What will we build ?

This book will focus on how to create a real world mobile chat application with lonic 5 [Angular 12, Capacitor 3 and
Django 3. The Chat application will manage private chat between two persons and is not a group chat application.

For this application, we can list these main functionalities :

e Login / Register [Forget password screens

e List of chats screen with search user features

e Chat screen : real time message with WebSocket, loading previous messages, sending attachments
e Receiving push notifications

So this is what this book is about: We will learn each steps required to create a real world chat mobile application with
it's associated backend in a day to day process.

On backend, we will use Django and Django channels to have a socket based chat and we will also learn how to save
and retrieve chat history.

On frontend, we will develop a lonic application with angular framework, which will communicate with our backend to
manage the chats. we will deploy the application on mobile devices using Capacitor.

Ready to start ?

Day 1: setup and design Backend

First we will focus on the backend development before diving into the lonic part.

You can find the source code for this day one journey in GitHub

Setup : Software required

Before diving into the subject of this book, we need to install software and set up our environment for the backend part.
If you are familiar with Django development you can skip this section.

Python 3

All the development will be done with python 3 so i will assume that python 3 is already install on your computer. If not,
you will find tutorials on the internet on how to install it.

Pip

PIP is the Python Package Installer and is really helpful to install Django and all the libraries required to develop any
Django project.

If you are on a Mac just open a terminal and enter

sudo easy_install pip

Virtualenv

Virtualenv is a tool to create isolated python environment. It is a recommended and standard way to develop Django
projetcs. So let's begin. First go in a directory where you would like to create the backend.

cd Programmation

mkdir ChatTuto

mkdir ChatTuto/Backend
mkdir ChatTuto/Frontend

| create a ChatTuto directory and inside this directory, i create the Backend in which we will develop our backend and a
Frontend directory in which we will develop the lonic application.

To install virtualenv

https://github.com/csurbier/chattuto.git

sudo pip install virtualenv
And now we create the virtual environment into a directory named venv
virtualenv -p python3 venv
Once installed, we need to activate the environment using the command:

source venv/bin/activate

Django

We can install Django 3
pip install Django==3
And now we can create our django backend which will be called chattuto

django-admin startproject chattuto

cd chattuto

Ok now we can begin to implement our models that will be used to deal with our Chat application.

Conception

For each mobile app that you need to develop, the process is always the same. Starting from the storyboard of the
application, we can deduce which entities will be needed. From these entities, we can conceptualize the models, the
back-office (web administration) required to manage data and finally as last step, design the APl which will be
consumed by the frontend application.

Usually, i don't recommend to implement the API without having seen application storyboards. Because it is better
to implement API endpoints that will fulfill each screen requirements and then improve drastically the performance.
If you don't proceed that way, to provide data to a screen, then may be you will need to make multiple http requests
whereas only one request could have done the job.

For our Chat application, we need to display a list of chats and messages inside a choosen chat. And of course a chat is
between two users, so we can easily deduce the following models:

e User
e Chat
e Message

This is a good start to design our Django models.

Designing models

We need to create our first app in Django to declare our models and then we will add a backoffice which will be used by
the administrator of the mobile application. To create this chat application in Django:

python manage.py startapp chat

Inside the newly created chat directory, Django will initialize some standard files for us. At this stage, we are interested
with the models.py file.

| didn't mentioned earlier but i use PyCharm to develop all my Django projects. You will find a community edition
(FREE to use) or a PRO edition. But you can also use Eclipse with PyDev plugin, or VSCode. It's really up to you.
User model

Most of mobile application have users who can subscribe or login, so this will be the first entity we need. By default,
Django includes a User model entity and all required methods to deals with authentification.

https://www.jetbrains.com/fr-fr/pycharm/

But by default in a Django project, the field used to manage authentication is a username whereas for a mobile
application it makes more sense to use an email for authentication process.

However it is possible to easily modify the Django default mechanism to use an email. To do so we have to extend the
default User entity.

