

Creating HTML Reports in
PowerShell (Spanish)

The DevOps Collective, Inc.

Este libro está a la venta en
http://leanpub.com/creating-html-reports-in-powershell-spanish

Esta versión se publicó en 2018-10-28

Este es un libro de Leanpub. Leanpub anima a los autores y
publicadoras con el proceso de publicación. Lean Publishing es el
acto de publicar un libro en progreso usando herramientas
sencillas y muchas iteraciones para obtener feedback del lector
hasta conseguir tener el libro adecuado.

© 2018 The DevOps Collective, Inc.

http://leanpub.com/creating-html-reports-in-powershell-spanish
http://leanpub.com/
http://leanpub.com/manifesto

También por The DevOps
Collective, Inc.
Creating HTML Reports in Windows PowerShell

A Unix Person’s Guide to PowerShell

The Big Book of PowerShell Error Handling

DevOps: The Ops Perspective

Ditch Excel: Making Historical and Trend Reports in PowerShell

Secrets of PowerShell Remoting

The Big Book of PowerShell Gotchas

The Monad Manifesto, Annotated

Why PowerShell?

Windows PowerShell Networking Guide

The PowerShell + DevOps Global Summit Manual for Summiteers

Why PowerShell? (Spanish)

Secrets of PowerShell Remoting (Spanish)

DevOps: The Ops Perspective (Spanish)

The Monad Manifesto: Annotated (Spanish)

The Big Book of PowerShell Gotchas (Spanish)

The Big Book of PowerShell Error Handling (Spanish)

DevOps: WTF?

PowerShell.org: History of a Community

http://leanpub.com/u/devopscollective
http://leanpub.com/u/devopscollective
http://leanpub.com/creatinghtmlreportsinwindowspowershell
http://leanpub.com/aunixpersonsguidetopowershell
http://leanpub.com/thebigbookofpowershellerrorhandling
http://leanpub.com/devopstheopsperspective
http://leanpub.com/ditchexcelmakinghistoricalandtrendreportsinpowershell
http://leanpub.com/secretsofpowershellremoting
http://leanpub.com/thebigbookofpowershellgotchas
http://leanpub.com/themonadmanifestoannotated
http://leanpub.com/whypowershell
http://leanpub.com/windowspowershellnetworkingguide
http://leanpub.com/summiteermanual
http://leanpub.com/why-powershell-spanish
http://leanpub.com/secrets-of-powershell-remoting-spanish
http://leanpub.com/devops-the-ops-perspective-spanish
http://leanpub.com/monad-manifesto-annotated-spanish
http://leanpub.com/big-book-of-powershell-gotchas-spanish
http://leanpub.com/big-book-of-powershell-error-handling-spanish
http://leanpub.com/devopswtf
http://leanpub.com/powershellorghistoryofacommunity

Índice general

Creating HTML Reports in PowerShell 1

Bases del informe HTML . 3

Recopilación de la información 7

Construyendo el HTML . 12

Combinación de informes HTML y una aplicación GUI . 28

Contactándome . 31

Creating HTML Reports
in PowerShell

Por Don Jones

Aprenda a utilizar correctamente ConvertTo-HTML para producir
informes HTML de varias secciones y bien formados, pero luego
vaya más allá con un módulo EnhancedHTML personalizado.
Produaca informes hermosos, codificados por colores, dinámicos y
con multi-secciones de forma fácil y rápida. Escrito por Don Jones.

Esta guía se publica bajo la licencia Creative CommonsAttribution-
NoDerivs 3.0 Unported. Los autores le animan a redistribuir este
archivo lo más ampliamente posible, pero le solicitan que no
modifique el documento original.

Descargar el código El módulo EnhancedHTML2 mencionado en
este libro puede encontrarse en PowerShell Gallery¹. Esa página
incluye instrucciones de descarga. PowerShellGet es necesario, y
se puede obtener de PowerShellGallery.com

¿Ha sido útil este libro? El (los) autor (es) le pide (n) que haga
una donación deducible de impuestos (en los EE.UU., consulte sus
leyes si vive en otro lugar) de cualquier cantidad a The DevOps
Collective² para apoyar su trabajo.

¹https://www.powershellgallery.com/packages/EnhancedHTML2/
²https://devopscollective.org/donate/

https://www.powershellgallery.com/packages/EnhancedHTML2/
https://devopscollective.org/donate/
https://devopscollective.org/donate/
https://www.powershellgallery.com/packages/EnhancedHTML2/
https://devopscollective.org/donate/

Creating HTML Reports in PowerShell 2

Revise las actualizaciones! Nuestros ebooks se actualizan a me-
nudo con contenido nuevo y corregido. Los hacemos disponibles
de tres maneras::

• Nuestra rama principal GitHub organization³, con un re-
positorio para cada libro. Visite https://github.com/devops-
collective-inc/

• Nuestra GitBook page⁴, donde puede navegar por los libros
en línea, o descargarlos en formato PDF, EPUB o MOBI. Uti-
lizando el lector en línea, puede saltar a capítulos específicos.
Visite https://www.gitbook.com/@devopscollective

• En LeanPub⁵, donde se pueden descargar como PDF, EPUB, o
MOBI (login requerido), y “comprar” los libros haciendo una
donación a DevOps. También puede elegir recibir notificacio-
nes de actualizaciones. Visite https://leanpub.com/u/devopscollective

GitBook y LeanPub generan la salida del formato PDF ligeramente
diferente, por lo que puede elegir el que prefiera. LeanPub también
le puede notificar cada vez que liberamos alguna actualización.
Nuestro repositorio de GitHub es el principal; los repositorios
en otros sitios suelen ser sólo espejos utilizados para el proceso
de publicación. GitBook normalmente contendrá nuestra última
versión, incluyendo algunos bits no terminados; LeanPub siempre
contiene la más reciente “publicación liberada” de cualquier libro.

