?q=%23CreerVotreFrameworkWebEnRuby
https://twitter.com/search?q=%23CreerVotreFrameworkWebEnRuby

Table des matières

À qui s’adresse ce livre . i

Introduction . ii

2 - Une route + un contrôleur + une vue = une application . 1
Une route . 1
Un contrôleur . 5
Une vue . 8
Une application . 11

17 - Migrations . 14
Introduction . 14
Une première migration . 14
Ajouter une seconde migration . 17

À qui s’adresse ce livre
Ce livre s’adresse avant tout aux personnes curieuses de comprendre le fonctionnement d’un
frameworkweb et qui pour cela sont prêtes à soulever le capot et àmettre les mains dans le cambouis.

Pour tirer pleinement profit de ce livre, vous aurez besoin de quelques connaissances préliminaires
en programmation. Si vous avez écrit deux ou trois sites web, quelque soit le langage, quelque soit
le framework, vous possédez alors les compétences requises pour utiliser ce livre au mieux. Comme
le titre le précise, nous allons écrire un framework web en Ruby, il vous sera donc utile d’avoir déjà
une certaine connaissance du langage Ruby. Si ça n’est pas le cas, rassurez vous, Ruby est un langage
qui s’apprend facilement et rapidement et vous pourrez très bien l’apprendre en même temps que
que vous lirez ce livre.

Je vous souhaite une bonne programmation.

Introduction
Ce livre est articulé autour de 3 parties distinctes.

Dans la première partie « Les éléments d’un framework web » nous construirons un framework
web minimal depuis zéro. Nous utiliserons, fabriquerons et manipulerons les composants essentiels
à un framework web. Quelque soit le framework web que vous déciderez d’écrire, vous aurez
certainement besoin de chaque élément vu dans cette première partie.

Dans la deuxième partie « Concepts Avancés » nous aborderons des éléments et des composants plus
complexes à mettre en œuvre, qui ne sont pas essentiels à tous les frameworks en général, mais qui
pourront s’avérer indispensables pour votre framework en particulier.

Enfin nous conclurons ce livre dans la troisième partie, avec un exemple d’application écrit de A
à Z avec le framework que nous aurons mis au point Cette application sera scindée en deux : un
backend et un frontend, et utilisera une API publique pour collecter et présenter des données (des
GIFs ou bien des informations météo, cela reste encore à déterminer).

2 - Une route + un contrôleur + une
vue = une application
Une route

Le premier composant du framework dont je voudrais discuter est le routage, routing en anglais.

Le rôle du routage sera d’aiguiller les requêtes venant de l’extérieur vers la bonne méthode de
traitement, contenue quelque part dans l’application.

Toutes les routes de nos applications seront contenues dans le fichier routes.yml.

Lexique français/anglais des termes de rou-
tage
Français Anglais
route route
routage routing
routeur router

Attention à ne pas confondre route, la route, et root, la racine.

Il y a de nombreuses manières de spécifier une route, ainsi que de nombreuses techniques possibles
pour charger les routes en mémoire. Dans ce livre, comme dans mon travail au quotidien, dès que je
le peux je fais le choix de la simplicité. C’est pourquoi j’ai préféré utiliser un fichier de configuration
au format YAML, plutôt que de définir un DSL qui aurait eu pour conséquence de trop compliquer
les choses dès le début de ce livre. Mais nous reviendrons sur un DSL dans les derniers chapitres.

Voici le contenu de notre premier fichier routes.yml, avec la définition d’une seule route :

Votre première route

1 # routes.yml

2

3 "/hello": { via: "get", to: "hello#index" }

Charger le contenu d’un fichier au format YAML demande peu de travail :

2 - Une route + un contrôleur + une vue = une application 2

Charger le fichier routes.yml avec Ruby

require 'yaml'

YAML.load_file("routes.yml")

#=> {

#=> "/hello" => {

#=> "via" => "get",

#=> "to" => "hello#index"

#=> }

#=> }

Nous récupérons donc un Hash, dont la clé principale est le chemin de la requête. La valeur est
elle-même un Hash, avec une première clé "via" qui contient le verbe HTTP de la requête, et une
seconde clé "to" qui contient sous une forme un peu cryptique la classe et la méthode qui effectuera
le traitement voulu. Nous verrons plus loin la signification réelle de ce "hello#index".

