‘B

Creating
HTML Reports
in PowerShell

Don Jones
Principal Author

* @
@ THE ®
@ N

PowerShell.org

Creating HTML Reports in
PowerShell (Spanish)

The DevOps Collective, Inc.

Este libro esta a la venta en
http://leanpub.com/creating-html-reports-in-powershell-spanish

Esta version se public6 en 2018-10-28

)

Leanpub

Este es un libro de Leanpub. Leanpub anima a los autores y
publicadoras con el proceso de publicacién. Lean Publishing es el
acto de publicar un libro en progreso usando herramientas
sencillas y muchas iteraciones para obtener feedback del lector
hasta conseguir tener el libro adecuado.

© 2018 The DevOps Collective, Inc.

http://leanpub.com/creating-html-reports-in-powershell-spanish
http://leanpub.com/
http://leanpub.com/manifesto

También por The DevOps
Collective, Inc.

Creating HTML Reports in Windows PowerShell

A Unix Person’s Guide to PowerShell

The Big Book of PowerShell Error Handling

DevOps: The Ops Perspective

Ditch Excel: Making Historical and Trend Reports in PowerShell
Secrets of PowerShell Remoting

The Big Book of PowerShell Gotchas

The Monad Manifesto, Annotated

Why PowerShell?

Windows PowerShell Networking Guide

The PowerShell + DevOps Global Summit Manual for Summiteers
Why PowerShell? (Spanish)

Secrets of PowerShell Remoting (Spanish)

DevOps: The Ops Perspective (Spanish)

The Monad Manifesto: Annotated (Spanish)

The Big Book of PowerShell Gotchas (Spanish)

The Big Book of PowerShell Error Handling (Spanish)

DevOps: WTE?

PowerShell.org: History of a Community

http://leanpub.com/u/devopscollective
http://leanpub.com/u/devopscollective
http://leanpub.com/creatinghtmlreportsinwindowspowershell
http://leanpub.com/aunixpersonsguidetopowershell
http://leanpub.com/thebigbookofpowershellerrorhandling
http://leanpub.com/devopstheopsperspective
http://leanpub.com/ditchexcelmakinghistoricalandtrendreportsinpowershell
http://leanpub.com/secretsofpowershellremoting
http://leanpub.com/thebigbookofpowershellgotchas
http://leanpub.com/themonadmanifestoannotated
http://leanpub.com/whypowershell
http://leanpub.com/windowspowershellnetworkingguide
http://leanpub.com/summiteermanual
http://leanpub.com/why-powershell-spanish
http://leanpub.com/secrets-of-powershell-remoting-spanish
http://leanpub.com/devops-the-ops-perspective-spanish
http://leanpub.com/monad-manifesto-annotated-spanish
http://leanpub.com/big-book-of-powershell-gotchas-spanish
http://leanpub.com/big-book-of-powershell-error-handling-spanish
http://leanpub.com/devopswtf
http://leanpub.com/powershellorghistoryofacommunity

Indice general

Creating HTML Reports in PowerShell
Bases del informe HTML
Recopilacion de la informacién
Construyendoel HTML
Combinacion de informes HTML y una aplicacion GUI

Contactandome

Creating HTML Reports

in PowerShell

Por Don Jones

Aprenda a utilizar correctamente ConvertTo-HTML para producir
informes HTML de varias secciones y bien formados, pero luego
vaya mas alld con un mddulo EnhancedHTML personalizado.
Produaca informes hermosos, codificados por colores, dinamicos y
con multi-secciones de forma facil y rapida. Escrito por Don Jones.

Esta guia se publica bajo la licencia Creative Commons Attribution-
NoDerivs 3.0 Unported. Los autores le animan a redistribuir este
archivo lo més ampliamente posible, pero le solicitan que no
modifique el documento original.

Descargar el cédigo El médulo EnhancedHTML2 mencionado en
este libro puede encontrarse en PowerShell Gallery'. Esa pagina
incluye instrucciones de descarga. PowerShellGet es necesario, y
se puede obtener de PowerShellGallery.com

;Ha sido util este libro? El (los) autor (es) le pide (n) que haga
una donacién deducible de impuestos (en los EE.UU., consulte sus
leyes si vive en otro lugar) de cualquier cantidad a The DevOps
Collective?® para apoyar su trabajo.

"https://www.powershellgallery.com/packages/Enhanced HTML2/
*https://devopscollective.org/donate/

https://www.powershellgallery.com/packages/EnhancedHTML2/
https://devopscollective.org/donate/
https://devopscollective.org/donate/
https://www.powershellgallery.com/packages/EnhancedHTML2/
https://devopscollective.org/donate/

Creating HTML Reports in PowerShell 2

Revise las actualizaciones! Nuestros ebooks se actualizan a me-
nudo con contenido nuevo y corregido. Los hacemos disponibles
de tres maneras::

+ Nuestra rama principal GitHub organization®, con un re-
positorio para cada libro. Visite https://github.com/devops-
collective-inc/

+ Nuestra GitBook page®, donde puede navegar por los libros
en linea, o descargarlos en formato PDF, EPUB o MOBI. Uti-
lizando el lector en linea, puede saltar a capitulos especificos.
Visite https://www.gitbook.com/@devopscollective

+ En LeanPub®, donde se pueden descargar como PDF, EPUB, o
MOBI (login requerido), y “comprar” los libros haciendo una
donacion a DevOps. También puede elegir recibir notificacio-
nes de actualizaciones. Visite https://leanpub.com/u/devopscollective

GitBook y LeanPub generan la salida del formato PDF ligeramente
diferente, por lo que puede elegir el que prefiera. LeanPub también
le puede notificar cada vez que liberamos alguna actualizacion.
Nuestro repositorio de GitHub es el principal; los repositorios
en otros sitios suelen ser solo espejos utilizados para el proceso
de publicacion. GitBook normalmente contendrd nuestra tltima
version, incluyendo algunos bits no terminados; LeanPub siempre
contiene la mas reciente “publicacién liberada” de cualquier libro.

