
What will we build ?

This book will focus on how to create a real world mobile chat application with Ionic 5 / Angular 12, Capacitor 3 and

Django 3. The Chat application will manage private chat between two persons and is not a group chat application.

For this application, we can list these main functionalities :

Login / Register / Forget password screens

List of chats screen with search user features

Chat screen : real time message with WebSocket, loading previous messages, sending attachments

Receiving push notifications

So this is what this book is about: We will learn each steps required to create a real world chat mobile application with

it's associated backend in a day to day process.

On backend, we will use Django and Django channels to have a socket based chat and we will also learn how to save

and retrieve chat history.

On frontend, we will develop a Ionic application with angular framework, which will communicate with our backend to

manage the chats. we will deploy the application on mobile devices using Capacitor.

Ready to start ?

Day 1 : setup and design Backend
First we will focus on the backend development before diving into the Ionic part.

You can find the source code for this day one journey in GitHub

Setup : Software required

Before diving into the subject of this book, we need to install software and set up our environment for the backend part.

If you are familiar with Django development you can skip this section.

Python 3

All the development will be done with python 3 so i will assume that python 3 is already install on your computer. If not,

you will find tutorials on the internet on how to install it.

Pip

PIP is the Python Package Installer and is really helpful to install Django and all the libraries required to develop any

Django project.

If you are on a Mac just open a terminal and enter

sudo easy_install pip

Virtualenv

Virtualenv is a tool to create isolated python environment. It is a recommended and standard way to develop Django

projetcs. So let's begin.
First go in a directory where you would like to create the backend.

cd Programmation

mkdir ChatTuto

mkdir ChatTuto/Backend

mkdir ChatTuto/Frontend

I create a ChatTuto directory and inside this directory, i create the Backend in which we will develop our backend and a

Frontend directory in which we will develop the Ionic application.

To install virtualenv

https://github.com/csurbier/chattuto.git

sudo pip install virtualenv

And now we create the virtual environment into a directory named venv

virtualenv -p python3 venv

Once installed, we need to activate the environment using the command:

source venv/bin/activate

Django

We can install Django 3

pip install Django==3

And now we can create our django backend which will be called chattuto

django-admin startproject chattuto

cd chattuto

Ok now we can begin to implement our models that will be used to deal with our Chat application.

Conception

For each mobile app that you need to develop, the process is always the same. Starting from the storyboard of the

application, we can deduce which entities will be needed. From these entities, we can conceptualize the models, the

back-office (web administration) required to manage data and finally as last step, design the API which will be

consumed by the frontend application.

Usually, i don't recommend to implement the API without having seen application storyboards. Because it is better

to implement API endpoints that will fulfill each screen requirements and then improve drastically the performance.

If you don't proceed that way, to provide data to a screen, then may be you will need to make multiple http requests

whereas only one request could have done the job.

For our Chat application, we need to display a list of chats and messages inside a choosen chat. And of course a chat is

between two users, so we can easily deduce the following models:

User

Chat

Message

This is a good start to design our Django models.

Designing models

We need to create our first app in Django to declare our models and then we will add a backoffice which will be used by

the administrator of the mobile application. To create this chat application in Django:

python manage.py startapp chat

Inside the newly created chat directory, Django will initialize some standard files for us. At this stage, we are interested

with the models.py file.

I didn't mentioned earlier but i use PyCharm to develop all my Django projects. You will find a community edition

(FREE to use) or a PRO edition. But you can also use Eclipse with PyDev plugin, or VSCode. It's really up to you.

User model

Most of mobile application have users who can subscribe or login, so this will be the first entity we need. By default,

Django includes a User model entity and all required methods to deals with authentification.

https://www.jetbrains.com/fr-fr/pycharm/

But by default in a Django project, the field used to manage authentication is a username whereas for a mobile

application it makes more sense to use an email for authentication process.

However it is possible to easily modify the Django default mechanism to use an email. To do so we have to extend the

default User entity.

So let's do it:

class UserManager(BaseUserManager):

 use_in_migrations = True

 def _create_user(self, email, password, **extra_fields):

 """

 Creates and saves a User with the given email and password.

