

[image: Créer votre framework web en Ruby]

 Créer votre framework web en Ruby

 Xavier Nayrac

 Ce livre est en vente à http://leanpub.com/creervotreframeworkwebenruby

 Version publiée le 14/09/2020

 [image: publisher's logo]

 * * * * *

 Ce livre est publié par Leanpub. Leanpub permet aux auteurs et aux éditeurs de bénéficier du Lean Publishing. Lean Publishing consiste à publier à l’aide d’outils très simples de nombreuses itérations d’un livre électronique en cours de rédaction, d’obtenir des retours et commentaires des lecteurs afin d’améliorer le livre.

 * * * * *

© 2017 - 2020 Xavier Nayrac

 Table des matières

 	
 À qui s’adresse ce livre

 	
 Introduction

 	
 2 - Une route + un contrôleur + une vue = une application

 	
 Une route

 	
 Un contrôleur

 	
 Une vue

 	
 Une application

 	
 17 - Migrations

 	
 Introduction

 	
 Une première migration

 	
 Ajouter une seconde migration

 Guide

 	
 Begin Reading

À qui s’adresse ce livre

Ce livre s’adresse avant tout aux personnes curieuses de comprendre le
fonctionnement d’un framework web et qui pour cela sont prêtes à soulever le
capot et à mettre les mains dans le cambouis.

Pour tirer pleinement profit de ce livre, vous aurez besoin de quelques
connaissances préliminaires en programmation. Si vous avez écrit deux ou trois
sites web, quelque soit le langage, quelque soit le framework, vous possédez
alors les compétences requises pour utiliser ce livre au mieux. Comme le titre
le précise, nous allons écrire un framework web en Ruby, il vous sera donc
utile d’avoir déjà une certaine connaissance du langage Ruby. Si ça n’est pas
le cas, rassurez vous, Ruby est un langage qui s’apprend facilement et
rapidement et vous pourrez très bien l’apprendre en même temps que que vous
lirez ce livre.

Je vous souhaite une bonne programmation.

Introduction

Ce livre est articulé autour de 3 parties distinctes.

Dans la première partie «Les éléments d’un framework web» nous construirons
un framework web minimal depuis zéro. Nous utiliserons, fabriquerons et
manipulerons les composants essentiels à un framework web. Quelque soit le
framework web que vous déciderez d’écrire, vous aurez certainement besoin de
chaque élément vu dans cette première partie.

Dans la deuxième partie «Concepts Avancés» nous aborderons des éléments et
des composants plus complexes à mettre en œuvre, qui ne sont pas essentiels à
tous les frameworks en général, mais qui pourront s’avérer
indispensables pour votre framework en particulier.

Enfin nous conclurons ce livre dans la troisième partie, avec un exemple
d’application écrit de A à Z avec le framework que nous aurons mis au point
Cette application sera scindée en deux : un backend et un frontend, et
utilisera une API publique pour collecter et présenter des données (des GIFs ou
bien des informations météo, cela reste encore à déterminer).

2 - Une route + un contrôleur + une vue = une application

Une route

Le premier composant du framework dont je voudrais discuter est le routage,
routing en anglais.

 Le rôle du routage sera d’aiguiller les requêtes venant de l’extérieur vers
la bonne méthode de traitement, contenue quelque part dans l’application.

Toutes les routes de nos applications seront contenues dans le fichier
routes.yml.

 Lexique français/anglais des termes de routage

 	Français
 	Anglais

 	route
 	route

 	routage
 	routing

 	routeur
 	router

 Attention à ne pas confondre route, la route, et root, la racine.

Il y a de nombreuses manières de spécifier une route, ainsi que de nombreuses
techniques possibles pour charger les routes en mémoire. Dans ce livre, comme dans mon
travail au quotidien, dès que je le
peux je fais le choix de la simplicité. C’est pourquoi j’ai préféré utiliser
un fichier de configuration au format YAML, plutôt que de définir un DSL qui
aurait eu pour conséquence de trop compliquer les choses dès le début de ce
livre. Mais nous reviendrons sur un DSL dans les derniers chapitres.