*https://github.com/devops-collective-inc
“https://www.gitbook.com/@devopscollective
*https://leanpub.com/u/devopscollective

https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective

0 N O O B W N =

11
12
13
14

Bases del informe HTML

En primer lugar, entender que PowerShell no se limita a crear
informes en HTML. Pero me gusta el HTML porque es flexible,
puede ser enviado facilmente a través de correo electrénico, y se ve
mucho mejor que un simple informe de texto sin ningun formato.
Pero antes de sumergirnos en esto, necesitamos aclarar un poco
como funciona el HTML.

Una pagina HTML es s6lo un archivo de texto sin formato, con algo
parecido a esto:

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" \
"http://www.w3.0org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>HTML TABLE</title>

</head><body>

<table>

<colgroup><col/><col/><col/><col/><col/></colgroup>

<tr><th>ComputerName</th><th>Drive</th><th>Free(GB)</th><\

th>Free(%)</th><th>Size(GB)</th></tr>

<tr><td>CLIENT</td><td>C:</td><td>49</td><td>82</td><td>6\

Q</td></tr>

</table>

</body></html>

Cuando se interpreta por un navegador, este archivo se representa
en la pantalla que aparece en la ventana del navegador. Lo mismo
se aplica a los clientes de correo electronico capaces de mostrar
contenido HTML. Mientras que usted, como persona, puede poner
obviamente cualquier cosa en el archivo, necesita seguir las reglas
que los browsers esperan para obtener la salida deseada.

o O B W N

Bases del informe HTML 4

Una de esas reglas es que cada archivo debe contener uno y un solo
documento HTML. Es todo el contenido entre la etiqueta <HTML> y la
etiqueta </HTML> (los nombres de las etiquetas no distinguen entre
mayusculas y minusculas, y es comun verlas en minusculas como
en el ejemplo anterior). Menciono esto porque una de las cosas mas
comunes que veré a la gente hacer con PowerShell se parecera a
esto:

Get-WmiObject -class Win32_OperatingSystem | ConvertTo-HT\
ML | Out-File report.html

Get-WmiObject -class Win32_BIOS | ConvertTo-HTML | Out-Fi\
le report.html -append

Get-WmiObject -class Win32_Service | ConvertTo-HTML | Out\
-File report.html -append

“Aaarrrggh,” dice mi colon cada vez que veo eso. Basicamente, esta
diciendo a PowerShell que cree tres documentos HTML completos
y los coloque en un solo archivo. Mientras que algunos navega-
dores (Internet Explorer, por ejemplo) entenderan eso e intentaran
mostrar algo, es simplemente incorrecto hacer esto. Una vez que
empiece generar esta clase de informes, descubrira rapidamente que
este enfoque es doloroso. No es culpa de PowerShell; Simplemente
no esta siguiendo las reglas. jPor eso esta guia!

Se dara cuenta que el HTML consiste en muchas otras etiquetas,
como: <TABLE>, <TD>, <HEAD>, y otras mas. La mayoria de estas
forman parejas, lo que significa que vienen en una etiqueta de
apertura como <TD> y una etiqueta de cierre como </TD>. La etiqueta
<TD> representa una celda de tabla, y todo entre esas etiquetas se
considera el contenido de esa celda.

La seccion <HEAD> es importante. Lo que hay dentro no es normal-
mente visible en el navegador. En su lugar, el navegador se centra
en lo que hay en la seccién <BODY>. La seccién <HEAD> proporciona
metadatos adicionales, como el titulo de la pagina (lo se muestra
en la barra de titulo o pestafia de la ventana del navegador, no en

Bases del informe HTML 5

la pagina), las hojas de estilo o las secuencias de comandos que
se adjuntan a la pagina, y cosas asi. Vamos a hacer algunas cosas
impresionantes con la seccion <HEAD>, confie en mi.

También notara que este HTML es bastante “limpio”, en contrapo-
sicidén, digamos, a la salida HTML de Microsoft Word. Este HTML
no contiene informacion visual incrustada en él, como colores o
fuentes. Eso es bueno, porque sigue las buenas practicas de HTML
de separar la informacién de formato de la estructura del docu-
mento. Sera decepcionante al principio, porque sus paginas HTML
pareceran algo aburridas. Pero vamos a mejorar eso, también.

Para ayudar a que la narrativa de este libro permanezca enfocada,
voy a comenzar con un solo ejemplo. En ese ejemplo, vamos a
recuperar varios bits de informacioén acerca de una computadora
remota y formatear todo en un bonito y dinamico informe HTML.
Con suerte, podra concentrarse en las técnicas que estoy mostrando,
y adaptarlas a sus propias necesidades.

En mi ejemplo, quiero que el informe tenga cinco secciones, cada
una con la siguiente informacion:

+ Informacién de la computadora

« Version del sistema operativo del equipo, numero de compi-
lacion y version del Service Pack.

+ Informacioén de hardware: la cantidad de RAM instalada y el
numero de cores, junto con el fabricante y el modelo.

« Una lista de todos los procesos que se ejecutan en la maquina.

+ Una lista de todos los servicios que estan configurados para
iniciarse automaticamente, pero que no se estan ejecutando.

« Informacién sobre todos los adaptadores de red fisicos en el
equipo. No direcciones IP, necesariamente - informacion de
hardware como la direccién MAC

Soy consciente que esta informacion no es un conjunto univer-
salmente interesante, pero estas secciones permitiran demostrar

Bases del informe HTML 6

algunas técnicas especificas. Una vez mas, espero que usted pueda
adaptar esto a sus necesidades precisas.