En français une telle route signifie « route le chemin /hello, qui vient du verbe http GET, vers la
méthode index ».

Notre application va charger toutes les routes lors de son initialisation (même si pour l’instant il n’y
en a qu’une) :

En route pour une nouvelle application

1 # application.rb

2 require 'yaml'

3

4 class Application

5

6 def initialize

7 @routes = YAML.load_file("routes.yml")

8 end

9 end

Lançons notre application depuis une session irb pour nous assurer qu’elle fonctionne. Notez que
l’objet app qui s’affiche automatiquement dans la console contient une représentation compréhen-
sible du Hash @routes :

2 - Une route + un contrôleur + une vue = une application 3

Voir l’objet au sein d’une session irb

require "./application"

#=> true

Application.new

#=> #<Application:0x00559939fa2a30 @routes={"/hello"=>{"via"=>"get",

#=> "to"=>"hello#index"}}>

Un petit truc pour débugger
I am a puts debuggerer¹
– Aaron Patterson

Si au cours d’une séance de débuggage ou pendant la mise au point interactive d’un code
vous vous trouvez, dans la console, avec le besoin d’inspecter le contenu d’une variable de
classe, la méthode qu’il vous faut se nomme instance_variable_get :

Afficher un membre
require "./application"

app = Application.new

app.instance_variable_get("@routes")

#=> {"/hello" => {"via" => "get", "to" => "hello#index"}}

J’ai rabâché plusieurs fois dans le chapitre précédent qu’une application Rack devait avoir une
méthode call. Notre classe Application se doit donc de répondre à call. Profitons en pour tester
la reconnaissance des routes. Si nous envoyons une requête avec un chemin correspondant à une
route nous répondons avec « Ce chemin existe ». Si au contraire la requête ne correspond à aucun
chemin nous afficherons « Ce chemin n’existe pas ».

On ajoute le call qui va bien

1 # application.rb

2 require 'yaml'

3

4 class Application

5

6 def initialize

7 @routes = YAML.load_file("routes.yml")

8 end

9

10 def call(env)

1. https://tenderlovemaking.com/2016/02/05/i-am-a-puts-debuggerer.html

https://tenderlovemaking.com/2016/02/05/i-am-a-puts-debuggerer.html
https://tenderlovemaking.com/2016/02/05/i-am-a-puts-debuggerer.html

2 - Une route + un contrôleur + une vue = une application 4

11 if @routes[env["REQUEST_PATH"]]

12 [200, {}, ["Ce chemin existe"]]

13 else

14 [200, {}, ["Ce chemin n'existe pas"]]

15 end

16 end

17 end

Pour connaître la requête de l’utilisateur j’ai utilisé la variable REQUEST_PATH. Pourquoi celle
ci et pas une autre ? Si vous avez regardé l’env de plus près, vous avez vu que REQUEST_URI
semble aussi un bon candidat, aumême titre que PATH_INFO. Sachez que j’ai choisi REQUEST_-
PATH totalement au hasard ! L’objectif actuel est que cela fonctionne avec la configuration
présente, il sera temps plus tard de se pencher sur les spécifications de Rack.

Notre application comporte désormais trois fichiers.

$ tree code/ch02/route/

├── application.rb

├── config.ru

└── routes.yml

Le config.ru est réduit à sa plus simple expression. Il se contente de charger le fichier application.rb
et de lancer l’application Rack :

En avant !

1 # config.ru

2

3 require_relative "application"

4 run Application.new

Lancez l’application avec rackup et testez plusieurs routes.

Cette route existe

2 - Une route + un contrôleur + une vue = une application 5

Celle ci n’existe pas

Un contrôleur

Nous venons de voir qu’une route devait viser une méthode précise dans notre framework.
Plus particulièrement la route définit ci-dessus vise quelque chose que nous avons écrit ainsi :
"hello#index". La partie avant le # est le nom d’un contrôleur, tandis que la partie après le # est le
nom d’une méthode de ce contrôleur.

objet#méthode
Le caractère # n’est pas choisi au hasard. Bien que techniquement on pourrait choisir
n’importe quel caractère, le # en Ruby, et d’autres langages, symbolise l’appartenance d’une
méthode d’instance. Au contraire du . qui représente l’appartenance d’une méthode de
classe.