Voici le contenu de notre premier fichier routes.yml, avec la définition
d’une seule route :

 Votre première route
1 # routes.yml
2
3 "/hello": { via: "get", to: "hello#index" }

Charger le contenu d’un fichier au format YAML demande peu de travail :

 Charger le fichier routes.yml avec Ruby
require 'yaml'
YAML.load_file("routes.yml")
#=> {
#=> "/hello" => {
#=> "via" => "get",
#=> "to" => "hello#index"
#=> }
#=> }

Nous récupérons donc un Hash, dont la clé principale est le chemin de la requête. La
valeur est elle-même un Hash, avec une première clé "via" qui contient le verbe
HTTP de la requête, et une seconde clé "to" qui contient sous une forme un peu
cryptique la classe et la méthode qui effectuera le traitement voulu.
Nous verrons plus loin la signification réelle de ce "hello#index".

En français une telle route signifie «route le chemin /hello, qui vient du
verbe http GET, vers la méthode index».

Notre application va charger toutes les routes lors de son initialisation (même
si pour l’instant il n’y en a qu’une) :

 En route pour une nouvelle application
1 # application.rb
2 require 'yaml'
3
4 class Application
5
6 def initialize
7 @routes = YAML.load_file("routes.yml")
8 end
9 end

Lançons notre application depuis une session irb pour nous assurer qu’elle
fonctionne. Notez que l’objet app qui s’affiche automatiquement dans la
console contient une représentation compréhensible du Hash @routes :

 Voir l’objet au sein d’une session irb
require "./application"
#=> true
Application.new
#=> #<Application:0x00559939fa2a30 @routes={"/hello"=>{"via"=>"get",
#=> "to"=>"hello#index"}}>

 Un petit truc pour débugger

 I am a puts debuggerer

– Aaron Patterson

 Si au cours d’une séance de débuggage ou pendant la mise au point interactive
d’un code vous vous trouvez, dans la console, avec le besoin d’inspecter le
contenu d’une variable de classe, la méthode qu’il vous faut se nomme
instance_variable_get :

 Afficher un membre
require "./application"
app = Application.new
app.instance_variable_get("@routes")
#=> {"/hello" => {"via" => "get", "to" => "hello#index"}}

J’ai rabâché plusieurs fois dans le chapitre précédent qu’une application Rack
devait avoir une méthode call. Notre classe Application se doit donc de
répondre à call. Profitons en pour tester la reconnaissance des routes. Si nous
envoyons une requête avec un chemin correspondant à une route nous répondons
avec «Ce chemin existe». Si au contraire la
requête ne correspond à aucun chemin nous afficherons «Ce chemin n’existe pas».

 On ajoute le call qui va bien
 1 # application.rb
 2 require 'yaml'
 3
 4 class Application
 5
 6 def initialize
 7 @routes = YAML.load_file("routes.yml")
 8 end
 9
10 def call(env)
11 if @routes[env["REQUEST_PATH"]]
12 [200, {}, ["Ce chemin existe"]]
13 else
14 [200, {}, ["Ce chemin n'existe pas"]]
15 end
16 end
17 end

 Pour connaître la requête de l’utilisateur j’ai utilisé la variable
REQUEST_PATH. Pourquoi celle ci et pas une autre ? Si vous avez regardé
l’env de plus près, vous avez vu que REQUEST_URI semble aussi un bon
candidat, au même titre que PATH_INFO. Sachez que j’ai choisi REQUEST_PATH
totalement au hasard ! L’objectif actuel est que cela fonctionne avec la
configuration présente, il sera temps plus tard de se pencher sur les
spécifications de Rack.

Notre application comporte désormais trois fichiers.

$ tree code/ch02/route/
├── application.rb
├── config.ru
└── routes.yml

Le config.ru est réduit à sa plus simple expression. Il se contente de charger le fichier
application.rb et de lancer l’application Rack:

 En avant !
1 # config.ru
2
3 require_relative "application"
4 run Application.new

Lancez l’application avec rackup et testez plusieurs routes.