0o N O O b W N =

11
12

Recopilacion de la
informacion

Soy un gran fan de la programacién modular. Gran, gran fan.
Con eso en mente, tiendo a escribir funciones que recopilan la
informacion que quiero incluir en mi informe, y normalmente
haré una funcién por seccién principal de mi informe. Vera dentro
de poco como es eso de beneficioso. Escribiendo cada funcién
individualmente, hago mas facil de usar esa misma informacién en
otras tareas, y hago mas facil depurar cada una. El truco consiste en
que cada salida de funcion sea un solo tipo de objeto que combine
toda la informacion de esa seccion para el informe. He creado cinco
funciones, que he pegado en un solo archivo de script. Le mostraré
cada una de esas funciones una a la vez, con un breve comentario.
Aqui va la primera:

function Get-InfoOS {
[CmdletBinding()]
param(
[Parameter (Mandatory=$True)] [string]$ComputerName
)
$os = Get-WmiObject -class Win32_OperatingSystem -Com\
puterName $ComputerName
$props = @{'0OSVersion'=$os.version;
'SPVersion'=$os.servicepackmajorversion;
'0SBuild'=$os.buildnumber}
New-0Object -TypeName PSObject -Property $props

Esta es una funcion sencilla, y la principal razén por la que me
molesté en hacer que sea una funcién - en lugar de simplemente

0 N O O B W N =

11
12
13
14
15

Recopilacién de la informacién 8

usar Get-WmiObject directamente - es que quiero nombres de
propiedad diferentes, como “OSVersion” en lugar de sélo “Version”.
Dicho esto, tiendo a seguir exactamente este mismo patrén de
programacion para todas las funciones de recuperacion de infor-
macion, s6lo para mantenerlas consistentes.

function Get-InfoCompSystem {
[CmdletBinding()]
param(
[Parameter (Mandatory=$True)] [string] $ComputerName
)
$cs = Get-WmiObject -class Win32_ComputerSystem -Comp\
uterName $ComputerName
$props = @{'Model'=$cs.model;
'"Manufacturer '=$cs.manufacturer;
'"RAM (GB)'="{0:N2}" -f ($cs.totalphysicalm\
emory / 1GB);
'Sockets'=$cs.numberofprocessors;
'Cores'=$cs.numberoflogicalprocessors}
New-Object -TypeName PSObject -Property $props

Muy similar a la anterior. Notara aqui que estoy usando el operador
de formato -f con la propiedad RAM, de modo que obtengo un valor
en gigabytes con 2 decimales. El valor nativo esta en bytes, lo que
no es util para mi.

© O W N O O b W N =

-~

Recopilacién de la informacién 9

function Get-InfoBadService {
[CmdletBinding()]
param(
[Parameter (Mandatory=$True)] [string] $ComputerName
)
$sves = Get-WmiObject -class Win32_Service -ComputerN\
ame $ComputerName °
-Filter "StartMode='Auto' AND State<>'Running'"
foreach ($svc in $sves) {
$props = @{'ServiceName'=$svc.name;
"LogonAccount '=$svc.startname;
'DisplayName'=$svc.displayname}
New-Object -TypeName PSObject -Property $props

Aqui, he tenido que reconocer que voy a estar recuperando mas
de un objeto de WMI, asi que tengo que enumerar a través de
ellos usando una construcciéon ForEach. Una vez mas, estoy prin-
cipalmente renombrando propiedades. Podria haber hecho eso con
un comando Select-Object, pero me gusta mantener la estructura
de funciones general similar a mis otras funciones. Es sélo una
preferencia personal que me ayuda a incluir menos errores, ya que
estoy acostumbrado a hacer las cosas de esta manera.

function Get-InfoProc {
[CmdletBinding()]
param(
[Parameter (Mandatory=$True)] [string] $ComputerName
)
$procs = Get-WmiObject -class Win32_Process -Computer\
Name $ComputerName
foreach ($proc in $procs) {
$props = @{'ProcName'=$proc.name;
'Executable’'=$proc.ExecutablePath}

11
12
13

0o N O O b W N =

11
12
13
14
15
16

Recopilacién de la informacién 10

New-Object -TypeName PSObject -Property $props

Muy similar a la funcién de servicios. Probablemente pueda em-
pezar a notar como usar esta misma estructura hace que una cierta
cantidad “copiar y pegar” se vuelva efectiva cuando creo una nueva
funcién.

function Get-InfoNIC {
[CmdletBinding()]
param(
[Parameter (Mandatory=$True)] [string]$ComputerName
)
$nics = Get-WmiObject -class Win32_NetworkAdapter -Co\
mputerName $ComputerName °
-Filter "PhysicalAdapter=True"
foreach ($nic in $nics) {
$props = @{'NICName'=$nic.servicename;
'Speed'=$nic.speed / 1MB -as [int];
"Manufacturer '=$nic.manufacturer;
'"MACAddress'=$nic.macaddress}

New-Object -TypeName PSObject -Property $props

Lo principal para notar aqui es como he convertido la propiedad
speed, que esta nativamente en bytes, a megabytes. Debido a que
no me interesan los decimales aqui (quiero un numero entero), eligo
utilizar el valor como un entero, utilizando el operador -as, que es
mas sencillo para mi que el operador de formato -f. jAdemaés, me
da la oportunidad de mostrar esta técnica!

Tenga en cuenta que, a los efectos de este libro, voy a poner estas
funciones en el mismo archivo de script que el resto de mi cddigo, lo
que en realidad genera el c6digo HTML. Normalmente no hago eso.

Recopilacién de la informacién 11

Normalmente, las funciones de recuperacion de informacién van a
un moédulo de script, y entonces escribo mi script de generacion
HTML para cargar ese modulo. Tener las funciones en un médulo
hace que sean mas faciles de usar en otros lugares, si quiero. Estoy
omitiendo el mddulo esta vez sblo para mantener las cosas mas
simples en esta demostracion. Si desea obtener mas informacién
sobre los modulos de script, deberia dar una mirada a Learn
PowerShell Toolmaking in a Month of Lunches o PowerShell in
Depth, los cuales estan disponibles en Manning.com.