³https://github.com/devops-collective-inc
⁴https://www.gitbook.com/@devopscollective
⁵https://leanpub.com/u/devopscollective

https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective

Bases del informe HTML
En primer lugar, entender que PowerShell no se limita a crear
informes en HTML. Pero me gusta el HTML porque es flexible,
puede ser enviado fácilmente a través de correo electrónico, y se ve
mucho mejor que un simple informe de texto sin ningún formato.
Pero antes de sumergirnos en esto, necesitamos aclarar un poco
cómo funciona el HTML.

Una página HTML es sólo un archivo de texto sin formato, con algo
parecido a esto:

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" \

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml">

4 <head>

5 <title>HTML TABLE</title>

6 </head><body>

7 <table>

8 <colgroup><col/><col/><col/><col/><col/></colgroup>

9 <tr><th>ComputerName</th><th>Drive</th><th>Free(GB)</th><\

10 th>Free(%)</th><th>Size(GB)</th></tr>

11 <tr><td>CLIENT</td><td>C:</td><td>49</td><td>82</td><td>6\

12 0</td></tr>

13 </table>

14 </body></html>

Cuando se interpreta por un navegador, este archivo se representa
en la pantalla que aparece en la ventana del navegador. Lo mismo
se aplica a los clientes de correo electrónico capaces de mostrar
contenido HTML. Mientras que usted, como persona, puede poner
obviamente cualquier cosa en el archivo, necesita seguir las reglas
que los browsers esperan para obtener la salida deseada.

Bases del informe HTML 4

Una de esas reglas es que cada archivo debe contener uno y un solo
documentoHTML. Es todo el contenido entre la etiqueta <HTML> y la
etiqueta </HTML> (los nombres de las etiquetas no distinguen entre
mayúsculas y minúsculas, y es común verlas en minúsculas como
en el ejemplo anterior). Menciono esto porque una de las cosas más
comunes que veré a la gente hacer con PowerShell se parecerá a
esto:

1 Get-WmiObject -class Win32_OperatingSystem | ConvertTo-HT\

2 ML | Out-File report.html

3 Get-WmiObject -class Win32_BIOS | ConvertTo-HTML | Out-Fi\

4 le report.html -append

5 Get-WmiObject -class Win32_Service | ConvertTo-HTML | Out\

6 -File report.html -append

“Aaarrrggh,” dice mi colon cada vez que veo eso. Básicamente, está
diciendo a PowerShell que cree tres documentos HTML completos
y los coloque en un solo archivo. Mientras que algunos navega-
dores (Internet Explorer, por ejemplo) entenderán eso e intentarán
mostrar algo, es simplemente incorrecto hacer esto. Una vez que
empiece generar esta clase de informes, descubrirá rápidamente que
este enfoque es doloroso. No es culpa de PowerShell; Simplemente
no está siguiendo las reglas. ¡Por eso esta guía!

Se dará cuenta que el HTML consiste en muchas otras etiquetas,
como: <TABLE>, <TD>, <HEAD>, y otras más. La mayoría de estas
forman parejas, lo que significa que vienen en una etiqueta de
apertura como <TD> y una etiqueta de cierre como </TD>. La etiqueta
<TD> representa una celda de tabla, y todo entre esas etiquetas se
considera el contenido de esa celda.

La sección <HEAD> es importante. Lo que hay dentro no es normal-
mente visible en el navegador. En su lugar, el navegador se centra
en lo que hay en la sección <BODY>. La sección <HEAD> proporciona
metadatos adicionales, como el título de la página (lo se muestra
en la barra de título o pestaña de la ventana del navegador, no en

Bases del informe HTML 5

la página), las hojas de estilo o las secuencias de comandos que
se adjuntan a la página, y cosas así. Vamos a hacer algunas cosas
impresionantes con la sección <HEAD>, confíe en mí.

También notará que este HTML es bastante “limpio”, en contrapo-
sición, digamos, a la salida HTML de Microsoft Word. Este HTML
no contiene información visual incrustada en él, como colores o
fuentes. Eso es bueno, porque sigue las buenas prácticas de HTML
de separar la información de formato de la estructura del docu-
mento. Será decepcionante al principio, porque sus páginas HTML
parecerán algo aburridas. Pero vamos a mejorar eso, también.

Para ayudar a que la narrativa de este libro permanezca enfocada,
voy a comenzar con un solo ejemplo. En ese ejemplo, vamos a
recuperar varios bits de información acerca de una computadora
remota y formatear todo en un bonito y dinámico informe HTML.
Con suerte, podrá concentrarse en las técnicas que estoymostrando,
y adaptarlas a sus propias necesidades.

En mi ejemplo, quiero que el informe tenga cinco secciones, cada
una con la siguiente información:

• Información de la computadora
• Versión del sistema operativo del equipo, número de compi-
lación y versión del Service Pack.

• Información de hardware: la cantidad de RAM instalada y el
número de cores, junto con el fabricante y el modelo.

• Una lista de todos los procesos que se ejecutan en la máquina.
• Una lista de todos los servicios que están configurados para
iniciarse automáticamente, pero que no se están ejecutando.