Donc Vincent.vega représente la méthode de classe vega, de la classe Vincent. On l’utilisera
comme suit :

Une méthode de classe
Vincent.vega

Alors que vincent#vega représente la méthode d’instance vega, d’une instance vincent. On
l’utilisera ainsi :

Une méthode d’instance
vincent = Vincent.new

vincent.vega

Le rôle d’un contrôleur sera de fabriquer la réponse attendue par Rack, à savoir un Array avec
code de retour, entêtes et corps.

Sans plus attendre, voici un contrôleur minimal pour notre route :

2 - Une route + un contrôleur + une vue = une application 6

Un contrôleur minimal, mais alors vraiment minimal

1 # hello_controller.rb

2

3 class HelloController

4 def index

5 [200, {}, ["Coucou !"]]

6 end

7 end

Vous pouvez constater que le code de ce contrôleur est terriblement simple. Nous avons quandmême
une convention à l’œuvre ici : un contrôleur “foo” est définit dans une classe FooController. Dans
ce contrôleur nous retrouvons bien la méthode index qui est visée par la route "hello#index". Et
le code de cette méthode index doit vous sembler familier après avoir lu le chapitre précédent sur
Rack.

Nousmodifions notre application pour y inclure ce contrôleur. Nous chargeons la classe HelloController
avec la ligne require_relative 'hello_controller' et nous modifions le contenu de la méthode
call pour qu’elle utilise le contrôleur si une bonne route existe. Si le chemin de la requête ne
correspond à aucune route nous exécutons fail et rendons le message d’erreur un peu plus explicite
en affichant « No matching route » :

Utilisons ce fameux contrôleur

1 # application.rb

2 require 'yaml'

3 require_relative 'hello_controller'

4

5 class Application

6

7 def initialize

8 @routes = YAML.load_file("routes.yml")

9 end

10

11 def call(env)

12 if route_exists?(env["REQUEST_PATH"])

13 HelloController.new.index

14 else

15 fail "Pas de route correspondante"

16 end

17 end

18

19 private

20

21 def route_exists?(path)

2 - Une route + un contrôleur + une vue = une application 7

22 @routes[path]

23 end

24 end

Nous voici désormais avec un total de quatre fichiers.

$ tree code/ch02/controller/

├── application.rb

├── config.ru

├── hello_controller.rb

└── routes.yml

Quand la route existe

2 - Une route + un contrôleur + une vue = une application 8

Quand la route n’existe pas

Une vue

Le prochain composant que nous allons introduire sera la vue. C’est ce qui nous intéresse générale-
ment en tant qu’utilisateur du Web.

Pour l’instant nous définirons une vue comme étant ce qui s’affiche dans le navigateur.

Voici un contenu simplifié pour la vue hello.html. Ce n’est pas un vrai fichier HTML, complet et
tout et tout, mais les navigateurs seront quand même content de l’afficher :

Soyons grandiloquent !

1 <!-- hello.html -->

2 <h1>Un grand bonjour depuis mon extraordinaire application</h1>

Nous devons transformer une vue en une chaîne de caractère, la méthode Ruby File.read est
parfaite pour cela :

2 - Une route + un contrôleur + une vue = une application 9

Lire la vue avec File.read

1 # hello_controller.rb

2 class HelloController

3 def index

4 [200, {}, [File.read("hello.html")]]

5 end

6 end

Avec ce nouveau fichier hello.html nous comptons maintenant cinq fichiers.

$ tree code/ch02/vue/

├── application.rb

├── config.ru

├── hello_controller.rb

├── hello.html

└── routes.yml

Et voilà !