N =

w

w N O O »

11
12
13
14
15
16
17

Construyendo el HTML

Voy a abandonar el CmdLet nativo de ConvertTo-HTML que he
discutido hasta ahora, En lugar de eso, voy a pedirle que utilice
el modulo EnhancedHTML2 que viene con este e-Book. Tenga en
cuenta que, a partir de octubre de 2013, se trata de una nueva
version del médulo - es mas sencillo que el médulo Enhanced HTML
introducido con la edicién original de este libro.

Comencemos con el script que utiliza el médulo. Se incluye con
este libro como EnhancedHTML2-Demo.ps1, por lo que aqui voy a
pegarlo aqui y luego agregare las explicaciones sobre lo que hace
cada bit. Tenga en cuenta que no puedo controlar como se ve el
cddigo en un e-Reader, por lo que es probable que parezca un poco
desordenado.

#requires -module EnhancedHTML2

CH

.SYNOPSIS

Generates an HTML-based system report for one or more com\
puters.

Each computer specified will result in a separate HTML fi\
le;

specify the -Path as a folder where you want the files wr\
itten.

Note that existing files will be overwritten.

.PARAMETER ComputerName
One or more computer names or IP addresses to query.

.PARAMETER Path
The path of the folder where the files should be written.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

34

W N -

Construyendo el HTML 13

.PARAMETER CssPath
The path and filename of the CSS template to use.

_EXAMPLE
.\New-HTMLSystemReport -ComputerName ONE,TWO °
-Path C:\Reports\
#>
[CmdletBinding()]
param(

[Parameter (Mandatory=$True,
ValueFromPipeline=$True,
ValueFromPipelineByPropertyName=$True)]

[string[]]$ComputerName,

[Parameter (Mandatory=$True)]
[string]$Path

La seccion anterior nos dice que se trata de un “script avanzado”, lo
que significa que utiliza el enlace de CmdLet de PowerShell. Puede
especificar uno o mas nombres de equipo para los que se genera el
informe, y debe especificar una ruta de acceso de carpeta (no un
nombre de archivo) para almacenar los reportes finales.

BEGIN {
Remove-Module EnhancedHTML2
Import-Module EnhancedHTML2

El bloque BEGIN podria ser eliminado dependiendo de la versién de
PowerShell que esté utilizando. Utilizo esta demostracién para pro-
bar el médulo, asi que es importante que descargue cualquier ver-
sion antigua de la memoria (si ha cargado el médulo anteriormente)
y vuelva a cargar la version revisada. De hecho, PowerShell v3 y
posterior no requerira la importacién si el médulo esta correcta-

mente ubicado en \Documents\WindowsPowerShell\Modules\EnhancedHTML2.

0o N O O b W N =

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Construyendo el HTML

PROCESS {

$style = @"

<style>

body {
color :#333333;
font-family:Calibri, Tahoma;
font-size: 10pt;

}
hl {
text-align:center;
}
h2 {
border-top:1px solid #666666;
}
th {
font-weight:bold;
color :#eeeeee;
background-color :#333333;
cursor:pointer;
}

.odd { background-color:#ffffff; }

.even { background-color:#dddddd; }

.paginate_enabled_next, .paginate_enabled_previous
cursor:pointer;
border:1px solid #222222;
background-color:#dddddd;
padding:2px;

margin:4px;

14

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61

Construyendo el HTML 15

border-radius:2px;

}

.paginate_disabled_previous, .paginate_disabled_next {
color : #666666 ;
cursor:pointer;
background-color:#dddddd;
padding:2px;
margin:4px;
border-radius:2px;

}

.dataTables_info { margin-bottom:4px; }
.sectionheader { cursor:pointer; }
.sectionheader:hover { color:red; }
.grid { width:100% }

.red {
color:red;
font-weight:bold;
}
</style>
"@

Eso se llama hoja de estilos en cascada, o CSS. Hay algunas cosas
interesantes para sacar destacar:

He colocado toda la seccién <style></ style> en una cadena here-
string de PowerShell®, y almacenado en la variable $style. Hara que
sea facil referirse a esto en adelante.

Tenga en cuenta que he definido el estilo de varias etiquetas HTML,
como H1, H2, BODY y TH. Esas definiciones de estilo listan el

“https://goo.gl/exzNGQ

https://goo.gl/exzNGQ
https://goo.gl/exzNGQ
https://goo.gl/exzNGQ

O 00 N O U » W N =

SV
N O

Construyendo el HTML 16

nombre de la etiqueta sin un signo anterior de periodo o hash. Se
definen los elementos de estilo que interesan, como el tamario de
la fuente, la alineacion del texto, etc. Etiquetas como H1 y H2 ya
tienen estilos predefinidos establecidos por su navegador, como su
tamario de fuente. Cualquier cosa que ponga en el CSS reemplazara
los valores predeterminados del navegador.

Los estilos también heredan. Todo el cuerpo de la pagina HTML
esta contenido dentro de las etiquetas <BODY> </ BODY>, por lo que
cualquier cosa que asigne a la etiqueta BODY en CSS también se
aplicara a todo lo que contenga la pagina. Mi cuerpo establece una
familia de fuentes y un color de fuente. Las etiquetas H1 y H2 usaran
la misma fuente y color.

También vera las definiciones de estilo precedidas por un punto.
Esos se llaman estilos de clase. Son clase de plantillas reutilizables
del estilo que se pueden aplicar a cualquier elemento dentro de la
pagina. Los “paginate” son realmente utilizados por el JavaScript
que uso para crear tablas dindmicas. No me gusté la forma en que
los botones Prev / Next se veian fuera de la caja, asi que modifiqué
mi CSS para aplicar estilos diferentes.