 """

 if not email:

 raise ValueError('The given email must be set')

 email = self.normalize_email(email)

 user = self.model(email=email, **extra_fields)

 user.set_password(password)

 user.save(using=self._db)

 return user

 def create_user(self, email, password=None, **extra_fields):

 extra_fields.setdefault('is_superuser', False)

 return self._create_user(email, password, **extra_fields)

 def create_superuser(self, email, password, **extra_fields):

 extra_fields.setdefault('is_superuser', True)

 if extra_fields.get('is_superuser') is not True:

 raise ValueError('Superuser must have is_superuser=True.')

 return self._create_user(email, password, **extra_fields)

class User(AbstractBaseUser, PermissionsMixin):

 id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False)

 email = models.EmailField(_('email address'), unique=True)

 first_name = models.CharField(_('first name'), max_length=30, blank=True)

 last_name = models.CharField(_('last name'), max_length=30, blank=True)

 date_joined = models.DateTimeField(_('date joined'), auto_now_add=True)

 is_active = models.BooleanField(_('active'), default=True)

 is_staff = models.BooleanField(_('active'), default=True)

 avatar = models.ImageField(upload_to='avatars/', null=True, blank=True)

 lastConnexionDate = models.DateTimeField(null=True, blank=True)

 valid = models.BooleanField(default=True)

 objects = UserManager()

 USERNAME_FIELD = 'email'

 REQUIRED_FIELDS = []

 class Meta:

 verbose_name = _('user')

 verbose_name_plural = _('users')

 createdAt = models.DateTimeField(auto_now_add=True)

 updatedAt = models.DateTimeField(auto_now=True)

 @property

 def last_login(self):

 return self.lastConnexionDate

 def __str__(self):

 return u'%s' % (self.email)

Now User can be authenticated with email because we set

USERNAME_FIELD = 'email'

The lastConnexionDate can be used to track last connexion of the user into the mobile application.

Chat models

A chat is a dialog conversation between two users. The dialog is composed of a list of text messages but it also can be

something else than text such as photos, videos, ...
We can deduce that we will need two more models to store Chats

and Messages.

class Chat(models.Model):

 id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False)

 fromUser = models.ForeignKey(User, db_index=True,on_delete=models.SET_NULL,

null=True,related_name="fromuser")

 toUser = models.ForeignKey(User, db_index=True,on_delete=models.SET_NULL,

null=True,related_name="toUser")

 createdAt = models.DateTimeField(auto_now_add=True)

 updatedAt = models.DateTimeField(auto_now=True)

 unique_together = (("fromUser", "toUser"),)

 def __str__(self):

 return u'%s - %s' % (self.fromUser,self.toUser)

class Message(models.Model):

 id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False)

 refChat = models.ForeignKey(Chat, db_index=True,on_delete=models.CASCADE)

 message = models.TextField()

 msg_type = (

 (0, "TEXT"),

 (1, "GEOLOC"),

 (2, "PHOTO"),

)

 type = models.IntegerField(choices=msg_type, default=0)

 extraData = models.CharField(default='', null=True, blank=True, max_length=255)

 author = models.ForeignKey(User,

db_index=True,related_name='author',on_delete=models.SET_NULL,null=True)

 isRead = models.BooleanField(default=False)

 createdAt = models.DateTimeField(auto_now_add=True)

 updatedAt = models.DateTimeField(auto_now=True)

 def __str__(self):

 return u'%s - %d' % (self.refChat,self.type)

A chat must be unique between two users so we set a unique_together key based on users primary keys.

A message refers to a chat, can be a text, a geolocation position (using latitude/longitude) or a photo. We could

extend this message type based on the application requirements like videos, sound... And of course a message has

an author (the User who wrotes the message)

Setup database

To create our models, we need to install a database. I will use PostgreSQL with postgis extension.

On Mac, you will need Postres software and you can use Postico on your local machine while developping. It's quite

easy to use and install.

On Windows or Linux, you will have to setup your database which can be quite painful. To connect to your database,

you can use the free DBeaver software.

I will assume that this step is done and will move forward on to next section.

I strongly recommend to use Clever cloud services, a french provider that i will use for these tutorials. With Clever

cloud services, you can focus on your development features and not architecture. They offer a FREE database

hosting for development. It's like Heroku but cheaper and more performant.

https://postgresapp.com/
https://eggerapps.at/postico/
https://dbeaver.io/
https://www.clever-cloud.com/en/

Configure Django project

We can configure our Django project to use our database. First we will need the psycopg2 package which is the

PostgreSQL python driver. Let's add it to our requirements.txt file

Django==3.1.7

pillow==8.0.1

psycopg2==2.8.5 --no-binary psycopg2

I'm using the non binary version to be sure that the driver will be accurate with the server system libraries (it was a

recommendation from the Clever cloud team).