C’est gros, c’est beau

Faire la conversion d’une vue en une chaîne de caractère directement dans la méthode index du
contrôleur est ce qu’il y a de plus simple. C’est pourquoi j’ai présenté les choses de cette manière
jusqu’ici. Mais ça n’est pas forcement le plus intelligent à faire. Nous avons définit le rôle du
contrôleur comme étant celui de façonner la réponse attendue par Rack. Mais nous n’avons pas
dit que tout devait obligatoirement se dérouler dans le contrôleur. Nous n’avons pas interdit non
plus au contrôleur de se faire aider. Isoler les responsabilités rendra notre code plus facile à tester, à
modifier et à raisonner. Voici donc un code plus étoffé, faisant appel à une classe Renderer.

2 - Une route + un contrôleur + une vue = une application 10

Utilisons une classe pour faire le rendu

hello_controller.rb

class HelloController

def index

status, body = Renderer.new("hello.html").render

[status, {}, [body]]

end

end

renderer.rb

class Renderer

def initialize(filename)

@filename = filename

end

def render

if File.exists?(@filename)

[200, File.read(@filename)]

else

[500, "<h1>500</h1><p>No such template: #{@filename}</p>"]

end

end

end

Le rendu d’un fichier est ainsi testable de manière isolée, sans avoir à charger ou utiliser un
contrôleur dont le nombre de fonctionnalité ne manquera pas de croître. Testons ce renderer dans
une session irb :

Testons la classe Renderer dans irb

require "./renderer"

Renderer.new("hello.html").render

#=> [

#=> 200,

#=> "<h1>Hello from an amazing web application!</h1>\n"

#=>]

Renderer.new("unknown").render

#=> [

#=> 500,

#=> "<h1>500</h1><p>No such template: unknown</p>"

#=>]

2 - Une route + un contrôleur + une vue = une application 11

Erreur 500
Nous voyons ici un nouveau code de retour : 500. Ce code spécifie une erreur interne du
serveur (internal server error en anglais). Nous devons retourner une erreur 500 lorsque le
problème vient du serveur, comme par exemple une division par zéro dans notre programme,
ou bien comme ici un fichier inexistant.

Vous aurez remarqué que le code de HelloController#index s’est un peu compliqué. Nous verrons
comment le rendre beaucoup plus digeste dans le prochain chapitre.

Une application

Nous voici à la fin de ce chapitre avec une application étalée sur six fichiers. Le code est suffisamment
court pour que je puisse me permettre de les reproduire ici en entier :

Le code Ruby de l’application

1 # application.rb

2 require 'yaml'

3 require_relative 'hello_controller'

4 require_relative 'renderer'

5

6 class Application

7

8 def initialize

9 @routes = YAML.load_file("routes.yml")

10 end

11

12 def call(env)

13 if route_exists?(env["REQUEST_PATH"])

14 HelloController.new.index

15 else

16 fail "No matching routes"

17 end

18 end

19

20 private

21

22 def route_exists?(path)

23 @routes[path]

24 end

25 end

26

2 - Une route + un contrôleur + une vue = une application 12

27 # config.ru

28 require_relative 'application'

29 run Application.new

30

31

32 # hello_controller.rb

33 class HelloController

34 def index

35 status, body = Renderer.new("hello.html").render

36 [status, {}, [body]]

37 end

38 end

39

40

41 # renderer.rb

42 class Renderer

43 def initialize(filename)

44 @filename = filename

45 end

46

47 def render

48 if File.exists?(@filename)

49 [200, File.read(@filename)]

50 else

51 [500, "<h1>500</h1><p>No such template: #{@filename}</p>"]

52 end

53 end

54 end

Le code HTML de l’application

1 <!-- hello.html -->

2 <h1>Un grand bonjour depuis mon extraordinaire application</h1>

Le code YAML de l’application

1 # routes.yml

2 "/hello": { via: "get", to: "hello#index" }

Nous ne pouvons pas encore parler de framework. Il s’agit d’un programme. En parlant de ça, il
serait bon de définir ce qu’est un framework. La première phrase sur Wikipédia France est une
bonne introduction. Je vous invite à lire l’article entier², ainsi que son homologue en anglais³.