Preste mucha atencion a .odd, .even, y .red en el CSS. Vera que los
utilizo poco a poco.

function Get-InfoOS {
[CmdletBinding()]
param(
[Parameter (Mandatory=$True)] [string] $ComputerName
)
$o0s = Get-WmiObject -class Win32_OperatingSystem -Com\
puterName $ComputerName
$props = @{'0OSVersion'=$os.version
'SPVersion'=$os.servicepackmajorversion;
'0SBuild'=$os.buildnumber}
New-Object -TypeName PSObject -Property $props

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Construyendo el HTML 17

function Get-InfoCompSystem {
[CmdletBinding()]
param(
[Parameter (Mandatory=$True)] [string] $ComputerName
)
$cs = Get-WmiObject -class Win32_ComputerSystem -Comp\
uterName $ComputerName
$props = @{'Model'=$cs.model;
'"Manufacturer'=$cs.manufacturer;
'"RAM (GB)'="{0:N2}" -f ($cs.totalphysicalm\
emory / 1GB);
'Sockets'=$cs.numberofprocessors;
'Cores'=$cs.numberoflogicalprocessors}
New-0Object -TypeName PSObject -Property $props

}

function Get-InfoBadService {
[CmdletBinding()]
param(

[Parameter (Mandatory=$True)] [string]$ComputerName
)
$sves = Get-WmiObject -class Win32_Service -ComputerN\
ame $ComputerName °
-Filter "StartMode='Auto' AND State<>'Running'"
foreach ($svc in $sves) {
$props = @{'ServiceName'=$svc.name;
'LogonAccount '=$svc.startname;
'DisplayName'=$svc.displayname}
New-Object -TypeName PSObject -Property $props

function Get-InfoProc {
[CmdletBinding()]

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
7
78
79
80
81
82

Construyendo el HTML 18

param(
[Parameter (Mandatory=$True)] [string]$ComputerName
)
$procs = Get-WmiObject -class Win32_Process -Computer\
Name $ComputerName
foreach ($proc in $procs) {
$props = @{'ProcName'=$proc.name;
'"Executable'=$proc.ExecutablePath}
New-Object -TypeName PSObject -Property $props

function Get-InfoNIC {
[CmdletBinding()]
param(
[Parameter (Mandatory=$True)] [string] $ComputerName
)
$nics = Get-WmiObject -class Win32_NetworkAdapter -Co\
mputerName $ComputerName °
-Filter "PhysicalAdapter=True"
foreach ($nic in $nics) {
$props = @{ 'NICName'=$nic.servicename;
'Speed'=$nic.speed / 1MB -as [int];
'Manufacturer'=$nic.manufacturer;
'"MACAddress'=$nic.macaddress}
New-Object -TypeName PSObject -Property $props

}

}

function Get-InfoDisk {
[CmdletBinding()]
param(

[Parameter (Mandatory=$True)] [string] $ComputerName

)
$drives = Get-WmiObject -class Win32_LogicalDisk -Com\

83
84
85
86
87
88
89
90
91
92
93
94

S ©O© 0 N O U » W N =~

-~

Construyendo el HTML 19

puterName $ComputerName °
-Filter "DriveType=3"
foreach ($drive in $drives) {
$props = @{'Drive'=$drive.DevicelD;
'Size'=$drive.size / 1GB -as [int];
'Free'="{0@:N2}" -f ($drive.freespace /\
1GB);
'FreePct'=$drive. freespace / $drive.si\
ze * 100 -as [int]}
New-Object -TypeName PSObject -Property $props

Las seis funciones anteriores no hacen otra cosa que recupe-
rar datos de una sola computadora (observe que su parametro -
ComputerName se define como [string], aceptando un valor, en
lugar de [string[]] que aceptaria multiples). Si no logra entender
cémo funciona esto... es probable que tenga que dar un paso atréas!

Para propdsitos de formato, usted estd viendo que se utiliza el
caracter (back tick) (como en —ComputerName y $ComputerNa-
me). En PowerShell este caracter funciona como una especie de
continuacion de linea. Lo sefialo porque puede ser facil perderlo
de vista.

foreach ($computer in $computername) {
try {
$everything_ok = $true
Write-Verbose "Checking connectivity to $computer"
Get-WmiObject -class Win32_BIOS -ComputerName $Co\
mputer -EA Stop | Out-Null
} catch {
Write-Warning "$computer failed"
$everything_ok = $false

W -

Construyendo el HTML 20

Lo anterior es el inicio de mi script de demostracién. Se estan
tomando los nombres de equipo que se pasaron al parametro
-ComputerName, procesandolos uno a la vez. Luego se hace una
llamada a Get-wmiObject como una prueba - si esto falla, no quiero
hacer nada con el nombre del equipo en absoluto. El resto de la
secuencia de comandos sélo se ejecuta si esa llamada WMI tiene
éxito.

if ($everything_ok) {
$filepath = Join-Path -Path $Path -ChildPath "$co\
mputer.html"

Recuerde que el otro pardmetro de este script es -Path. Estoy utili-
zando Join-Path para combinar $Path con un nombre de archivo.
Join-Path garantiza el nimero correcto de barras inversas, de modo
que si -Path es “C:” 0 “C:” obtendré una ruta de archivo valida. El
nombre de archivo sera el nombre del equipo actual, seguido de la
extension .html.

$params = @{'As'="List’;
'"PreContent'='<h2>0S</h2> "'}
$html_os = Get-InfoOS -ComputerName $computer |
ConvertTo-EnhancedHTMLFragment @params

Aqui esta mi primer uso del médulo EnhancedHTML2: Con ConvertTo-
EnhancedHTMLFragment. Observe lo que estoy haciendo:

1. Estoy usando un hashtable para definir los pardmetros del co-
mando, incluyendo ambos -As List y -PreContent ‘<H2>0S</H2>’
como parametros y sus valores. Esto especifica una salida de
estilo de lista (frente a una tabla), precedida por el encabezado
“OS” en el estilo H2. Vuelva a mirar el CSS y vera que he
aplicado un borde superior a todo el elemento <H2>, lo que
ayudara a separar visualmente las secciones de mi informe.