As you could have notice, i'm always specifiying the version of the library that i want to use. If you don't do that

while deploying your project on a server, the latest version of libraries will be installed and could lead to a bug (if

something changed in a library). Specifying the version will avoid that.

Don't forget to install the libraries

pip install -r requirements.txt

Now, we can configure Django to use our database. We edit the settings.py file inside the chattuto directory and will

replace the DATABASES section with:

AUTH_USER_MODEL = "chat.User"

Database

https://docs.djangoproject.com/en/3.0/ref/settings/#databases

POSTGRESQL_ADDON_URI = os.getenv("POSTGRESQL_ADDON_URI")

POSTGRESQL_ADDON_PORT = os.getenv("POSTGRESQL_ADDON_PORT")

POSTGRESQL_ADDON_HOST = os.getenv("POSTGRESQL_ADDON_HOST")

POSTGRESQL_ADDON_DB = os.getenv("POSTGRESQL_ADDON_DB")

POSTGRESQL_ADDON_PASSWORD = os.getenv("POSTGRESQL_ADDON_PASSWORD")

POSTGRESQL_ADDON_USER = os.getenv("POSTGRESQL_ADDON_USER")

REDIS_URL= os.getenv("REDIS_URL")

DATABASES = {

 'default': {

 'ENGINE': 'django.contrib.gis.db.backends.postgis',

 'NAME': POSTGRESQL_ADDON_DB,

 'USER': POSTGRESQL_ADDON_USER,

 'PASSWORD': POSTGRESQL_ADDON_PASSWORD,

 'HOST': POSTGRESQL_ADDON_HOST,

 'PORT': POSTGRESQL_ADDON_PORT,

 'CONN_MAX_AGE': 1200,

 }

}

I'm getting my database connexion parameters from environment variables and then set the databases dictionary keys

with these values.

Using environment variables it's easy to switch from a development database to a production database. Values are

not hardcoded.

Please notice the line AUTH_USER_MODEL = "chat.User". Since we override the default Django User entity, this

line is very important and tells Django that it needs to use our custom model.

With PyCharm you can declare your environment variables in the settings of your project, or you can use a

environment.env file and use this plugin to declare them, which is more easy.

Within my environment.env file, i declare my database connection parameters like this:

https://plugins.jetbrains.com/plugin/7861-envfile

POSTGRESQL_ADDON_URI=postgresql://u6rogoiqgpupp3mvhqi9:F1Kc6J1pKEt5X28iX4Fn@bx8gb6agpf58jh3rtupa-

postgresql.services.clever-cloud.com:5432/bx8gb6agpf58jh3rtupa

POSTGRESQL_ADDON_PORT=5432

POSTGRESQL_ADDON_HOST=bx8gb6agpf58jh3rtupa-postgresql.services.clever-cloud.com

POSTGRESQL_ADDON_DB=b9pgqzgccizfpklha4gv

POSTGRESQL_ADDON_USER=u6rogoiqgpupp3mvhqi9

POSTGRESQL_ADDON_PASSWORD=<YOURPASSWORD>

DEBUG=True

MEDIA_URL_PREFIX=/media

STATIC_URL_PREFIX=/static

Don't forget to replace these values with your own database connexion values

We could also do the same for the DEBUG variable

DEBUG = os.getenv("DEBUG")

and add the DEBUG value in our environment.env file:

DEBUG=True

We can try to run our Django project with PyCharm and if database connexion is OK, we should see the following:

Performing system checks...

System check identified no issues (0 silenced).

You have 17 unapplied migration(s). Your project may not work properly until you apply the

migrations for app(s): admin, auth, contenttypes, sessions.

Run 'python manage.py migrate' to apply them.

August 07, 2020 - 11:24:32

Django version 3.0, using settings 'chattuto.settings'

Starting development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

To launch Django with command line, you will need to export your environment variables and then run in a terminal:

python manage.py runserver

To export my environment variables, i usually use a text file and then source it (on Mac or Linux).

Create database tables

At this point, Django tells us that we need to run migrations. You can learn more about migrations here but basically it

means that we have modifications in our models.py file that are not reflected on the database which is true since we

haven't created it yet.