 [image: Cette route existe]
 Cette route existe

 [image: Celle ci n'existe pas]
 Celle ci n’existe pas

Un contrôleur

Nous venons de voir qu’une route devait viser une méthode précise dans notre
framework. Plus particulièrement la route définit ci-dessus vise quelque chose
que nous avons écrit ainsi : "hello#index". La partie avant le # est le nom
d’un contrôleur, tandis que la partie après le # est le nom d’une méthode de
ce contrôleur.

 objet#méthode

 Le caractère # n’est pas choisi au hasard. Bien que
techniquement on pourrait choisir n’importe quel caractère, le # en Ruby, et
d’autres langages, symbolise l’appartenance d’une méthode d’instance.
Au contraire du . qui représente l’appartenance d’une méthode de classe.

 Donc Vincent.vega représente la méthode de classe vega, de la classe Vincent. On
l’utilisera comme suit :

 Une méthode de classe
Vincent.vega

 Alors que vincent#vega représente la méthode d’instance vega, d’une instance vincent.
On l’utilisera ainsi :

 Une méthode d’instance
vincent = Vincent.new
vincent.vega

 Le rôle d’un contrôleur sera de fabriquer la réponse attendue par Rack, à savoir
un Array avec code de retour, entêtes et corps.

Sans plus attendre, voici un contrôleur minimal pour notre route :

 Un contrôleur minimal, mais alors vraiment minimal
1 # hello_controller.rb
2
3 class HelloController
4 def index
5 [200, {}, ["Coucou !"]]
6 end
7 end

Vous pouvez constater que le code de ce contrôleur est terriblement simple.
Nous avons quand même une convention à l’œuvre ici : un
contrôleur “foo” est définit dans une classe FooController. Dans ce
contrôleur nous retrouvons bien la méthode index qui est visée par la route
"hello#index". Et le code de cette méthode index doit vous sembler
familier après avoir lu le chapitre précédent sur Rack.

Nous modifions notre application pour y inclure ce contrôleur. Nous chargeons
la classe HelloController avec la ligne require_relative 'hello_controller'
et nous modifions le contenu de la méthode call pour qu’elle utilise le
contrôleur si une bonne route existe. Si le chemin de la requête ne correspond
à aucune route nous exécutons fail et rendons le message d’erreur un peu plus
explicite en affichant «No matching route» :

 Utilisons ce fameux contrôleur
 1 # application.rb
 2 require 'yaml'
 3 require_relative 'hello_controller'
 4
 5 class Application
 6
 7 def initialize
 8 @routes = YAML.load_file("routes.yml")
 9 end
10
11 def call(env)
12 if route_exists?(env["REQUEST_PATH"])
13 HelloController.new.index
14 else
15 fail "Pas de route correspondante"
16 end
17 end
18
19 private
20
21 def route_exists?(path)
22 @routes[path]
23 end
24 end

Nous voici désormais avec un total de quatre fichiers.

$ tree code/ch02/controller/
├── application.rb
├── config.ru
├── hello_controller.rb
└── routes.yml

 [image: Quand la route existe]
 Quand la route existe

 [image: Quand la route n'existe pas]
 Quand la route n’existe pas

Une vue

Le prochain composant que nous allons introduire sera la vue. C’est ce qui nous
intéresse généralement en tant qu’utilisateur du Web.

 Pour l’instant nous définirons une vue comme étant ce qui s’affiche dans le
navigateur.

Voici un contenu simplifié pour la vue hello.html. Ce n’est pas un vrai
fichier HTML, complet et tout et tout, mais les navigateurs seront quand même
content de l’afficher :

 Soyons grandiloquent !
1 <!-- hello.html -->
2 <h1>Un grand bonjour depuis mon extraordinaire application</h1>

Nous devons transformer une vue en une chaîne de caractère, la méthode Ruby
File.read est parfaite pour cela :

 Lire la vue avec File.read
1 # hello_controller.rb
2 class HelloController
3 def index
4 [200, {}, [File.read("hello.html")]]
5 end
6 end

Avec ce nouveau fichier hello.html nous comptons maintenant cinq fichiers.

$ tree code/ch02/vue/
├── application.rb
├── config.ru
├── hello_controller.rb
├── hello.html
└── routes.yml

Et voilà !