So let's do it:

class UserManager (BaseUserManager) :

use_in migrations = True

def _create user(self, email, password, **extra fields):

Creates and saves a User with the given email and password.
if not email:
raise ValueError ('The given email must be set')
email = self.normalize email (email)
user = self.model (email=email, **extra fields)
user.set password(password)
user.save (using=self. db)

return user
def create user(self, email, password=None, **extra fields):
extra fields.setdefault('is superuser', False)

return self. create user(email, password, **extra fields)

def create superuser (self, email, password, **extra fields):

extra fields.setdefault('is_superuser', True)

if extra fields.get('is superuser') is not True:

raise ValueError ('Superuser must have is superuser=True.')

return self. create user (email, password, **extra fields)

class User (AbstractBaseUser, PermissionsMixin) :

id = models.UUIDField(primary key=True, default=uuid.uuid4, editable=False)

email = models.EmailField(_ ('email address'), unique=True)
first name = models.CharField(_ ('first name'), max length=30, blank=True)
last _name = models.CharField(_ ('last name'), max length=30, blank=True)

date joined = models.DateTimeField(_ ('date joined'), auto now_add=True)
is_active = models.BooleanField(_('active'), default=True)

is_staff = models.BooleanField(_ ('active'), default=True)
avatar = models.ImageField(upload to='avatars/', null=True, blank=True)
lastConnexionDate = models.DateTimeField (null=True, blank=True)

valid = models.BooleanField(default=True)

objects = UserManager ()

USERNAME FIELD = 'email'
REQUIRED FIELDS = []

class Meta:
verbose name = ('user')

verbose name plural = ('users')

createdAt = models.DateTimeField(auto now add=True)

updatedAt = models.DateTimeField(auto now=True)

@property

def last login(self):

return self.lastConnexionDate

def str (self):

return u'$s' % (self.email)
Now User can be authenticated with email because we set
USERNAME FIELD = 'email'

The lastConnexionDate can be used to track last connexion of the user into the mobile application.

Chat models

A chat is a dialog conversation between two users. The dialog is composed of a list of text messages but it also can be
something else than text such as photos, videos, ... We can deduce that we will need two more models to store Chats

and Messages.

class Chat (models.Model) :

id = models.UUIDField (primary key=True, default=uuid.uuid4, editable=False)

fromUser = models.ForeignKey(User, db_index=True,on_delete=models.SET_NULL,
null=True, related name="fromuser")

toUser = models.ForeignKey (User, db index=True,on delete=models.SET NULL,
null=True,related name="toUser")

createdAt = models.DateTimeField(auto_now_add=True)

updatedAt = models.DateTimeField (auto now=True)

unique together = (("fromUser", "toUser"),)

def str (self):

return u'%$s - %s' % (self.fromUser,self.toUser)

class Message (models.Model) :
id = models.UUIDField(primary key=True, default=uuid.uuid4, editable=False)
refChat = models.ForeignKey(Chat, db index=True,on delete=models.CASCADE)
message = models.TextField()
msg_type = (
(0, "TEXT"),
(1, "GEoLocC"),
(2, "PHOTO"),

type = models.IntegerField(choices=msg type, default=0)

extraData = models.CharField(default='"', null=True, blank=True, max_length=255)

author = models.ForeignKey (User,
db_index=True,related name='author',6on delete=models.SET NULL,null=True)

isRead = models.BooleanField(default=False)

createdAt = models.DateTimeField(auto_now_add=True)

updatedAt = models.DateTimeField(auto_now=True)

def _ str (self):

return u'$s - %$d' % (self.refChat,self.type)

A chat must be unique between two users so we set a unique_together key based on users primary keys.

A message refers to a chat, can be a text, a geolocation position (using latitude/longitude) or a photo. We could
extend this message type based on the application requirements like videos, sound... And of course a message has
an author (the User who wrotes the message)

Setup database

To create our models, we need to install a database. | will use PostgreSQL with postgis extension.

On Mac, you will need Postres software and you can use Postico on your local machine while developping. It's quite
easy to use and install.

On Windows or Linux, you will have to setup your database which can be quite painful. To connect to your database,
you can use the free DBeaver software.

I will assume that this step is done and will move forward on to next section.

| strongly recommend to use Clever cloud services, a french provider that i will use for these tutorials. With Clever
cloud services, you can focus on your development features and not architecture. They offer a FREE database
hosting for development. It's like Heroku but cheaper and more performant.

https://postgresapp.com/
https://eggerapps.at/postico/
https://dbeaver.io/
https://www.clever-cloud.com/en/

Configure Django project

We can configure our Django project to use our database. First we will need the psycopg2 package which is the
PostgreSQL python driver. Let's add it to our requirements.txt file

Django==3.1.7
pillow==8.0.1
psycopg2==2.8.5 --no-binary psycopg?2

I'm using the non binary version to be sure that the driver will be accurate with the server system libraries (it was a
recommendation from the Clever cloud team).