First we need to edit again the settings.py file to add our application chat to the INSTALLED_APPS dictionnary:

Application definition

INSTALLED_APPS = [

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

 'chat'

]

Now because we have overrided the default Django User, we first need to make a migrations with our chat application

(which will tell Django where to find the User model) and then we can migrate to create all other tables required by

Django. So let's do it by typing in a terminal:

python manage.py makemigrations chat

python manage.py migrate

https://docs.djangoproject.com/en/3.0/topics/migrations/

Implement Chat server with Websockets and django channels

To implement our Chat backend we will use websockets which are more performant than HTTP requests and are

asynchronous. To implement websockets within Django, Channels has been introduce recently. You can read more

about the definition on the channel website documentation.

Let's add channel and daphne to our requirements.txt file

Django==3.1.7

pillow==8.0.1

psycopg2==2.8.5 --no-binary psycopg2

daphne==3.0.1

channels

channels_redis

and install it

pip install -r requirements.txt

From now and to finish this day one tutorial, we will just follow the Channel Tutorials part 1 to 2. We will stop at tutorial

two, because we don't want our chat server to be asynchronous.

Before diving into that, we will create a superuser for our Django backend:

python manage.py createsuperuser

and we will implement our admin.py file to be able to manage Chat or Message models thru the admin:

from django.contrib import admin

from chat.models import *

class ChatAdmin(admin.ModelAdmin):

 fieldsets = [

 (None, {'fields': ['fromUser','toUser']}),

]

 list_display = ('fromUser','toUser','createdAt','updatedAt',)

 search_fields =

('fromUser__email','toUser__email','fromUser__last_name','toUser__last_name',)

 raw_id_fields = ('fromUser','toUser',)

 list_select_related = ('fromUser','toUser',)

class MessageAdmin(admin.ModelAdmin):

 fieldsets = [

 (None, {'fields': ['refChat','message','author','isRead','type','extraData']}),

]

 list_display = ('refChat','message','author','isRead','createdAt',)

 ordering = ('-createdAt',)

 search_fields = ('message','author__email',)

 raw_id_fields = ('author',)

 list_select_related = ('refChat','author',)

Register your models here.

admin.site.register(Chat,ChatAdmin)

admin.site.register(Message,MessageAdmin)

NOTE FOR THE TCE, we can refer to the course i have written about the Django admin

https://channels.readthedocs.io/en/stable/
https://channels.readthedocs.io/en/stable/tutorial/index.html

Ok so now as i said we will just follow the Channel tutorials to learn basics on Django channels.

https://channels.readthedocs.io/en/stable/tutorial/index.html

Adding an index view

Inside our chat directory, let's create a template directory containing a chat directory

mkdir templates

mkdir templates/chat

Then we create an index.html file with the code

<!-- chat/templates/chat/index.html -->

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8"/>

 <title>Chat Rooms</title>

</head>

<body>

 What chat room would you like to enter?

 <input id="room-name-input" type="text" size="100">

 <input id="room-name-submit" type="button" value="Enter">

 <script>

 document.querySelector('#room-name-input').focus();

 document.querySelector('#room-name-input').onkeyup = function(e) {

 if (e.keyCode === 13) { // enter, return

 document.querySelector('#room-name-submit').click();

 }

 };

 document.querySelector('#room-name-submit').onclick = function(e) {

 var roomName = document.querySelector('#room-name-input').value;

 window.location.pathname = '/chat/' + roomName + '/';

 };

 </script>

</body>

</html>

This page will let us specify wich chat room we would like to join.
Let's write the Django view which will render this

template. Edit the views.py file inside the chat directory (not the one from the template directory but from the Django

chat application)

chat/views.py

from django.shortcuts import render

def index(request):

 return render(request, 'chat/index.html')

Then we need to create an url for this view. Edit or create an urls.py file if it doesn't exists, and write

chat/urls.py

from django.urls import path

from . import views

urlpatterns = [

 path('', views.index, name='index'),

]

The next step is to point the root URLconf at the chat.urls module. In chattuto/urls.py, add an import for

django.conf.urls.include and insert an include() in the urlpatterns list, so you have:

from django.conf.urls import include

from django.urls import path

from django.contrib import admin

urlpatterns = [

 path('chat/', include('chat.urls')),

 path('admin/', admin.site.urls),

]

Now we can launch the server

python manage runserver

And go to the following url : http://127.0.0.1:8000/chat/

You should see the text “What chat room would you like to enter?” along with a text input to provide a room name.

http://127.0.0.1:8000/chat/

Adding the channel library

Now it’s time to integrate Channels.