 [image: C'est gros, c'est beau]
 C’est gros, c’est beau

Faire la conversion d’une vue en une chaîne de caractère directement dans la
méthode index du contrôleur est ce qu’il y a de plus simple. C’est pourquoi
j’ai présenté les choses de cette manière jusqu’ici. Mais ça n’est pas
forcement le plus intelligent à faire. Nous avons définit le rôle du
contrôleur comme étant celui de façonner la réponse attendue par Rack. Mais nous
n’avons pas dit que tout devait obligatoirement se dérouler dans le contrôleur.
Nous n’avons pas interdit non plus au contrôleur de se faire aider.
Isoler les responsabilités rendra notre code plus facile à tester, à modifier
et à raisonner. Voici donc un code plus étoffé, faisant appel à une classe
Renderer.

 Utilisons une classe pour faire le rendu
hello_controller.rb
class HelloController
 def index
 status, body = Renderer.new("hello.html").render
 [status, {}, [body]]
 end
end

renderer.rb
class Renderer
 def initialize(filename)
 @filename = filename
 end

 def render
 if File.exists?(@filename)
 [200, File.read(@filename)]
 else
 [500, "<h1>500</h1><p>No such template: #{@filename}</p>"]
 end
 end
end

Le rendu d’un fichier est ainsi testable de manière isolée, sans avoir à charger ou
utiliser un contrôleur dont le nombre de fonctionnalité ne manquera pas de
croître. Testons ce renderer dans une session irb:

 Testons la classe Renderer dans irb
require "./renderer"
Renderer.new("hello.html").render
#=> [
#=> 200,
#=> "<h1>Hello from an amazing web application!</h1>\n"
#=>]
Renderer.new("unknown").render
#=> [
#=> 500,
#=> "<h1>500</h1><p>No such template: unknown</p>"
#=>]

 Erreur 500

 Nous voyons ici un nouveau code de retour : 500. Ce code spécifie une erreur
interne du serveur (internal server error en anglais). Nous devons retourner
une erreur 500 lorsque le problème vient du serveur, comme par exemple une
division par zéro dans notre programme, ou bien comme ici un fichier inexistant.

Vous aurez remarqué que le code de HelloController#index s’est un peu
compliqué. Nous verrons comment le rendre beaucoup plus digeste dans le prochain
chapitre.

Une application

Nous voici à la fin de ce chapitre avec une application étalée sur six
fichiers. Le code est suffisamment court pour que je puisse me permettre de les
reproduire ici en entier :

 Le code Ruby de l’application
 1 # application.rb
 2 require 'yaml'
 3 require_relative 'hello_controller'
 4 require_relative 'renderer'
 5
 6 class Application
 7
 8 def initialize
 9 @routes = YAML.load_file("routes.yml")
10 end
11
12 def call(env)
13 if route_exists?(env["REQUEST_PATH"])
14 HelloController.new.index
15 else
16 fail "No matching routes"
17 end
18 end
19
20 private
21
22 def route_exists?(path)
23 @routes[path]
24 end
25 end
26
27 # config.ru
28 require_relative 'application'
29 run Application.new
30
31
32 # hello_controller.rb
33 class HelloController
34 def index
35 status, body = Renderer.new("hello.html").render
36 [status, {}, [body]]
37 end
38 end
39
40
41 # renderer.rb
42 class Renderer
43 def initialize(filename)
44 @filename = filename
45 end
46
47 def render
48 if File.exists?(@filename)
49 [200, File.read(@filename)]
50 else
51 [500, "<h1>500</h1><p>No such template: #{@filename}</p>"]
52 end
53 end
54 end

 Le code HTML de l’application
1 <!-- hello.html -->
2 <h1>Un grand bonjour depuis mon extraordinaire application</h1>

 Le code YAML de l’application
1 # routes.yml
2 "/hello": { via: "get", to: "hello#index" }

Nous ne pouvons pas encore parler de framework. Il s’agit d’un programme.
En parlant de ça, il serait bon de définir ce qu’est un framework. La
première phrase sur Wikipédia France est une bonne introduction. Je vous invite
à lire l’article entier, ainsi que
son homologue en anglais.

 En programmation informatique, un framework ou structure logicielle est un
ensemble cohérent de composants logiciels structurels, qui sert à créer les
fondations ainsi que les grandes lignes de tout ou d’une partie d’un logiciel
(architecture).

– Wikipédia

Une autre définition que j’aime bien, plus générale et qui peut tout à fait
s’appliquer à d’autres domaines que la programmation, est celle du
MacMillan Dictionary :

 a structure that supports something and makes it a particular shape

– MacMillan dictionary

Dans le prochain chapitre, nous allons généraliser ce que nous avons appris
jusqu’ici pour en faire un framework.