• Información sobre todos los adaptadores de red físicos en el
equipo. No direcciones IP, necesariamente - información de
hardware como la dirección MAC

Soy consciente que esta información no es un conjunto univer-
salmente interesante, pero estas secciones permitirán demostrar

Bases del informe HTML 6

algunas técnicas específicas. Una vez más, espero que usted pueda
adaptar esto a sus necesidades precisas.

Recopilación de la
información

Soy un gran fan de la programación modular. Gran, gran fan.
Con eso en mente, tiendo a escribir funciones que recopilan la
información que quiero incluir en mi informe, y normalmente
haré una función por sección principal de mi informe. Verá dentro
de poco cómo es eso de beneficioso. Escribiendo cada función
individualmente, hago más fácil de usar esa misma información en
otras tareas, y hago más fácil depurar cada una. El truco consiste en
que cada salida de función sea un solo tipo de objeto que combine
toda la información de esa sección para el informe. He creado cinco
funciones, que he pegado en un solo archivo de script. Le mostraré
cada una de esas funciones una a la vez, con un breve comentario.
Aquí va la primera:

1 function Get-InfoOS {

2 [CmdletBinding()]

3 param(

4 [Parameter(Mandatory=$True)][string]$ComputerName

5)

6 $os = Get-WmiObject -class Win32_OperatingSystem -Com\

7 puterName $ComputerName

8 $props = @{'OSVersion'=$os.version;

9 'SPVersion'=$os.servicepackmajorversion;

10 'OSBuild'=$os.buildnumber}

11 New-Object -TypeName PSObject -Property $props

12 }

Esta es una función sencilla, y la principal razón por la que me
molesté en hacer que sea una función - en lugar de simplemente

Recopilación de la información 8

usar Get-WmiObject directamente - es que quiero nombres de
propiedad diferentes, como “OSVersion” en lugar de sólo “Version”.
Dicho esto, tiendo a seguir exactamente este mismo patrón de
programación para todas las funciones de recuperación de infor-
mación, sólo para mantenerlas consistentes.

1 function Get-InfoCompSystem {

2 [CmdletBinding()]

3 param(

4 [Parameter(Mandatory=$True)][string]$ComputerName

5)

6 $cs = Get-WmiObject -class Win32_ComputerSystem -Comp\

7 uterName $ComputerName

8 $props = @{'Model'=$cs.model;

9 'Manufacturer'=$cs.manufacturer;

10 'RAM (GB)'="{0:N2}" -f ($cs.totalphysicalm\

11 emory / 1GB);

12 'Sockets'=$cs.numberofprocessors;

13 'Cores'=$cs.numberoflogicalprocessors}

14 New-Object -TypeName PSObject -Property $props

15 }

Muy similar a la anterior. Notará aquí que estoy usando el operador
de formato -f con la propiedad RAM, de modo que obtengo un valor
en gigabytes con 2 decimales. El valor nativo está en bytes, lo que
no es útil para mí.

Recopilación de la información 9

1 function Get-InfoBadService {

2 [CmdletBinding()]

3 param(

4 [Parameter(Mandatory=$True)][string]$ComputerName

5)

6 $svcs = Get-WmiObject -class Win32_Service -ComputerN\

7 ame $ComputerName `

8 -Filter "StartMode='Auto' AND State<>'Running'"

9 foreach ($svc in $svcs) {

10 $props = @{'ServiceName'=$svc.name;

11 'LogonAccount'=$svc.startname;

12 'DisplayName'=$svc.displayname}

13 New-Object -TypeName PSObject -Property $props

14 }

15 }

Aquí, he tenido que reconocer que voy a estar recuperando más
de un objeto de WMI, así que tengo que enumerar a través de
ellos usando una construcción ForEach. Una vez más, estoy prin-
cipalmente renombrando propiedades. Podría haber hecho eso con
un comando Select-Object, pero me gusta mantener la estructura
de funciones general similar a mis otras funciones. Es sólo una
preferencia personal que me ayuda a incluir menos errores, ya que
estoy acostumbrado a hacer las cosas de esta manera.

1 function Get-InfoProc {

2 [CmdletBinding()]

3 param(

4 [Parameter(Mandatory=$True)][string]$ComputerName

5)

6 $procs = Get-WmiObject -class Win32_Process -Computer\

7 Name $ComputerName

8 foreach ($proc in $procs) {

9 $props = @{'ProcName'=$proc.name;

10 'Executable'=$proc.ExecutablePath}

Recopilación de la información 10

11 New-Object -TypeName PSObject -Property $props

12 }

13 }

Muy similar a la función de servicios. Probablemente pueda em-
pezar a notar cómo usar esta misma estructura hace que una cierta
cantidad “copiar y pegar” se vuelva efectiva cuando creo una nueva
función.

1 function Get-InfoNIC {

2 [CmdletBinding()]

3 param(

4 [Parameter(Mandatory=$True)][string]$ComputerName

5)

6 $nics = Get-WmiObject -class Win32_NetworkAdapter -Co\

7 mputerName $ComputerName `

8 -Filter "PhysicalAdapter=True"

9 foreach ($nic in $nics) {

10 $props = @{'NICName'=$nic.servicename;

11 'Speed'=$nic.speed / 1MB -as [int];

12 'Manufacturer'=$nic.manufacturer;

13 'MACAddress'=$nic.macaddress}

14 New-Object -TypeName PSObject -Property $props

15 }

16 }

Lo principal para notar aquí es cómo he convertido la propiedad
speed, que esta nativamente en bytes, a megabytes. Debido a que
nome interesan los decimales aquí (quiero un número entero), eligo
utilizar el valor como un entero, utilizando el operador -as, que es
más sencillo para mí que el operador de formato -f. ¡Además, me
da la oportunidad de mostrar esta técnica!