Let’s start by creating a root routing configuration for Channels. A Channels routing configuration is an ASGI application

that is similar to a Django URLconf, in that it tells Channels what code to run when an HTTP request is received by the

Channels server.

Start by adjusting the chattuto/asgi.py file to include the following code:

chattuto/asgi.py

import os

from channels.auth import AuthMiddlewareStack

from channels.routing import ProtocolTypeRouter, URLRouter

from django.core.asgi import get_asgi_application

import chat.routing

os.environ.setdefault("DJANGO_SETTINGS_MODULE", "chattuto.settings")

application = ProtocolTypeRouter({

 "http": get_asgi_application(),

 "websocket": AuthMiddlewareStack(

 URLRouter(

 chat.routing.websocket_urlpatterns

)

),

})

Now add the Channels library to the list of installed apps. Edit the chattuto/settings.py file and add 'channels' to the

INSTALLED_APPS settings.py file

INSTALLED_APPS = [

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

 'channels',

 'chat'

]

We also need to point Channels at the root routing configuration. Edit the chattuto/settings.py file again and add the

following line:

Channels

ASGI_APPLICATION = 'chattuto.asgi.application'

With Channels now in the installed apps, it will take control of the runserver command, replacing the standard Django

development server with the Channels development server.

python manage runserver

And we will see in the console logs :

Django version 3.1.7, using settings 'chattuto.settings'

Starting ASGI/Channels version 3.0.4 development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

The important line is Starting ASGI/Channels

Adding the room view

Create a new file chat/templates/chat/room.html

<!-- chat/templates/chat/room.html -->

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8"/>

 <title>Chat Room</title>

</head>

<body>

 <textarea id="chat-log" cols="100" rows="20"></textarea>

 <input id="chat-message-input" type="text" size="100">

 <input id="chat-message-submit" type="button" value="Send">

 {{ room_name|json_script:"room-name" }}

 <script>

 const roomName = JSON.parse(document.getElementById('room-name').textContent);

 const chatSocket = new WebSocket(

 'ws://'

 + window.location.host

 + '/ws/chat/'

 + roomName

 + '/'

);

 chatSocket.onmessage = function(e) {

 const data = JSON.parse(e.data);

 document.querySelector('#chat-log').value += (data.message + '\n');

 };

 chatSocket.onclose = function(e) {

 console.error('Chat socket closed unexpectedly');

 };

 document.querySelector('#chat-message-input').focus();

 document.querySelector('#chat-message-input').onkeyup = function(e) {

 if (e.keyCode === 13) { // enter, return

 document.querySelector('#chat-message-submit').click();

 }

 };

 document.querySelector('#chat-message-submit').onclick = function(e) {

 const messageInputDom = document.querySelector('#chat-message-input');

 const message = messageInputDom.value;

 chatSocket.send(JSON.stringify({

 'message': message

 }));

 messageInputDom.value = '';

 };

 </script>

</body>

</html>

Then we can add the view function for the room view in chat/views.py

chat/views.py

from django.shortcuts import render

def index(request):

 return render(request, 'chat/index.html')

def room(request, room_name):

 return render(request, 'chat/room.html', {

 'room_name': room_name

 })

And create the route for the room view in chat/urls.py:

chat/urls.py

from django.urls import path

from . import views

urlpatterns = [

 path('', views.index, name='index'),

 path('<str:room_name>/', views.room, name='room'),

]

We can start the server again :

python manage runserver

Go to http://127.0.0.1:8000/chat/ in your browser and to see the index page.

Type in “lobby” as the room name and press enter. You should be redirected to the room page at

http://127.0.0.1:8000/chat/lobby/ which now displays an empty chat log.

Type the message “hello” and press enter. Nothing happens. In particular the message does not appear in the chat log.

Why?

The room view is trying to open a WebSocket to the URL ws://127.0.0.1:8000/ws/chat/lobby/ but we haven’t created a

consumer that accepts WebSocket connections yet. If you open your browser’s JavaScript console, you should see an

error that looks like:

WebSocket connection to 'ws://127.0.0.1:8000/ws/chat/lobby/' failed: Unexpected response code:

500

Creating a consumer

When Django accepts an HTTP request, it consults the root URLconf to lookup a view function, and then calls the view

function to handle the request. Similarly, when Channels accepts a WebSocket connection, it consults the root routing

configuration to lookup a consumer, and then calls various functions on the consumer to handle events from the

connection.