As you could have notice, i'm always specifiying the version of the library that i want to use. If you don't do that
while deploying your project on a server, the latest version of libraries will be installed and could lead to a bug (if
something changed in a library). Specifying the version will avoid that.

Don't forget to install the libraries

pip install -r requirements.txt

Now, we can configure Django to use our database. We edit the settings.py file inside the chattuto directory and will
replace the DATABASES section with:

AUTH_USER MODEL = "chat.User"

Database
https://docs.djangoproject.com/en/3.0/ref/settings/#databases
POSTGRESQL ADDON_URI = os.getenv ("POSTGRESQL ADDON_URI")
POSTGRESQL ADDON_PORT = os.getenv ("POSTGRESQL ADDON_PORT")
POSTGRESQL ADDON_HOST = os.getenv ("POSTGRESQL ADDON_HOST")
POSTGRESQL ADDON_DB = os.getenv ("POSTGRESQL_ADDON_DB")
POSTGRESQL ADDON_PASSWORD = os.getenv ("POSTGRESQL ADDON_PASSWORD")
POSTGRESQL ADDON_USER = os.getenv ("POSTGRESQL ADDON_USER")
REDIS_URL= os.getenv("REDIS_URL")
DATABASES = {
'default': {

'ENGINE': 'django.contrib.gis.db.backends.postgis',

'NAME ' : POSTGRESQL_ADDON_DB,

'USER': POSTGRESQL_ADDON_USER,

'PASSWORD' : POSTGRESQL_ADDON_PASSWORD,

'HOST': POSTGRESQL_ADDON_HOST,

'PORT': POSTGRESQL_ADDON_PORT,

"CONN_MAX_AGE': 1200,

I'm getting my database connexion parameters from environment variables and then set the databases dictionary keys
with these values.

Using environment variables it's easy to switch from a development database to a production database. Values are
not hardcoded.

Please notice the line AUTH_USER_MODEL = "chat.User". Since we override the default Django User entity, this
line is very important and tells Django that it needs to use our custom model.

With PyCharm you can declare your environment variables in the settings of your project, or you can use a
environment.env file and use this plugin to declare them, which is more easy.

Within my environment.env file, i declare my database connection parameters like this:

https://plugins.jetbrains.com/plugin/7861-envfile

POSTGRESQL_ADDON_URI=postgresql://u6rogoiqgpupp3mvhqgi9:F1Kc6J1pKEt5X281X4Fn@bx8gb6agpf58jh3rtupa-
postgresqgl.services.clever-cloud.com:5432/bx8gb6agpf58jh3rtupa

POSTGRESQL_ADDON_PORT=5432
POSTGRESQL_ADDON_HOST=bx8gb6agpf58jh3rtupa-postgresgl.services.clever-cloud.com
POSTGRESQL_ADDON_DB=b9pggzgccizfpklhadgv

POSTGRESQL_ADDON_USER=u6rogoiggpupp3mvhqgi9

POSTGRESQL_ADDON_PASSWORD:<YOURPASSWORD>

DEBUG=True

MEDIA URL PREFIX=/media

STATIC URL PREFIX=/static

Don't forget to replace these values with your own database connexion values

We could also do the same for the DEBUG variable

DEBUG = os.getenv ("DEBUG")

and add the DEBUG value in our environment.env file:

DEBUG=True

We can try to run our Django project with PyCharm and if database connexion is OK, we should see the following:

Performing system checks...

System check identified no issues (0 silenced).

You have 17 unapplied migration(s). Your project may not work properly until you apply the
migrations for app(s): admin, auth, contenttypes, sessions.

Run 'python manage.py migrate' to apply them.

August 07, 2020 - 11:24:32

Django version 3.0, using settings 'chattuto.settings'

Starting development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

To launch Django with command line, you will need to export your environment variables and then run in a terminal:
python manage.py runserver

To export my environment variables, i usually use a text file and then source it (on Mac or Linux).

Create database tables

At this point, Django tells us that we need to run migrations. You can learn more about migrations here but basically it
means that we have modifications in our models.py file that are not reflected on the database which is true since we
haven't created it yet.

First we need to edit again the settings.py file to add our application chat to the INSTALLED_APPS dictionnary:

Application definition

INSTALLED APPS = [
'django.contrib.admin’,
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',

'chat'

Now because we have overrided the default Django User, we first need to make a migrations with our chat application
(which will tell Django where to find the User model) and then we can migrate to create all other tables required by
Django. So let's do it by typing in a terminal:

python manage.py makemigrations chat

python manage.py migrate

https://docs.djangoproject.com/en/3.0/topics/migrations/

Implement Chat server with Websockets and django channels

To implement our Chat backend we will use websockets which are more performant than HTTP requests and are
asynchronous. To implement websockets within Django, Channels has been introduce recently. You can read more
about the definition on the channel website documentation.