17 - Migrations

Introduction

Jusqu’ici nous avons agi comme si l’application bâtie sur le framework et la
base de données étaient deux entités indépendantes, qui évoluaient chacune de
son coté, sans vraiment tenir compte de l’autre. C’est une possibilité et vous
pouvez bâtir votre framework sur cette idée.

Toutefois, la plupart des applications web aujourd’hui utilisent une base de
données créée pour l’occasion. Il est donc intéressant de faire évoluer la
base de données en même temps que l’application. On peut même oublier SQL et utiliser
le langage du framework pour gérer les modifications de la base de données. C’est
le concept de migration.

Une première migration

Comme nous avons déjà une base de données, Sequel va nous permettre de créer
une migration qu’on pourra utiliser pour répliquer notre base existante, par
exemple sur Heroku. Pour cela nous utiliserons le programme sequel avec
l’option -d :

sequel -d chaine_de_connexion

Vous pouvez copier/coller la chaîne de connexion. Mais puisque cette chaîne réside dans
le fichier db/configuration, autant se servir du shell. La commande suivante
devrait fonctionner avec la plupart des shells :

 Afficher le contenu de la base comme une migration
$ cat db/configuration | xargs sequel -d

Avec Bash, j’aurais tendance à utiliser la commande suivante, qui fait la
même chose :

 Une autre façon de faire, avec Bash
$ sequel -d $(cat db/configuration)

Avec Fish, le shell que j’utilise au quotidien, la commande est encore plus
simple :

 Pareil, mais avec Fish
$ sequel -d (cat db/configuration)

Quelque soit la méthode que vous allez choisir, elle va afficher dans le
terminal le contenu de notre première migration avec Sequel :

 Contenu de la base, d’après Sequel
$ sequel -d postgres://framework:password@localhost:5432/framework_blog
Sequel.migration do
 change do
 create_table(:posts) do
 primary_key :id
 String :title, :text=>true
 String :content, :text=>true
 DateTime :date
 end
 end
end

Pour conserver les migrations, rangeons les dans un nouveau dossier :

 Création du dossier db/migrations
$ mkdir db/migrations

Chaque migration devra être placée dans un fichier Ruby nommé d’après le pattern version_description.rb.
La description pourra être le texte qui vous plaira mais la version devra répondre à un schéma précis.
Soit elle sera un numéro d’ordre, comme 001, 002, 003, etc. Soit elle sera une date, comme
20170401, 20170412, 20170423, etc. Soit elle sera un ensemble date + time, comme
20170401120035, 20170401173302, etc. Il faudra veiller à ne pas mélanger les schémas.
Le plus simple étant le numéro d’ordre, c’est celui que nous allons utiliser. Écrivez votre première migration dans un
fichier 01_create_posts.rb :

 Fichier Ruby contenant la migration
 1 # Fichier db/migrations/01_create_posts.rb
 2 Sequel.migration do
 3 change do
 4 create_table(:posts) do
 5 primary_key :id
 6 String :title, :text=>true
 7 String :content, :text=>true
 8 DateTime :date
 9 end
10 end
11 end

Maintenant que nous avons une belle migration toute neuve, nous allons apprendre à l’utiliser en local.
Supprimez la table posts de la base de données.
N’hésitez pas à ouvrir deux consoles en même temps, une pour psql et une autre pour sequel.
En SQL on supprime une table et son contenu avec drop table :

 Supprimer une table avec SQL
drop table posts;

Avec l’utilitaire sequel, on lance les migrations avec l’option -m :

sequel -m dossier/des/migrations chaîne_de_connexion

Ce qui, avec le shell Bash, nous donnera la commande suivante :

 Lancer la migration avec sequel
$ sequel -m db/migrations/ $(cat db/configuration)

Lorsque vous lancerez cette commande, ne soyez pas surpris si elle n’affiche rien. Ce sera parfaitement normal et
signifiera que tout s’est bien déroulé. Vous pourrez alors regarder le contenu de votre base avec la commande \d dans
psql. Vous devriez y voir deux tables (plus une sequence qui est en gros la description de l’incrémentation
de la clé primaire de la table posts) :

\d
 List of relations
 Schema | Name | Type | Owner
--------+--------------+----------+-----------
 public | posts | table | framework
 public | posts_id_seq | sequence | framework
 public | schema_info | table | framework
(3 rows)

La table schema_info est ajoutée par Sequel pour gérer les migrations et contient la «version actuelle», c’est à dire
le numéro d’ordre de la dernière migration effectuée.