2. https://fr.wikipedia.org/wiki/Framework
3. https://en.wikipedia.org/wiki/Software_framework

https://fr.wikipedia.org/wiki/Framework
https://en.wikipedia.org/wiki/Software_framework
https://fr.wikipedia.org/wiki/Framework
https://en.wikipedia.org/wiki/Software_framework

2 - Une route + un contrôleur + une vue = une application 13

En programmation informatique, un framework ou structure logicielle est un ensemble
cohérent de composants logiciels structurels, qui sert à créer les fondations ainsi que les
grandes lignes de tout ou d’une partie d’un logiciel (architecture).
–Wikipédia

Une autre définition que j’aime bien, plus générale et qui peut tout à fait s’appliquer à d’autres
domaines que la programmation, est celle du MacMillan Dictionary⁴ :

a structure that supports something and makes it a particular shape
– MacMillan dictionary

Dans le prochain chapitre, nous allons généraliser ce que nous avons appris jusqu’ici pour en faire
un framework.
4. http://www.macmillandictionary.com/dictionary/british/framework

http://www.macmillandictionary.com/dictionary/british/framework
http://www.macmillandictionary.com/dictionary/british/framework

17 - Migrations
Introduction

Jusqu’ici nous avons agi comme si l’application bâtie sur le framework et la base de données étaient
deux entités indépendantes, qui évoluaient chacune de son coté, sans vraiment tenir compte de
l’autre. C’est une possibilité et vous pouvez bâtir votre framework sur cette idée.

Toutefois, la plupart des applications web aujourd’hui utilisent une base de données créée pour l’oc-
casion. Il est donc intéressant de faire évoluer la base de données en même temps que l’application.
On peut même oublier SQL et utiliser le langage du framework pour gérer les modifications de la
base de données. C’est le concept de migration.

Une première migration

Comme nous avons déjà une base de données, Sequel va nous permettre de créer une migration
qu’on pourra utiliser pour répliquer notre base existante, par exemple sur Heroku. Pour cela nous
utiliserons le programme sequel avec l’option -d :

sequel -d chaine_de_connexion

Vous pouvez copier/coller la chaîne de connexion. Mais puisque cette chaîne réside dans le fichier
db/configuration, autant se servir du shell. La commande suivante devrait fonctionner avec la
plupart des shells :

Afficher le contenu de la base comme une migration

$ cat db/configuration | xargs sequel -d

Avec Bash, j’aurais tendance à utiliser la commande suivante, qui fait la même chose :

Une autre façon de faire, avec Bash

$ sequel -d $(cat db/configuration)

Avec Fish, le shell que j’utilise au quotidien, la commande est encore plus simple :

17 - Migrations 15

Pareil, mais avec Fish

$ sequel -d (cat db/configuration)

Quelque soit la méthode que vous allez choisir, elle va afficher dans le terminal le contenu de notre
première migration avec Sequel :

Contenu de la base, d’après Sequel

$ sequel -d postgres://framework:password@localhost:5432/framework_blog

Sequel.migration do

change do

create_table(:posts) do

primary_key :id

String :title, :text=>true

String :content, :text=>true

DateTime :date

end

end

end

Pour conserver les migrations, rangeons les dans un nouveau dossier :

Création du dossier db/migrations

$ mkdir db/migrations

Chaque migration devra être placée dans un fichier Ruby nommé d’après le pattern version_-

description.rb. La description pourra être le texte qui vous plaira mais la version devra répondre
à un schéma précis. Soit elle sera un numéro d’ordre, comme 001, 002, 003, etc. Soit elle sera une
date, comme 20170401, 20170412, 20170423, etc. Soit elle sera un ensemble date + time, comme
20170401120035, 20170401173302, etc. Il faudra veiller à ne pas mélanger les schémas. Le plus simple
étant le numéro d’ordre, c’est celui que nous allons utiliser. Écrivez votre première migration dans
un fichier 01_create_posts.rb :

17 - Migrations 16

Fichier Ruby contenant la migration

1 # Fichier db/migrations/01_create_posts.rb

2 Sequel.migration do

3 change do

4 create_table(:posts) do

5 primary_key :id

6 String :title, :text=>true

7 String :content, :text=>true

8 DateTime :date

9 end

10 end

11 end

Maintenant que nous avons une belle migration toute neuve, nous allons apprendre à l’utiliser en
local. Supprimez la table posts de la base de données. N’hésitez pas à ouvrir deux consoles en même
temps, une pour psql et une autre pour sequel. En SQL on supprime une table et son contenu avec
drop table :