Tenga en cuenta que, a los efectos de este libro, voy a poner estas
funciones en el mismo archivo de script que el resto de mi código, lo
que en realidad genera el código HTML. Normalmente no hago eso.

Recopilación de la información 11

Normalmente, las funciones de recuperación de información van a
un módulo de script, y entonces escribo mi script de generación
HTML para cargar ese módulo. Tener las funciones en un módulo
hace que sean más fáciles de usar en otros lugares, si quiero. Estoy
omitiendo el módulo esta vez sólo para mantener las cosas más
simples en esta demostración. Si desea obtener más información
sobre los módulos de script, debería dar una mirada a Learn
PowerShell Toolmaking in a Month of Lunches o PowerShell in
Depth, los cuales están disponibles en Manning.com.

Construyendo el HTML
Voy a abandonar el CmdLet nativo de ConvertTo-HTML que he
discutido hasta ahora, En lugar de eso, voy a pedirle que utilice
el módulo EnhancedHTML2 que viene con este e-Book. Tenga en
cuenta que, a partir de octubre de 2013, se trata de una nueva
versión delmódulo - esmás sencillo que elmódulo EnhancedHTML
introducido con la edición original de este libro.

Comencemos con el script que utiliza el módulo. Se incluye con
este libro como EnhancedHTML2-Demo.ps1, por lo que aquí voy a
pegarlo aquí y luego agregare las explicaciones sobre lo que hace
cada bit. Tenga en cuenta que no puedo controlar cómo se ve el
código en un e-Reader, por lo que es probable que parezca un poco
desordenado.

1 #requires -module EnhancedHTML2

2 <#

3 .SYNOPSIS

4 Generates an HTML-based system report for one or more com\

5 puters.

6 Each computer specified will result in a separate HTML fi\

7 le;

8 specify the -Path as a folder where you want the files wr\

9 itten.

10 Note that existing files will be overwritten.

11

12 .PARAMETER ComputerName

13 One or more computer names or IP addresses to query.

14

15 .PARAMETER Path

16 The path of the folder where the files should be written.

17

Construyendo el HTML 13

18 .PARAMETER CssPath

19 The path and filename of the CSS template to use.

20

21 .EXAMPLE

22 .\New-HTMLSystemReport -ComputerName ONE,TWO `

23 -Path C:\Reports\

24 #>

25 [CmdletBinding()]

26 param(

27 [Parameter(Mandatory=$True,

28 ValueFromPipeline=$True,

29 ValueFromPipelineByPropertyName=$True)]

30 [string[]]$ComputerName,

31

32 [Parameter(Mandatory=$True)]

33 [string]$Path

34)

La sección anterior nos dice que se trata de un “script avanzado”, lo
que significa que utiliza el enlace de CmdLet de PowerShell. Puede
especificar uno o más nombres de equipo para los que se genera el
informe, y debe especificar una ruta de acceso de carpeta (no un
nombre de archivo) para almacenar los reportes finales.

1 BEGIN {

2 Remove-Module EnhancedHTML2

3 Import-Module EnhancedHTML2

4 }

El bloque BEGIN podría ser eliminado dependiendo de la versión de
PowerShell que esté utilizando. Utilizo esta demostración para pro-
bar el módulo, así que es importante que descargue cualquier ver-
sión antigua de la memoria (si ha cargado el módulo anteriormente)
y vuelva a cargar la versión revisada. De hecho, PowerShell v3 y
posterior no requerirá la importación si el módulo está correcta-
mente ubicado en \Documents\WindowsPowerShell\Modules\EnhancedHTML2.

Construyendo el HTML 14

1 PROCESS {

2

3 $style = @"

4 <style>

5 body {

6 color:#333333;

7 font-family:Calibri,Tahoma;

8 font-size: 10pt;

9 }

10

11 h1 {

12 text-align:center;

13 }

14

15 h2 {

16 border-top:1px solid #666666;

17 }

18

19 th {

20 font-weight:bold;

21 color:#eeeeee;

22 background-color:#333333;

23 cursor:pointer;

24 }

25

26 .odd { background-color:#ffffff; }

27

28 .even { background-color:#dddddd; }

29

30 .paginate_enabled_next, .paginate_enabled_previous {

31 cursor:pointer;

32 border:1px solid #222222;

33 background-color:#dddddd;

34 padding:2px;

35 margin:4px;

Construyendo el HTML 15

36 border-radius:2px;

37 }

38

39 .paginate_disabled_previous, .paginate_disabled_next {

40 color:#666666;

41 cursor:pointer;

42 background-color:#dddddd;

43 padding:2px;

44 margin:4px;

45 border-radius:2px;

46 }

47

48 .dataTables_info { margin-bottom:4px; }

49

50 .sectionheader { cursor:pointer; }

51

52 .sectionheader:hover { color:red; }

53

54 .grid { width:100% }

55

56 .red {

57 color:red;

58 font-weight:bold;

59 }

60 </style>

61 "@

Eso se llama hoja de estilos en cascada, o CSS. Hay algunas cosas
interesantes para sacar destacar:

He colocado toda la sección <style></ style> en una cadena here-
string de PowerShell⁶, y almacenado en la variable $style. Hará que
sea fácil referirse a esto en adelante.