Let's add channel and daphne to our requirements.txt file
Django==3.1.7

pillow==8.0.1

psycopg2==2.8.5 --no-binary psycopg2
daphne==3.0.1

channels

channels redis
and install it
pip install -r requirements.txt

From now and to finish this day one tutorial, we will just follow the Channel Tutorials part 1 to 2. We will stop at tutorial
two, because we don't want our chat server to be asynchronous.

Before diving into that, we will create a superuser for our Django backend:

python manage.py createsuperuser
and we will implement our admin.py file to be able to manage Chat or Message models thru the admin:
from django.contrib import admin

from chat.models import *

class ChatAdmin (admin.ModelAdmin) :

fieldsets = [
(None, {'fields': ['fromUser',6 'toUser'l}),
]
list display = ('fromUser', 'toUser', 'createdAt', 'updatedAt',)

search fields =
('fromUser email','toUser email','fromUser last name', 'toUser last name',)
raw _id fields = ('fromUser', 'toUser',)

list select related = ('fromUser', 'toUser',)

class MessageAdmin (admin.ModelAdmin) :

fieldsets = [
(None, {'fields': ['refChat',6 'message', 'author', 'isRead', 'type', 'extraData']l}),
]
list display = ('refChat', 'message', 'author', 'isRead', 'createdAt',)
ordering = ('-createdAt',)
search fields = ('message', 'author email',)
raw _id fields = ('author',
list select related = ('refChat', 'author',)

Register your models here.
admin.site.register (Chat,ChatAdmin)

admin.site.register (Message,MessageAdmin)

NOTE FOR THE TCE, we can refer to the course i have written about the Django admin

https://channels.readthedocs.io/en/stable/
https://channels.readthedocs.io/en/stable/tutorial/index.html

Ok so now as i said we will just follow the Channel tutorials to learn basics on Django channels.

https://channels.readthedocs.io/en/stable/tutorial/index.html

Adding an index view

Inside our chat directory, let's create a template directory containing a chat directory

mkdir templates
mkdir templates/chat

Then we create an index.html file with the code

<!-- chat/templates/chat/index.html -->
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8"/>
<title>Chat Rooms</title>
</head>
<body>
What chat room would you like to enter?

<input id="room-name-input" type="text" size="100">

<input id="room-name-submit" type="button" value="Enter">

<script>
document.querySelector ('#room-name-input') . focus () ;
document.querySelector ('#room-name-input') .onkeyup = function(e) {
if (e.keyCode === 13) { // enter, return

document.querySelector ('#room-name-submit') .click();
}i

document.querySelector ('#room-name-submit') .onclick = function(e) {

var roomName = document.querySelector ('#room-name-input') .value;

window.location.pathname = '/chat/' + roomName + '/';
}i
</script>
</body>
</html>

This page will let us specify wich chat room we would like to join. Let's write the Django view which will render this
template. Edit the views.py file inside the chat directory (not the one from the template directory but from the Django
chat application)

chat/views.py

from django.shortcuts import render

def index (request):

return render (request, 'chat/index.html')
Then we need to create an url for this view. Edit or create an urls.py file if it doesn't exists, and write

chat/urls.py

from django.urls import path
from . import views

urlpatterns = [

path('', views.index, name='index'),

The next step is to point the root URLconf at the chat.urls module. In chattuto/urls.py, add an import for
django.conf.urls.include and insert an include() in the urlpatterns list, so you have:

from django.conf.urls import include
from django.urls import path

from django.contrib import admin
urlpatterns = [

path('chat/', include('chat.urls')),

path('admin/', admin.site.urls),

Now we can launch the server
python manage runserver

And go to the following url : http://127.0.0.1:8000/chat/

You should see the text “What chat room would you like to enter?” along with a text input to provide a room name.

http://127.0.0.1:8000/chat/

Adding the channel library

Now it's time to integrate Channels.

Let's start by creating a root routing configuration for Channels. A Channels routing configuration is an ASGI application
that is similar to a Django URLconf, in that it tells Channels what code to run when an HTTP request is received by the
Channels server.