 Voir le contenu de la table schema_info
framework_blog=# select * from schema_info;
 version

 1
(1 row)

Ajouter une seconde migration

Je voudrais ajouter un gif optionnel aux articles. Pour cela je vais créer une
migration avec la version 2 et le nom add_gif_to_posts. Cette migration
utilisera la méthode add_column pour ajouter la colonne gif à la table
posts. Le gif sera représenté par du code HTML, comme celui que nous fourni
Giphy. Voici un exemple de code HTML que fourni ce
service :

 Code pour afficher un GIF venant de Giphy
<iframe src="//giphy.com/embed/tyxovVLbfZdok" width="480" height="301.2" frameBo
rder="0" class="giphy-embed" allowFullScreen></iframe> <p> <a href="https://giph
y.com/gifs/movie-happy-excited-tyxovVLbfZdok">via GIPHY </p>

Nous aurons donc besoin d’une colonne de type text, et nous pouvons consulter
la liste des types pour les migrations dans la
documentation de Sequel.
Ceci nous conduit à écrire la migration suivante :

 Une seconde migration
1 # Fichier db/migrations/02_add_gif_to_posts.rb
2 Sequel.migration do
3 change do
4 add_column :posts, :gif, String, :text=>true
5 end
6 end

Il faut afficher ce nouveau champ dans nos formulaires :

 Un champ pour le GIF
<!-- Fichier views/shared/form_fields.html.erb -->
<label>Titre
 <input type="text" name="title" id="title" value="<%= @post.title %>">
</label>

<label>Contenu
 <input type="text" name="content" id="content" value="<%= @post.content %>">
</label>

<label>Gif
 <input type="text" name="gif" id="gif" value="<%= h(@post.gif) %>">
</label>

La méthode h permet d’afficher le code HTML comme du texte (faites l’essai avec
un formulaire de mise à jour sans cette méthode pour vous rendre compte de son utilité).
La méthode h est fournie par le module ERB::Util et nous devons donc
l’inclure dans notre framework :

 On utilise le module ERB::Util
Fichier lib/base_controller.rb
class BaseController
 # ...
 include ERB::Util
 # ...
end

Il faut maintenant que le contrôleur sache quoi faire de ce nouveau champ. Il
est donc nécessaire de modifier les méthodes create et update de la classe
PostsController :

 On sauvegarde le GIF dans le contrôleur
class PostsController < BaseController
 def create
 Post.create(title: params["title"],
 content: params["content"],
 gif: params["gif"],
 date: Time.now)
 notice("Post créé avec succès")
 redirect_to "/posts"
 end

 def update
 post = Post[params["id"]]
 post.update(title: params["title"],
 content: params["content"],
 gif: params["gif"])
 redirect_to "/posts"
 end
end

Puis nous devons l’afficher dans les posts avec <%= @post.gif %>. Si un post
n’a pas de gif, la méthode .gif retournera nil et rien ne sera affiché.
Dans le cas contraire cela affichera le code HTML du gif :

 Affichage du GIF
<!-- views/posts/show.html.erb -->
<h2><%= @post.title %></h2>
<div><i><%= Time.at @post.date %></i></div>
<p><%= @post.content %></p>

<%= @post.gif %>

<p>
 <a href="/posts/delete?id=<%= @post.id %>">
 Supprimer (mais ne venez pas pleurer après !)

</p>

Généralement nous ne souhaitons pas manipuler quotidiennement des programmes en
ligne de commande tel que sequel. En Ruby nous préférons rassembler toutes les
commandes possibles dans des tâches
Rake. Sans entrer dans les détails, Rake est
l’équivalent Ruby de Make.
Quand il y a peu de tâches, on utilise généralement un seul fichier nommé Rakefile.
Le fichier suivant définit une tâche nommée db:migrate.