Tenga en cuenta que he definido el estilo de varias etiquetas HTML,
como H1, H2, BODY y TH. Esas definiciones de estilo listan el

⁶https://goo.gl/exzNGQ

https://goo.gl/exzNGQ
https://goo.gl/exzNGQ
https://goo.gl/exzNGQ

Construyendo el HTML 16

nombre de la etiqueta sin un signo anterior de período o hash. Se
definen los elementos de estilo que interesan, como el tamaño de
la fuente, la alineación del texto, etc. Etiquetas como H1 y H2 ya
tienen estilos predefinidos establecidos por su navegador, como su
tamaño de fuente. Cualquier cosa que ponga en el CSS reemplazará
los valores predeterminados del navegador.

Los estilos también heredan. Todo el cuerpo de la página HTML
está contenido dentro de las etiquetas <BODY></ BODY>, por lo que
cualquier cosa que asigne a la etiqueta BODY en CSS también se
aplicará a todo lo que contenga la página. Mi cuerpo establece una
familia de fuentes y un color de fuente. Las etiquetas H1 yH2 usarán
la misma fuente y color.

También verá las definiciones de estilo precedidas por un punto.
Esos se llaman estilos de clase. Son clase de plantillas reutilizables
del estilo que se pueden aplicar a cualquier elemento dentro de la
página. Los “.paginate” son realmente utilizados por el JavaScript
que uso para crear tablas dinámicas. No me gustó la forma en que
los botones Prev / Next se veían fuera de la caja, así que modifiqué
mi CSS para aplicar estilos diferentes.

Preste mucha atención a .odd, .even, y .red en el CSS. Vera que los
utilizo poco a poco.

1 function Get-InfoOS {

2 [CmdletBinding()]

3 param(

4 [Parameter(Mandatory=$True)][string]$ComputerName

5)

6 $os = Get-WmiObject -class Win32_OperatingSystem -Com\

7 puterName $ComputerName

8 $props = @{'OSVersion'=$os.version

9 'SPVersion'=$os.servicepackmajorversion;

10 'OSBuild'=$os.buildnumber}

11 New-Object -TypeName PSObject -Property $props

12 }

Construyendo el HTML 17

13

14 function Get-InfoCompSystem {

15 [CmdletBinding()]

16 param(

17 [Parameter(Mandatory=$True)][string]$ComputerName

18)

19 $cs = Get-WmiObject -class Win32_ComputerSystem -Comp\

20 uterName $ComputerName

21 $props = @{'Model'=$cs.model;

22 'Manufacturer'=$cs.manufacturer;

23 'RAM (GB)'="{0:N2}" -f ($cs.totalphysicalm\

24 emory / 1GB);

25 'Sockets'=$cs.numberofprocessors;

26 'Cores'=$cs.numberoflogicalprocessors}

27 New-Object -TypeName PSObject -Property $props

28 }

29

30 function Get-InfoBadService {

31 [CmdletBinding()]

32 param(

33 [Parameter(Mandatory=$True)][string]$ComputerName

34)

35 $svcs = Get-WmiObject -class Win32_Service -ComputerN\

36 ame $ComputerName `

37 -Filter "StartMode='Auto' AND State<>'Running'"

38 foreach ($svc in $svcs) {

39 $props = @{'ServiceName'=$svc.name;

40 'LogonAccount'=$svc.startname;

41 'DisplayName'=$svc.displayname}

42 New-Object -TypeName PSObject -Property $props

43 }

44 }

45

46 function Get-InfoProc {

47 [CmdletBinding()]

Construyendo el HTML 18

48 param(

49 [Parameter(Mandatory=$True)][string]$ComputerName

50)

51 $procs = Get-WmiObject -class Win32_Process -Computer\

52 Name $ComputerName

53 foreach ($proc in $procs) {

54 $props = @{'ProcName'=$proc.name;

55 'Executable'=$proc.ExecutablePath}

56 New-Object -TypeName PSObject -Property $props

57 }

58 }

59

60 function Get-InfoNIC {

61 [CmdletBinding()]

62 param(

63 [Parameter(Mandatory=$True)][string]$ComputerName

64)

65 $nics = Get-WmiObject -class Win32_NetworkAdapter -Co\

66 mputerName $ComputerName `

67 -Filter "PhysicalAdapter=True"

68 foreach ($nic in $nics) {

69 $props = @{'NICName'=$nic.servicename;

70 'Speed'=$nic.speed / 1MB -as [int];

71 'Manufacturer'=$nic.manufacturer;

72 'MACAddress'=$nic.macaddress}

73 New-Object -TypeName PSObject -Property $props

74 }

75 }

76

77 function Get-InfoDisk {

78 [CmdletBinding()]

79 param(

80 [Parameter(Mandatory=$True)][string]$ComputerName

81)

82 $drives = Get-WmiObject -class Win32_LogicalDisk -Com\

Construyendo el HTML 19

83 puterName $ComputerName `

84 -Filter "DriveType=3"

85 foreach ($drive in $drives) {

86 $props = @{'Drive'=$drive.DeviceID;

87 'Size'=$drive.size / 1GB -as [int];

88 'Free'="{0:N2}" -f ($drive.freespace /\

89 1GB);

90 'FreePct'=$drive.freespace / $drive.si\

91 ze * 100 -as [int]}

92 New-Object -TypeName PSObject -Property $props

93 }

94 }

Las seis funciones anteriores no hacen otra cosa que recupe-
rar datos de una sola computadora (observe que su parámetro -
ComputerName se define como [string], aceptando un valor, en
lugar de [string[]] que aceptaría múltiples). Si no logra entender
cómo funciona esto… es probable que tenga que dar un paso atrás!