Start by adjusting the chattuto/asgi.py file to include the following code:

chattuto/asgi.py

import os

from channels.auth import AuthMiddlewareStack
from channels.routing import ProtocolTypeRouter, URLRouter
from django.core.asgi import get asgi_application

import chat.routing
os.environ.setdefault ("DJANGO_SETTINGS MODULE", "chattuto.settings")

application = ProtocolTypeRouter ({
"http": get asgi application(),
"websocket": AuthMiddlewareStack (
URLRouter (

chat.routing.websocket urlpatterns

H)

Now add the Channels library to the list of installed apps. Edit the chattuto/settings.py file and add 'channels' to the
INSTALLED_APPS settings.py file

INSTALLED APPS = [
'django.contrib.admin’,
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'channels’',

'chat'

We also need to point Channels at the root routing configuration. Edit the chattuto/settings.py file again and add the
following line:

Channels

ASGI_APPLICATION = 'chattuto.asgi.application'

With Channels now in the installed apps, it will take control of the runserver command, replacing the standard Django
development server with the Channels development server.

python manage runserver
And we will see in the console logs :
Django version 3.1.7, using settings 'chattuto.settings'

Starting ASGI/Channels version 3.0.4 development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

The important line is Starting ASGI/Channels

Adding the room view

Create a new file chat/templates/chat/room.html

<!-- chat/templates/chat/room.html -->

<!DOCTYPE html>

<html>

<head>
<meta charset="utf-8"/>
<title>Chat Room</title>

</head>

<body>
<textarea id="chat-log" cols="100" rows="20"></textarea>

<input id="chat-message-input" type="text" size="100">

<input id="chat-message-submit" type="button" value="Send">
{{ room name|json_script:"room-name" }}
<script>

const roomName = JSON.parse (document.getElementById('room-name') .textContent);

const chatSocket = new WebSocket (

'ws://"'
+ window.location.host
+ '/ws/chat/'
+ roomName
+ '/
)i
chatSocket.onmessage = function(e) {

const data = JSON.parse (e.data);
document.querySelector ('#chat-log') .value += (data.message + '\n');

}i

chatSocket.onclose = function(e) {
console.error ('Chat socket closed unexpectedly');

}i

document.querySelector ('#chat-message-input') .focus();
document.querySelector ('#chat-message-input') .onkeyup = function(e) {
if (e.keyCode === 13) { // enter, return

document.querySelector ('#chat-message-submit"') .click();
}i

document.querySelector ('#chat-message-submit') .onclick = function(e) {
const messagelnputDom = document.querySelector ('#chat-message-input');
const message = messagelnputDom.value;
chatSocket.send (JSON.stringify ({
'message’': message
})) i
messagelnputDom.value = '';
}i
</script>
</body>
</html>

Then we can add the view function for the room view in chat/views.py

chat/views.py

from django.shortcuts import render

def index (request):

return render (request, 'chat/index.html')

def room(request, room name) :
return render (request, 'chat/room.html', {
'room name': room name

3]

And create the route for the room view in chat/urls.py:

chat/urls.py

from django.urls import path

from . import views
urlpatterns = [
path('', views.index, name='index'),

path('<str:room_name>/', views.room, name='room'),

We can start the server again :

python manage runserver

Go to http://127.0.0.1:8000/chat/ in your browser and to see the index page.

Type in "lobby" as the room name and press enter. You should be redirected to the room page at
http://127.0.0.1:8000/chat/lobby/ which now displays an empty chat log.

Type the message "hello” and press enter. Nothing happens. In particular the message does not appear in the chat log.
Why?

The room view is trying to open a WebSocket to the URL ws://127.0.0.1:8000/ws/chat/lobby/ but we haven't created a
consumer that accepts WebSocket connections yet. If you open your browser's JavaScript console, you should see an
error that looks like:

WebSocket connection to 'ws://127.0.0.1:8000/ws/chat/lobby/' failed: Unexpected response code:
500

Creating a consumer

When Django accepts an HTTP request, it consults the root URLconf to lookup a view function, and then calls the view
function to handle the request. Similarly, when Channels accepts a WebSocket connection, it consults the root routing
configuration to lookup a consumer, and then calls various functions on the consumer to handle events from the
connection.

We will write a basic consumer that accepts WebSocket connections on the path /ws/chat/ROOM_NAME/ that takes any
message it receives on the WebSocket and echos it back to the same WebSocket.