O O B~ W N

0 N O O b W N =~

11
12
13
14
15
16

Construyendo el HTML 21

2. Estoy ejecutando mi comando Get-InfoOS, pasando el nom-
bre del equipo actual. La salida se canaliza a...

3. ConvertTo-EnhancedHTMLFragment, ConvertTo-EnhancedHTMLFragment,

donde se encuentra mi hashtable de parametros. El resulta-
do serd una gran cadena de HTML, que se almacenara en
$html_os.

$params = @{'As'="List’;
'PreContent'='<h2>Computer System</h2\
>}
$html_cs = Get-InfoCompSystem -ComputerName $comp\
uter |
ConvertTo-EnhancedHTMLFragment @params

Ese es un ejemplo similar, para la segunda seccion de mi informe..

$params = @{'As'='Table';
'PreContent'="'<h2> Local Disks\
</h2>';
'EvenRowCssClass'="even';
'0OddRowCssClass'="odd"';
'MakeTableDynamic'=$true;
'TableCssClass'="grid"';
'Properties'='Drive’,
@{n="'Size(GB)';e={$_.Size}},
@{n="Free(GB)';e={$_.Free};css={if ($_.Fre\
ePct -1t 80) { 'red' }}},
@{n="Free(%)"';e={$_.FreePct};css={if ($_.F\
reeePct -1t 80) { 'red' }}}}

$html_dr = Get-InfoDisk -ComputerName $computer |
ConvertTo-EnhancedHTMLFragment @params

OK, ese es un ejemplo mas complejo. Echemos un vistazo a los para-
metros que estoy pasando a ConvertTo-EnhancedHTMLFragment:

Construyendo el HTML 22

« Como se esta produciendo una tabla en lugar de una lista, la
salida sera en un disefio de tabla columnar (algo como lo que
produciria Format-Table, pero en HTML).

« Para mi seccién de encabezado, he afiadido un simbolo de
diamante utilizando la entidad HTML ¢ Creo que se ve bien.
Eso es todo.

« Puesto que esto serd una tabla, puedo especificar -EvenRowCssClass
y -OddRowCssClass. Le doy los valores “even” y “odd”, que
son las dos clases (.even y .odd) que defini en mi CSS. De esta
forma estoy creando el vinculo entre las filas de la tabla y
mi CSS. Cualquier fila de la tabla “etiquetada” con la clase
“odd” heredara el formato de “.odd” de mi CSS. No se debe
incluir el punto al especificar los nombres de clase con estos
parametros. S6lo en el CSS se coloca el punto delante del
nombre de la clase.

+ -MakeTableDynamic se establece en $True, para que se aplique
el JavaScript necesario y convertir la salida en una tabla que
se pueda ordenar y paginar. Esto requerira que el HTML final
se vincule al archivo JavaScript necesario, pero cubriremos
este punto cuando lleguemos alli.

« -TableCssClass es opcional, pero lo estoy usando para asig-
nar la clase “grid”. Una vez maés, si observa el CSS, podra
observar que defini un estilo para “.grid”, por lo que esta tabla
heredara esas instrucciones de estilo.

« El dltimo es el parametro -Properties. Funciona muy pa-
recido a los pardmetros -Properties de Select-Object y
Format-Table. El parametro acepta una lista de propiedades
separada por comas. El primero, Drive, ya esta siendo produ-
cido por Get-InfoDisk. Los siguientes tres son especiales: son
hashtables, creando columnas personalizadas como loa haria
Format-Tabl. Dentro del hashtable, usted puede utilizar las
siguientes claves:

- n (o name, o 1, o label) especifica el encabezado de co-
lumna. Estoy usando “Size(GB),” “Free(GB)”, y “Free(%)”
como encabezados de columna.

Construyendo el HTML 23

— e (o expression) es un bloque de secuencia de comandos,
que define lo que contendré la celda de la tabla. Dentro
de ella, puede utilizar §_ para referirse al objeto de
entrada. En este ejemplo, el objeto canalizado proviene
de Get- InfoDisk, por lo que me refiero a las propiedades
Size, Free y FreePct del objeto.

— css (o cssClass) es también un bloque de secuencia de
comandos. Mientras que el resto de las claves funcionan
igual que lo hacen con Select-Object o Format-Table, css
(o cssClass) es exclusivo de ConvertTo-EnhancedHTMLFragment.
Acepta un bloque de secuencia de comandos, que se
espera que produzca una cadena, o nada. En este caso,
estoy comprobando para ver si la propiedad FreePct del
objeto en la canalizacion es menor que 80 o no. Si es asf,
la salida sera la cadena “red”. Esta cadena se agregara
como una clase CSS de la celda en la tabla. Recuerde que
en mi CSS defini la clase “red” y aqui es donde adjunto
esa clase a las celdas de la tabla.

— Como una nota aparte, me doy cuenta de que es tonto
establecer un color rojo cuando el porcentaje libre de
disco es inferior al 80%. Se trata solo de un ejemplo para
jugar. Podria facilmente tener una férmula mas comple-
ja, como if ($_.FreePct -t 20) { ‘red’} elseif ($_.FreePct -It
40) { ‘yellow’ } else { ‘green’ } y entonces habria definido
las clases “red”, “yellow” y “.green” en el CSS.

0o N O O b W N =

11
12
13
14
15
16
17
18
19
20

Construyendo el HTML 24

$params = @{'As'='Table';
'PreContent'="'<h2> Proce\
sses</h2>"';
'MakeTableDynamic'=$true;
'TableCssClass'="grid'}
$html_pr = Get-InfoProc -ComputerName $computer |
ConvertTo-EnhancedHTMLFragm\
ent @params

$params = @{'As'='Table’';
'PreContent'="'<h2> Servi\
ces to Check</h2>";
'EvenRowCssClass'="even';
'0OddRowCssClass'="odd" ;
'MakeHiddenSection'=$true;
'TableCssClass'='grid'}

$html_sv = Get-InfoBadService -ComputerName $computer |
ConvertTo-EnhancedHTMLFrag\

ment @params

Mas de lo mismo en los dos ejemplos anteriores, con sélo un
nuevo parametro: -MakeHiddenSection. Esto hara que la seccion
del informe se colapse de forma predeterminada, mostrando sélo
la cadena -PreContent. Al hacer clic en la cadena, se expandira y
contraera la seccion del informe.