Para propósitos de formato, usted está viendo que se utiliza el
carácter (back tick) (como en –ComputerName y $ComputerNa-
me). En PowerShell este carácter funciona como una especie de
continuación de línea. Lo señalo porque puede ser fácil perderlo
de vista.

1 foreach ($computer in $computername) {

2 try {

3 $everything_ok = $true

4 Write-Verbose "Checking connectivity to $computer"

5 Get-WmiObject -class Win32_BIOS -ComputerName $Co\

6 mputer -EA Stop | Out-Null

7 } catch {

8 Write-Warning "$computer failed"

9 $everything_ok = $false

10 }

Construyendo el HTML 20

Lo anterior es el inicio de mi script de demostración. Se están
tomando los nombres de equipo que se pasaron al parámetro
-ComputerName, procesándolos uno a la vez. Luego se hace una
llamada a Get-WmiObject como una prueba - si esto falla, no quiero
hacer nada con el nombre del equipo en absoluto. El resto de la
secuencia de comandos sólo se ejecuta si esa llamada WMI tiene
éxito.

1 if ($everything_ok) {

2 $filepath = Join-Path -Path $Path -ChildPath "$co\

3 mputer.html"

Recuerde que el otro parámetro de este script es -Path. Estoy utili-
zando Join-Path para combinar $Path con un nombre de archivo.
Join-Path garantiza el número correcto de barras inversas, de modo
que si -Path es “C:” o “C:” obtendré una ruta de archivo válida. El
nombre de archivo será el nombre del equipo actual, seguido de la
extensión .html.

1 $params = @{'As'='List';

2 'PreContent'='<h2>OS</h2>'}

3 $html_os = Get-InfoOS -ComputerName $computer |

4 ConvertTo-EnhancedHTMLFragment @params

Aquí estámi primer uso delmódulo EnhancedHTML2: ConConvertTo-
EnhancedHTMLFragment. Observe lo que estoy haciendo:

1. Estoy usando un hashtable para definir los parámetros del co-
mando, incluyendo ambos -As List y -PreContent ‘<H2>OS</H2>’
como parámetros y sus valores. Esto especifica una salida de
estilo de lista (frente a una tabla), precedida por el encabezado
“OS” en el estilo H2. Vuelva a mirar el CSS y verá que he
aplicado un borde superior a todo el elemento <H2>, lo que
ayudará a separar visualmente las secciones de mi informe.

Construyendo el HTML 21

2. Estoy ejecutando mi comando Get-InfoOS, pasando el nom-
bre del equipo actual. La salida se canaliza a…

3. ConvertTo-EnhancedHTMLFragment, ConvertTo-EnhancedHTMLFragment,
donde se encuentra mi hashtable de parámetros. El resulta-
do será una gran cadena de HTML, que se almacenará en
$html_os.

1 $params = @{'As'='List';

2 'PreContent'='<h2>Computer System</h2\

3 >'}

4 $html_cs = Get-InfoCompSystem -ComputerName $comp\

5 uter |

6 ConvertTo-EnhancedHTMLFragment @params

Ese es un ejemplo similar, para la segunda sección de mi informe..

1 $params = @{'As'='Table';

2 'PreContent'='<h2>♦ Local Disks\

3 </h2>';

4 'EvenRowCssClass'='even';

5 'OddRowCssClass'='odd';

6 'MakeTableDynamic'=$true;

7 'TableCssClass'='grid';

8 'Properties'='Drive',

9 @{n='Size(GB)';e={$_.Size}},

10 @{n='Free(GB)';e={$_.Free};css={if ($_.Fre\

11 ePct -lt 80) { 'red' }}},

12 @{n='Free(%)';e={$_.FreePct};css={if ($_.F\

13 reeePct -lt 80) { 'red' }}}}

14

15 $html_dr = Get-InfoDisk -ComputerName $computer |

16 ConvertTo-EnhancedHTMLFragment @params

OK, ese es un ejemplomás complejo. Echemos un vistazo a los pará-
metros que estoy pasando a ConvertTo-EnhancedHTMLFragment:

Construyendo el HTML 22

• Como se está produciendo una tabla en lugar de una lista, la
salida será en un diseño de tabla columnar (algo como lo que
produciría Format-Table, pero en HTML).

• Para mi sección de encabezado, he añadido un símbolo de
diamante utilizando la entidad HTML ♢ Creo que se ve bien.
Eso es todo.

• Puesto que esto será una tabla, puedo especificar -EvenRowCssClass
y -OddRowCssClass. Le doy los valores “even” y “odd”, que
son las dos clases (.even y .odd) que definí en mi CSS. De esta
forma estoy creando el vínculo entre las filas de la tabla y
mi CSS. Cualquier fila de la tabla “etiquetada” con la clase
“odd” heredará el formato de “.odd” de mi CSS. No se debe
incluir el punto al especificar los nombres de clase con estos
parámetros. Sólo en el CSS se coloca el punto delante del
nombre de la clase.