Create a new file chat/consumers.py

chat/consumers.py
import json

from channels.generic.websocket import WebsocketConsumer

class ChatConsumer (WebsocketConsumer) :

def connect (self):

http://127.0.0.1:8000/chat/
http://127.0.0.1:8000/chat/lobby/

self.accept ()

def disconnect (self, close_code):

pass

def receive(self, text data):
text data json = json.loads(text data)

message = text data json['message']

self.send(text data=json.dumps ({
'message': message

1))

We need to create a routing configuration for the chat app that has a route to the consumer. Create a new file
chat/routing.py:

from django.urls import re_ path

from . import consumers

websocket urlpatterns = [

re_path (r'ws/chat/ (?P<room_name>\w+) /$', consumers.ChatConsumer.as_asgi()),

Let's verify that the consumer for the Jws/chat/ROOM_NAME/ path works. Run migrations to apply database changes
(Django's session framework needs the database) and then start the Channels development server:

python manage.py migrate

python manage.py runserver

Go to the room page at http://127.0.0.1:8000/chat/lobby/ which now displays an empty chat log.
Type the message "hello” and press enter. You should now see "hello” echoed in the chat log.

However if you open a second browser tab to the same room page at http://127.0.0.1:8000/chat/lobby/ and type in a
message, the message will not appear in the first tab. For that to work, we need to have multiple instances of the same
ChatConsumer be able to talk to each other. Channels provides a channel layer abstraction that enables this kind of
communication between consumers.

A channel layer is a kind of communication system. It allows multiple consumer instances to talk with each other, and
with other parts of Django.

We will use REDIS has a channel layer. Once again i will use Clever cloud to setup a Redis server really easily.

http://127.0.0.1:8000/chat/lobby/
http://127.0.0.1:8000/chat/lobby/
https://www.clever-cloud.com/en/

Then i just need to update the channel layer config in my chattutu/settings.py file:

REDIS URL= os.getenv ("REDIS URL")
Channels
ASGI_APPLICATION = 'chattuto.asgi.application'
CHANNEL LAYERS = {
'default': {

'BACKEND': 'channels redis.core.RedisChannellLayer',
'CONFIG': {
"hosts": [REDIS_URL],

by

and declare a new environment variable based on the value provided by the Clever cloud add-on:

export REDIS URL='redis://:<YourPASSWORD>@btkaOrdhzdplteztka9i-redis.services.clever-

cloud.com:3067"'
Now we can edit the *consumers.py file again and replace the existing code with:

chat/consumers.py
import json
from asgiref.sync import async to sync

from channels.generic.websocket import WebsocketConsumer

class ChatConsumer (WebsocketConsumer) :
def connect (self) :
self.room name = self.scope['url route']['kwargs']['room name']

self.room group_name = 'chat %s' % self.room name

Join room group
async_to_sync(self.channel layer.group_add) (
self.room group_name,

self.channel name

self.accept ()

def disconnect (self, close code):
Leave room group
async to sync(self.channel layer.group discard) (
self.room group name,

self.channel name

Receive message from WebSocket
def receive (self, text data):
text data json = json.loads(text data)

message = text data json['message']

Send message to room group
async_to_sync(self.channel layer.group_send) (
self.room group name,
{
'type': 'chat message',

'message’': message

Receive message from room group
def chat message(self, event):

message = event['message']

Send message to WebSocket
self.send(text data=json.dumps ({
'message': message

1))

When a user posts a message, a JavaScript function will transmit the message over WebSocket to a ChatConsumer.
The ChatConsumer will receive that message and forward it to the group corresponding to the room name. Every
ChatConsumer in the same group (and thus in the same room) will then receive the message from the group and
forward it over WebSocket back to JavaScript, where it will be appended to the chat log.

And voila.

Remember we use the the Channel tutorials to learn basics on Django channels so please refer to it for more
information or clarifications.

You can find the source code for this day one journey in GitHub

In next tutorial Day two we will learn how to modify our Channel to use our models Chat and Message and to
implement persistent messages. We will also learn how to secure our Chat server with authentication and we will setup
an API with Django Rest Framework.

Questions | Answers

1. What are Django models ?

Models are classed which will represent your entities and will be used to create the database tables. 2. By default,
which field is using Django for authenticating users : Username or email ? Username 3. What is the library name to
create web sockets with Django ? Django Channels 4. What do we have to setup to enable multiple asynchronous
connection with Django Channels ? A channel layer

https://channels.readthedocs.io/en/stable/tutorial/index.html
https://github.com/csurbier/chattuto.git