De regreso en mi CSS, observe que para la clase .sectionHeader,
establezco el cursor en un icono de puntero, e hice que el color
del texto de la seccion fuera rojo cuando el ratéon pasa sobre él.
Esto ayuda a comprender al usuario que se puede hacer clic en
el encabezado de la seccién. El médulo EnhancedHTML2 siempre
agrega la clase CSS “sectionheader” al -PreContent, por lo que
al definir “.sectionheader” en su CSS, puede seguir disefiando los
encabezados de seccion.

0o N O O b W N =

o N O O b wWw N =

11
12
13
14
15
16
17
18
19
20
21
22
23

Construyendo el HTML 25

$params = @{'As'='Table';
'PreContent'="'<h2> NICs</h2>";
'"EvenRowCssClass'="'even';
'0ddRowCssClass'="odd"';
'MakeHiddenSection'=$true;
'TableCssClass'='grid'}

$html_na = Get-InfoNIC -ComputerName $Computer |

ConvertTo-EnhancedHTMLFragment @params

Nada nuevo en el fragmento anterior, pero ahora estamos listos para
generar el HTML final:

$params = @{'CssStyleSheet'=$style;
'Title'="System Report for $computer";
'PreContent '="<h1>System Report for $\
computer</hi>";
"HTMLFragments'=@($html_os,$html_cs,$html_dr, \
$html_pr,$html_sv,$html_na);
' jQueryDataTableUri'="'C:\html\jqueryd\
atatable. js';
'jQueryUri'='C:\html\jquery. js'}
ConvertTo-EnhancedHTML @params |
Out-File -FilePath $filepath

<H
$params = @{'CssStyleSheet'=$style;
'Title'="System Report for $computer";
'"PreContent'="<h1>System Report for $\
computer</hi>";
"HTMLFragments'=@($html_os, $html_cs,$html_dr,\
$html_pr,$html_sv,$html_na)}
ConvertTo-EnhancedHTML @params |
Out-File -FilePath $filepath
#>

24
25
26

Construyendo el HTML 26

El c6digo no comentado y el cddigo comentado hacen lo mismo. El
primero, no comentado, establece una ruta de archivo local para los
dos archivos JavaScript necesarios. El comentado no especifica esos
parametros, por lo que el c6digo HTML final utilizara el JavaScript
desde la Red de distribucién de contenido (CDN) basada en la Web
de Microsoft. En ambos casos:

+ -CssStyleSheet especifica mi CSS - estoy alimentando mi
variable predefinida $style. También puede vincular a una
hoja de estilo externa (hay un parametro diferente, -CssUri,
para eso), pero tener el estilo incrustado en el HTML lo hace
mas auténomo.

« -Title especifica qué se mostrara en la barra de titulo del
navegador o pestaia.

« -PreContent, que estoy definiendo mediante las etiquetas
HTML <H1>, aparecera en la parte superior del informe.
También hay un -PostContent si desea agregar un pie de
pagina.

« -HTMLFragments requiere una matriz (de ahi el uso de @ ()
para crear una matriz) de fragmentos HTML producidos por
ConvertTo-EnhancedHTMLFragment. Asi estoy alimentan-
do las 6 secciones del informe HTML que creé anteriormente.

El resultado final se canaliza a la ruta de archivo que creé anterior-
mente. Asi se ve el resultado:

Construyendo el HTML 27

&) Clocathosthtml

System Report for localhost

os

OsBuild: 9200
Osversion 629200
SPversion 0

Computer System

o 1 N
Manufacturer : Viiware, .

Model: Vware Virtua Pltiorm

Ram(Ge): 200

sockets: 1

4 Local Disks

Shou [T et
S I) "

4 Processes

show [10_V]entries
search

TabTip.exe
iexplore.exe

mtoolsd.exe
mtoolsd.exe
MsMpEng exe

4 Services to Check

+ NICs

image004.png

Tengo mis ultimas dos secciones contraidas. Observe que la lista de
procesos esta paginada, con los botones Previous/Next y ademas mi
disco sin el 80% esta resaltado en rojo. Las tablas muestran 10 filas
por defecto, pero se pueden hacer mas grandes, y ofrecen un cuadro
de busqueda incorporado. Se puede hacer clic sobre los encabezados
de columna para ordenar.

iFrancamente, creo que se ve extraordinario!

N

w

© 00w I O O »

10

Combinacion de
informes HTML y una
aplicacion GUI

He tenido un buen nuimero de personas haciendo preguntas en
los foros en PowerShell.org, con el asunto “;cémo puedo utilizar
un RichTextBox en una aplicacién GUI de Windows para mostrar
datos en un formato agradable?” Mi respuesta es no lo haga. Utilice
HTML en su lugar. Por ejemplo, digamos que sigui6 los ejemplos
del capitulo anterior y produjo un hermoso informe HTML. Tenga
en cuenta que el informe permanece “‘en memoria”, no en un
archivo de texto, hasta el final:

$params = @{'CssStyleSheet'=$style;
'Title'="System Report for $computer";
'"PreContent'="<h1>System Report for $\
computer</hi>";
'CssldsToMakeDataTables'=@('tableProc\
', 'tableNIC', 'tableSvc');
"HTMLFragments'=@($html_os, $html_cs, $\
html_pr,$html_sv,$html_na)}
ConvertTo-EnhancedHTML @params |
Out-File -FilePath $filepath

Por razones de ilustracién, digamos que ahora esta en un archivo
llamado C:Report.html. Voy a usar PowerShell Studio 2012 de
SAPIEN para mostrar ese informe en una GUI, en lugar de hacerla
aparecer en un navegador Web. Entonces, he iniciado con un
proyecto simple, de una sola forma. He cambiado el texto del
formulario a “Informe”, y he afiadido un control WebBrowser desde

Combinacion de informes HTML y una aplicacién GUI 29

la caja de herramientas. Ese control llena automaticamente la forma
entera, asi que estd perfecto. Nombré el control de WebBrowser
“web”, lo que hara accesible desde el codigo a través de la variable

$web.