• -MakeTableDynamic se establece en $True, para que se aplique
el JavaScript necesario y convertir la salida en una tabla que
se pueda ordenar y paginar. Esto requerirá que el HTML final
se vincule al archivo JavaScript necesario, pero cubriremos
este punto cuando lleguemos allí.

• -TableCssClass es opcional, pero lo estoy usando para asig-
nar la clase “grid”. Una vez más, si observa el CSS, podrá
observar que definí un estilo para “.grid”, por lo que esta tabla
heredará esas instrucciones de estilo.

• El último es el parámetro -Properties. Funciona muy pa-
recido a los parámetros -Properties de Select-Object y
Format-Table. El parámetro acepta una lista de propiedades
separada por comas. El primero, Drive, ya está siendo produ-
cido por Get-InfoDisk. Los siguientes tres son especiales: son
hashtables, creando columnas personalizadas como loa haría
Format-Tabl. Dentro del hashtable, usted puede utilizar las
siguientes claves:
– n (o name, o l, o label) especifica el encabezado de co-

lumna. Estoy usando “Size(GB),” “Free(GB)”, y “Free(%)”
como encabezados de columna.

Construyendo el HTML 23

– e (o expression) es un bloque de secuencia de comandos,
que define lo que contendrá la celda de la tabla. Dentro
de ella, puede utilizar $_ para referirse al objeto de
entrada. En este ejemplo, el objeto canalizado proviene
de Get-InfoDisk, por lo que me refiero a las propiedades
Size, Free y FreePct del objeto.

– css (o cssClass) es también un bloque de secuencia de
comandos. Mientras que el resto de las claves funcionan
igual que lo hacen con Select-Object o Format-Table, css
(o cssClass) es exclusivo de ConvertTo-EnhancedHTMLFragment.
Acepta un bloque de secuencia de comandos, que se
espera que produzca una cadena, o nada. En este caso,
estoy comprobando para ver si la propiedad FreePct del
objeto en la canalización es menor que 80 o no. Si es así,
la salida será la cadena “red”. Esta cadena se agregará
como una clase CSS de la celda en la tabla. Recuerde que
en mi CSS definí la clase “.red” y aquí es donde adjunto
esa clase a las celdas de la tabla.

– Como una nota aparte, me doy cuenta de que es tonto
establecer un color rojo cuando el porcentaje libre de
disco es inferior al 80%. Se trata solo de un ejemplo para
jugar. Podría fácilmente tener una fórmula más comple-
ja, como if ($_.FreePct -lt 20) { ‘red’ } elseif ($_.FreePct -lt
40) { ‘yellow’ } else { ‘green’ } y entonces habría definido
las clases “.red”, “.yellow” y “.green” en el CSS.

Construyendo el HTML 24

1 $params = @{'As'='Table';

2 'PreContent'='<h2>♦ Proce\

3 sses</h2>';

4 'MakeTableDynamic'=$true;

5 'TableCssClass'='grid'}

6 $html_pr = Get-InfoProc -ComputerName $computer |

7 ConvertTo-EnhancedHTMLFragm\

8 ent @params

9

10 $params = @{'As'='Table';

11 'PreContent'='<h2>♦ Servi\

12 ces to Check</h2>';

13 'EvenRowCssClass'='even';

14 'OddRowCssClass'='odd';

15 'MakeHiddenSection'=$true;

16 'TableCssClass'='grid'}

17

18 $html_sv = Get-InfoBadService -ComputerName $computer |

19 ConvertTo-EnhancedHTMLFrag\

20 ment @params

Más de lo mismo en los dos ejemplos anteriores, con sólo un
nuevo parámetro: -MakeHiddenSection. Esto hará que la sección
del informe se colapse de forma predeterminada, mostrando sólo
la cadena -PreContent. Al hacer clic en la cadena, se expandirá y
contraerá la sección del informe.

De regreso en mi CSS, observe que para la clase .sectionHeader,
establezco el cursor en un icono de puntero, e hice que el color
del texto de la sección fuera rojo cuando el ratón pasa sobre él.
Esto ayuda a comprender al usuario que se puede hacer clic en
el encabezado de la sección. El módulo EnhancedHTML2 siempre
agrega la clase CSS “sectionheader” al -PreContent, por lo que
al definir “.sectionheader” en su CSS, puede seguir diseñando los
encabezados de sección.

Construyendo el HTML 25

1 $params = @{'As'='Table';

2 'PreContent'='<h2>♦ NICs</h2>';

3 'EvenRowCssClass'='even';

4 'OddRowCssClass'='odd';

5 'MakeHiddenSection'=$true;

6 'TableCssClass'='grid'}

7 $html_na = Get-InfoNIC -ComputerName $Computer |

8 ConvertTo-EnhancedHTMLFragment @params

Nada nuevo en el fragmento anterior, pero ahora estamos listos para
generar el HTML final:

1 $params = @{'CssStyleSheet'=$style;

2 'Title'="System Report for $computer";

3 'PreContent'="<h1>System Report for $\

4 computer</h1>";

5 'HTMLFragments'=@($html_os,$html_cs,$html_dr,\

6 $html_pr,$html_sv,$html_na);

7 'jQueryDataTableUri'='C:\html\jqueryd\

8 atatable.js';

9 'jQueryUri'='C:\html\jquery.js'}

10 ConvertTo-EnhancedHTML @params |

11 Out-File -FilePath $filepath

12

13 <#

14 $params = @{'CssStyleSheet'=$style;

15 'Title'="System Report for $computer";