Supprimer une table avec SQL

drop table posts;

Avec l’utilitaire sequel, on lance les migrations avec l’option -m :

sequel -m dossier/des/migrations chaîne_de_connexion

Ce qui, avec le shell Bash, nous donnera la commande suivante :

Lancer la migration avec sequel

$ sequel -m db/migrations/ $(cat db/configuration)

Lorsque vous lancerez cette commande, ne soyez pas surpris si elle n’affiche rien. Ce sera parfai-
tement normal et signifiera que tout s’est bien déroulé. Vous pourrez alors regarder le contenu de
votre base avec la commande \d dans psql. Vous devriez y voir deux tables (plus une sequence qui
est en gros la description de l’incrémentation de la clé primaire de la table posts) :

17 - Migrations 17

\d

List of relations

Schema | Name | Type | Owner

--------+--------------+----------+-----------

public | posts | table | framework

public | posts_id_seq | sequence | framework

public | schema_info | table | framework

(3 rows)

La table schema_info est ajoutée par Sequel pour gérer les migrations et contient la « version
actuelle », c’est à dire le numéro d’ordre de la dernière migration effectuée.

Voir le contenu de la table schema_info

framework_blog=# select * from schema_info;

version

1

(1 row)

Ajouter une seconde migration

Je voudrais ajouter un gif optionnel aux articles. Pour cela je vais créer une migration avec la version
2 et le nom add_gif_to_posts. Cette migration utilisera la méthode add_column pour ajouter la
colonne gif à la table posts. Le gif sera représenté par du code HTML, comme celui que nous fourni
Giphy⁵. Voici un exemple de code HTML que fourni ce service :

Code pour afficher un GIF venant de Giphy

<iframe src="//giphy.com/embed/tyxovVLbfZdok" width="480" height="301.2" frameBo

rder="0" class="giphy-embed" allowFullScreen></iframe> <p> <a href="https://giph

y.com/gifs/movie-happy-excited-tyxovVLbfZdok">via GIPHY </p>

Nous aurons donc besoin d’une colonne de type text, et nous pouvons consulter la liste des types pour
les migrations dans la documentation de Sequel⁶. Ceci nous conduit à écrire la migration suivante :

5. https://giphy.com/
6. http://sequel.jeremyevans.net/rdoc/files/doc/schema_modification_rdoc.html#label-Column+types

https://giphy.com/
http://sequel.jeremyevans.net/rdoc/files/doc/schema_modification_rdoc.html#label-Column+types
https://giphy.com/
http://sequel.jeremyevans.net/rdoc/files/doc/schema_modification_rdoc.html#label-Column+types

17 - Migrations 18

Une seconde migration

1 # Fichier db/migrations/02_add_gif_to_posts.rb

2 Sequel.migration do

3 change do

4 add_column :posts, :gif, String, :text=>true

5 end

6 end

Il faut afficher ce nouveau champ dans nos formulaires :

Un champ pour le GIF

<!-- Fichier views/shared/form_fields.html.erb -->

<label>Titre

<input type="text" name="title" id="title" value="<%= @post.title %>">

</label>

<label>Contenu

<input type="text" name="content" id="content" value="<%= @post.content %>">

</label>

<label>Gif

<input type="text" name="gif" id="gif" value="<%= h(@post.gif) %>">

</label>

La méthode h permet d’afficher le code HTML comme du texte (faites l’essai avec un formulaire de
mise à jour sans cette méthode pour vous rendre compte de son utilité). La méthode h est fournie par
le module ERB ::Util et nous devons donc l’inclure dans notre framework :

On utilise le module ERB ::Util

Fichier lib/base_controller.rb

class BaseController

...

include ERB::Util

...

end

Il faut maintenant que le contrôleur sache quoi faire de ce nouveau champ. Il est donc nécessaire de
modifier les méthodes create et update de la classe PostsController :