 Une tâche Rake pour migrer
 1 # Fichier Rakefile
 2 namespace :db do
 3 desc "Run migrations"
 4 task :migrate do |t|
 5 puts "Migrating…"
 6 require "sequel"
 7 Sequel.extension :migration
 8 connexion = ENV["DATABASE_URL"] || File.read("db/configuration").chomp
 9 db = Sequel.connect(connexion)
10 Sequel::Migrator.run(db, "db/migrations")
11 puts "Done."
12 end
13 end

Ligne 6, nous chargeons la gem Sequel et ligne 7, nous chargeons la partie de
Sequel qui concerne les migrations. Enfin ligne 10, nous lançons les
migrations, c’est l’équivalent en Ruby de la ligne de commande sequel -m
db/migrations $(cat/configuration).

Pour lancer les migrations en local vous utiliserez la commande bundle exec rake db:migrate.
Pour les lancer sur heroku la commande sera heroku run rake db:migrate :

 Lancer la migration en local
$ bundle exec rake db:migrate
Migrating…
Done.

 Lancer la migration sur Heroku
$ heroku run rake db:migrate
Running rake db:migrate on ⬢ quiet-plains-59626... up, run.2190 (Free)
Migrating…
Done.

 [image: Le nouveau formulaire]
 Le nouveau formulaire

Et hop, en local tout fonctionne bien. Mais sur Heroku, vous aurez droit à une
erreur, ça marche pas… Pourquoi ? Parce que en local, votre serveur web se
lance par défaut en mode development, alors que sur Heroku il est lancé en
mode production (nous verrons plus en détails la notion d’environnement
dans un prochain chapitre). Et en mode production, le modèle Post n’est pas «réactualisé» après une migration.
Voici l’enchaînement des faits en mode production, sur Heroku :

 	Démarrage de l’application avec une base de données sans tables.

 	Chargement du modèle Post, à partir de la base de données sans tables.

 	Migrations, la base de données contient les tables.

 	Affichage d’un formulaire à partir du modèle Post «vide» de l’étape 2, d’où erreur.

La solution la plus simple consiste à redémarrer l’application Heroku après une
migration à l’aide la commande heroku restart pour que les modèles soient rafraichis :

 Redémarrer une application sur Heroku
$ heroku restart
Restarting dynos on ⬢ quiet-plains-59626... done

Maintenant vous pouvez poster des articles avec des gifs !

 [image: Le résultat en image !]
 Le résultat en image !

OEBPS/images/leanpub_info-circle.png

OEBPS/images/leanpub_warning.png

OEBPS/images/shot-07.png
© |/ RuntimeError.. x|+
€) ®|localhost:9292/yeah
RuntimeError at /yeah
Pas de route correspondante

Ruby /hose/xavier/perso/ rawrench/test ing/application. rb: in catl, line 14
Web GET localhost/yeah

Jump to:
GET | POST | Cookies | ENV

Traceback (innermost first)

/hose/xavier/perso/ rawrench/testing/application. rb: in call

16 fail “Pas de route correspondante”
Ihome/xavier] .geaj ruby/2.4.0/geas/ rack-2.0.1/1ib/ rack/ teapile_reaper.rb: in call
15 stotus, headers, body = eapp.cotl(env)

OEBPS/images/shot-08.png
S R/ 2hells + v
& localhost 252 el

Un grand bonjour depuis mon extraordinaire application

OEBPS/images/shot-17-01.png
Blog de Xavier]

Ecrire un post

'l‘itre‘ Avec un gif ? ‘

Contenu| Et voila!
| |

Git| bfZdok">via GIPHY</p3]

Créer

OEBPS/images/shot-17-02.png
Blog de Xavier]

Avec un gif ?

2017-04-19 11:39:25 +0200

Etvoila !

OEBPS/images/shot-04.png
0 | http://l..2/hello * | +

¢ ®|localhost:9292/hello

Ce chenin existe

OEBPS/images/shot-05.png
89 http://L.../foobar x|+

() @ localhost:9292/foobar

Ce chemin n'existe pas

OEBPS/images/shot-06.png
89/ http://l..2/hello =\ +

(€) ®/localhost:9292/hello

Coucou ¢

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.jpg
ii"ziiis\gf:i-.
/W