Cabe resaltar que PowerShell Studio 2012 podria estar muy desfa-
sado en el momento que lea esto, pero todavia deberia tener la idea
general.

[Z11= R R SAPIEN PowerShell Studio 2012 - "

wome | Bpor Hep @
D- @ [& con Local Machine = =@ W secan |2 3] stert Page
Q-8 | B & LB 3w B

] options

L Paste . _ = Run Run S Debug Debug _
@ & % cut (@[S @ o B | woecr Fiee < Proects Fiew = S syes - | 3 panels ~
file Clipboard Platform Run Debug Windows
gl [Toolbex - 8 x| L Memrompt x| <+ |[Properties 2 x|g
&3 Swebbrovser T Systemvinde v
al Report [=l=]=] -
AccessbieDe
cessblela
e AccessibleRo Defautt
2 [comentttonsst AlowNavigai True
3 s “G ‘:A Stip N AlowWebBro True
7 DainGri Anchor Top. Left
(3 DataGridView CausesVaida True
T DateTimeFicker
2 DomainlpDoun
@ ErrerProvider
ialog
= > MatmumSize 0.0
"] GroupBox > MirimumSize 20, 20
HelpProvider ScrptErorsSe Fabe
813 HScrollBar SerolBarsEnz True
(& ImageList > See 494,411
AlLabel Tabindex 0
A LinkLabel TabSiop T
7 ListBox Tag
23 Listview v o
Vsble Tue
=] SMainForm WebBromsert True
E
)
Indicates the name used n code t
iderify the obiect.
B coole |2 el P9 Debi |7 ot
(=) —0—: +) CHv ¥ Autolayout | & READ OVR caP NUM UTF8 Linet1 Cok1

Espero que haga un formulario como parte de un proyecto general
mas grande. Por ahora solo me voy a enfocar en solucionar este
problema. Asi que voy a cargar la informacion del reporte en el
control WebBrowser cuando el formulario se cargue:

W N -

Combinacién de informes HTML y una aplicacion GUI 30

$0OnLoadFormEvent={
#TODO: Initialize Form Controls here
$web.Navigate('file://C:\report.html")

Ahora puedo ejecutar el proyecto:

1= R B SAPIEN PowerShell Studio 2012 -

Home | oot Hep @ o
- 5 m &6 w =@ 4 = Previous v to Lasteat (3] StartPage
Run "

L-® 3 copy Local Machine

[74

4| B Copy HTML 64 Bit v e Y12 8 netv [Bookmark v Optians
o ¥ = Do B e s | e Tz 0 | A 0| b Gootne @5 2 panels +
File Clipboard Platiorm Run Debug Edit Navigation Windows
3| Project v & x|[T ymanrom.pr x u Run Project (Ctrl=F4) | < » |[Function Explorer_ ~ & x
in & & & [>:) =0 ManFom
g =-| () Events
2 | -7 ReportDemo e # OnLoadFomEvent|
44 Globals ps1 3 =44 Globals ps1
) B 4) Functions
L stanup ofs : 9 Get-Script Directory
7
o [@ Report - =
s
¥ NounName Name Handles VM WS PM NPM @
CiWir
Process conhost 72 57597952 8421376 1806336 8320
Object Browser v o X \conho
>
ByW0m Fon .. [a roperts
Piatfom: V3 (64 B#) X@ CiWir L"Eif ot
Hoet: Local Machine Process esss 262 48967680 357056 1552384 10704 % | vax
@ a
About. ~ PowerShell "
Aimses — CiWir b Datsbase
Crdets Qi Process estss 165 117825536 1990656 1699840 18880 j Escapes
Microsoft WSMan Manag: >> Building { lestss.¢ [Fies
ActiveDirectory 5> Running (F b Fom Functions
AppLocker >> Platform: (b Uiities
Aopx CiWir b Valdation
BestPractces Process dwm 189 327561216 18288640 1834755220032) VBSarpt fo Power
BtLocker \dwme | FF g
BitsTransfer 12 Function Advance
BranchCache: |2} Background Job (
CimCmdlets |2 Background Job
ClusterAwareLUpdating Process explorer 1177 404733952 14442496 32407552 60288 CiWir |2 Cheok For Micros:
DFSN |3} Comment Based +
DhepServer v 123 Convert To Datal v,
ST T T s e Process Tde 0 65536 20480 0 0 B
QU= 37 ¥ AutoLaout M
3

I < I

image007.png

Obtengo un agradable cuadro de didlogo emergente que muestra el
informe HTML. Puedo cambiar el tamario, minimizarlo, maximi-
zarlo y cerrarlo usando los botones estandar en la barra de titulo de
la ventana. Facil, y s6lo tomd 5 minutos.

Contactandome

Si tiene problemas, desea hacer algo y no puede averiguar como,
encontré un error y desea ofrecer una correccion, o simplemente
tiene comentarios sobre esta guia o el médulo Enhanced HTML, me
encantaria saber de usted.

La forma mas sencilla es publicar en el foro “General Q & A” en
http://powershell.org/wp/forums/. Mantengo puesto el ojo aqui que
yo voy a responder tan pronto como sea posible.

Revise de vez en cuando, para asegurarse que tiene la version mas
reciente de esta guia y su codigo.

	Tabla de contenidos
	Creating HTML Reports in PowerShell
	Bases del informe HTML
	Recopilación de la información
	Construyendo el HTML
	Combinación de informes HTML y una aplicación GUI
	Contactándome