17 - Migrations 19

On sauvegarde le GIF dans le contrôleur

class PostsController < BaseController

def create

Post.create(title: params["title"],

content: params["content"],

gif: params["gif"],

date: Time.now)

notice("Post créé avec succès")

redirect_to "/posts"

end

def update

post = Post[params["id"]]

post.update(title: params["title"],

content: params["content"],

gif: params["gif"])

redirect_to "/posts"

end

end

Puis nous devons l’afficher dans les posts avec <%= @post.gif %>. Si un post n’a pas de gif, la méthode
.gif retournera nil et rien ne sera affiché. Dans le cas contraire cela affichera le code HTML du gif :

Affichage du GIF

<!-- views/posts/show.html.erb -->

<h2><%= @post.title %></h2>

<div><i><%= Time.at @post.date %></i></div>

<p><%= @post.content %></p>

<%= @post.gif %>

<p>

<a href="/posts/delete?id=<%= @post.id %>">

Supprimer (mais ne venez pas pleurer après !)

</p>

Généralement nous ne souhaitons pas manipuler quotidiennement des programmes en ligne de
commande tel que sequel. En Ruby nous préférons rassembler toutes les commandes possibles dans
des tâches Rake⁷. Sans entrer dans les détails, Rake est l’équivalent Ruby de Make⁸. Quand il y a peu

7. https://en.wikipedia.org/wiki/Rake_(software)
8. https://en.wikipedia.org/wiki/Make_(software)

https://en.wikipedia.org/wiki/Rake_(software)
https://en.wikipedia.org/wiki/Make_(software)
https://en.wikipedia.org/wiki/Rake_(software)
https://en.wikipedia.org/wiki/Make_(software)

17 - Migrations 20

de tâches, on utilise généralement un seul fichier nommé Rakefile. Le fichier suivant définit une
tâche nommée db :migrate.

Une tâche Rake pour migrer

1 # Fichier Rakefile

2 namespace :db do

3 desc "Run migrations"

4 task :migrate do |t|

5 puts "Migrating…"

6 require "sequel"

7 Sequel.extension :migration

8 connexion = ENV["DATABASE_URL"] || File.read("db/configuration").chomp

9 db = Sequel.connect(connexion)

10 Sequel::Migrator.run(db, "db/migrations")

11 puts "Done."

12 end

13 end

Ligne 6, nous chargeons la gem Sequel et ligne 7, nous chargeons la partie de Sequel qui concerne
les migrations. Enfin ligne 10, nous lançons les migrations, c’est l’équivalent en Ruby de la ligne de
commande sequel -m db/migrations $(cat/configuration).

Pour lancer les migrations en local vous utiliserez la commande bundle exec rake db :migrate.
Pour les lancer sur heroku la commande sera heroku run rake db :migrate :

Lancer la migration en local

$ bundle exec rake db:migrate

Migrating…

Done.

Lancer la migration sur Heroku

$ heroku run rake db:migrate

Running rake db:migrate on � quiet-plains-59626... up, run.2190 (Free)

Migrating…

Done.

17 - Migrations 21

Le nouveau formulaire

Et hop, en local tout fonctionne bien. Mais sur Heroku, vous aurez droit à une erreur, ça marche pas…
Pourquoi ? Parce que en local, votre serveur web se lance par défaut enmode development, alors que
sur Heroku il est lancé en mode production (nous verrons plus en détails la notion d’environnement
dans un prochain chapitre). Et en mode production, le modèle Post n’est pas « réactualisé » après
une migration. Voici l’enchaînement des faits en mode production, sur Heroku :

1. Démarrage de l’application avec une base de données sans tables.
2. Chargement du modèle Post, à partir de la base de données sans tables.
3. Migrations, la base de données contient les tables.
4. Affichage d’un formulaire à partir du modèle Post « vide » de l’étape 2, d’où erreur.

La solution la plus simple consiste à redémarrer l’application Heroku après une migration à l’aide
la commande heroku restart pour que les modèles soient rafraichis :

Redémarrer une application sur Heroku

$ heroku restart

Restarting dynos on � quiet-plains-59626... done

Maintenant vous pouvez poster des articles avec des gifs !

17 - Migrations 22

Le résultat en image !

	Table des matières
	À qui s'adresse ce livre
	Introduction
	2 - Une route + un contrôleur + une vue = une application
	Une route
	Un contrôleur
	Une vue
	Une application

	17 - Migrations
	Introduction
	Une première migration
	Ajouter une seconde migration