16 'PreContent'="<h1>System Report for $\

17 computer</h1>";

18 'HTMLFragments'=@($html_os,$html_cs,$html_dr,\

19 $html_pr,$html_sv,$html_na)}

20 ConvertTo-EnhancedHTML @params |

21 Out-File -FilePath $filepath

22 #>

23 }

Construyendo el HTML 26

24 }

25

26 }

El código no comentado y el código comentado hacen lo mismo. El
primero, no comentado, establece una ruta de archivo local para los
dos archivos JavaScript necesarios. El comentado no especifica esos
parámetros, por lo que el código HTML final utilizará el JavaScript
desde la Red de distribución de contenido (CDN) basada en la Web
de Microsoft. En ambos casos:

• -CssStyleSheet especifica mi CSS - estoy alimentando mi
variable predefinida $style. También puede vincular a una
hoja de estilo externa (hay un parámetro diferente, -CssUri,
para eso), pero tener el estilo incrustado en el HTML lo hace
más autónomo.

• -Title especifica qué se mostrará en la barra de título del
navegador o pestaña.

• -PreContent, que estoy definiendo mediante las etiquetas
HTML <H1>, aparecerá en la parte superior del informe.
También hay un -PostContent si desea agregar un pie de
página.

• -HTMLFragments requiere una matriz (de ahí el uso de @ ()
para crear una matriz) de fragmentos HTML producidos por
ConvertTo-EnhancedHTMLFragment. Así estoy alimentan-
do las 6 secciones del informe HTML que creé anteriormente.

El resultado final se canaliza a la ruta de archivo que creé anterior-
mente. Así se ve el resultado:

Construyendo el HTML 27

image004.png

Tengo mis últimas dos secciones contraidas. Observe que la lista de
procesos está paginada, con los botones Previous/Next y además mi
disco sin el 80% está resaltado en rojo. Las tablas muestran 10 filas
por defecto, pero se pueden hacer más grandes, y ofrecen un cuadro
de búsqueda incorporado. Se puede hacer clic sobre los encabezados
de columna para ordenar.

¡Francamente, creo que se ve extraordinario!

Combinación de
informes HTML y una

aplicación GUI
He tenido un buen número de personas haciendo preguntas en
los foros en PowerShell.org, con el asunto “¿cómo puedo utilizar
un RichTextBox en una aplicación GUI de Windows para mostrar
datos en un formato agradable?” Mi respuesta es no lo haga. Utilice
HTML en su lugar. Por ejemplo, digamos que siguió los ejemplos
del capítulo anterior y produjo un hermoso informe HTML. Tenga
en cuenta que el informe permanece “en memoria”, no en un
archivo de texto, hasta el final:

1 $params = @{'CssStyleSheet'=$style;

2 'Title'="System Report for $computer";

3 'PreContent'="<h1>System Report for $\

4 computer</h1>";

5 'CssIdsToMakeDataTables'=@('tableProc\

6 ','tableNIC','tableSvc');

7 'HTMLFragments'=@($html_os,$html_cs,$\

8 html_pr,$html_sv,$html_na)}

9 ConvertTo-EnhancedHTML @params |

10 Out-File -FilePath $filepath

Por razones de ilustración, digamos que ahora está en un archivo
llamado C:Report.html. Voy a usar PowerShell Studio 2012 de
SAPIEN para mostrar ese informe en una GUI, en lugar de hacerla
aparecer en un navegador Web. Entonces, he iniciado con un
proyecto simple, de una sola forma. He cambiado el texto del
formulario a “Informe”, y he añadido un controlWebBrowser desde

Combinación de informes HTML y una aplicación GUI 29

la caja de herramientas. Ese control llena automáticamente la forma
entera, así que está perfecto. Nombré el control de WebBrowser
“web”, lo que hará accesible desde el código a través de la variable
$web.

Cabe resaltar que PowerShell Studio 2012 podría estar muy desfa-
sado en el momento que lea esto, pero todavía debería tener la idea
general.

image006.png

Espero que haga un formulario como parte de un proyecto general
más grande. Por ahora solo me voy a enfocar en solucionar este
problema. Así que voy a cargar la información del reporte en el
control WebBrowser cuando el formulario se cargue:

Combinación de informes HTML y una aplicación GUI 30

1 $OnLoadFormEvent={

2 #TODO: Initialize Form Controls here

3 $web.Navigate('file://C:\report.html')

4 }

Ahora puedo ejecutar el proyecto:

image007.png

Obtengo un agradable cuadro de diálogo emergente que muestra el
informe HTML. Puedo cambiar el tamaño, minimizarlo, maximi-
zarlo y cerrarlo usando los botones estándar en la barra de título de
la ventana. Fácil, y sólo tomó 5 minutos.

Contactándome
Si tiene problemas, desea hacer algo y no puede averiguar cómo,
encontró un error y desea ofrecer una corrección, o simplemente
tiene comentarios sobre esta guía o el módulo EnhancedHTML, me
encantaría saber de usted.

La forma más sencilla es publicar en el foro “General Q & A” en
http://powershell.org/wp/forums/.Mantengo puesto el ojo aquí que
yo voy a responder tan pronto como sea posible.

Revise de vez en cuando, para asegurarse que tiene la versión más
reciente de esta guía y su código.

	Tabla de contenidos
	Creating HTML Reports in PowerShell
	Bases del informe HTML
	Recopilación de la información
	Construyendo el HTML
	Combinación de informes HTML y una aplicación GUI
	Contactándome