We will write a basic consumer that accepts WebSocket connections on the path /ws/chat/ROOM_NAME/ that takes any

message it receives on the WebSocket and echos it back to the same WebSocket.

Create a new file chat/consumers.py

chat/consumers.py

import json

from channels.generic.websocket import WebsocketConsumer

class ChatConsumer(WebsocketConsumer):

 def connect(self):

http://127.0.0.1:8000/chat/
http://127.0.0.1:8000/chat/lobby/

 self.accept()

 def disconnect(self, close_code):

 pass

 def receive(self, text_data):

 text_data_json = json.loads(text_data)

 message = text_data_json['message']

 self.send(text_data=json.dumps({

 'message': message

 }))

We need to create a routing configuration for the chat app that has a route to the consumer. Create a new file

chat/routing.py:

from django.urls import re_path

from . import consumers

websocket_urlpatterns = [

 re_path(r'ws/chat/(?P<room_name>\w+)/$', consumers.ChatConsumer.as_asgi()),

]

Let’s verify that the consumer for the /ws/chat/ROOM_NAME/ path works. Run migrations to apply database changes

(Django’s session framework needs the database) and then start the Channels development server:

python manage.py migrate

python manage.py runserver

Go to the room page at http://127.0.0.1:8000/chat/lobby/ which now displays an empty chat log.

Type the message “hello” and press enter. You should now see “hello” echoed in the chat log.

However if you open a second browser tab to the same room page at http://127.0.0.1:8000/chat/lobby/ and type in a

message, the message will not appear in the first tab. For that to work, we need to have multiple instances of the same

ChatConsumer be able to talk to each other. Channels provides a channel layer abstraction that enables this kind of

communication between consumers.

A channel layer is a kind of communication system. It allows multiple consumer instances to talk with each other, and

with other parts of Django.

We will use REDIS has a channel layer. Once again i will use Clever cloud to setup a Redis server really easily.

http://127.0.0.1:8000/chat/lobby/
http://127.0.0.1:8000/chat/lobby/
https://www.clever-cloud.com/en/

Then i just need to update the channel layer config in my chattutu/settings.py file:

REDIS_URL= os.getenv("REDIS_URL")

Channels

ASGI_APPLICATION = 'chattuto.asgi.application'

CHANNEL_LAYERS = {

 'default': {

 'BACKEND': 'channels_redis.core.RedisChannelLayer',

 'CONFIG': {

 "hosts": [REDIS_URL],

 },

 },

}

and declare a new environment variable based on the value provided by the Clever cloud add-on:

export REDIS_URL='redis://:<YourPASSWORD>@btka0rdhzdplteztka9i-redis.services.clever-

cloud.com:3067'

Now we can edit the *consumers.py file again and replace the existing code with:

chat/consumers.py

import json

from asgiref.sync import async_to_sync

from channels.generic.websocket import WebsocketConsumer

class ChatConsumer(WebsocketConsumer):

 def connect(self):

 self.room_name = self.scope['url_route']['kwargs']['room_name']

 self.room_group_name = 'chat_%s' % self.room_name

 # Join room group

 async_to_sync(self.channel_layer.group_add)(

 self.room_group_name,

 self.channel_name

)

 self.accept()

 def disconnect(self, close_code):

 # Leave room group

 async_to_sync(self.channel_layer.group_discard)(

 self.room_group_name,

 self.channel_name

)

 # Receive message from WebSocket

 def receive(self, text_data):

 text_data_json = json.loads(text_data)

 message = text_data_json['message']

 # Send message to room group

 async_to_sync(self.channel_layer.group_send)(

 self.room_group_name,

 {

 'type': 'chat_message',

 'message': message

 }

)

 # Receive message from room group

 def chat_message(self, event):

 message = event['message']

 # Send message to WebSocket

 self.send(text_data=json.dumps({

 'message': message

 }))

When a user posts a message, a JavaScript function will transmit the message over WebSocket to a ChatConsumer.

The ChatConsumer will receive that message and forward it to the group corresponding to the room name. Every

ChatConsumer in the same group (and thus in the same room) will then receive the message from the group and

forward it over WebSocket back to JavaScript, where it will be appended to the chat log.

And voila.

Remember we use the the Channel tutorials to learn basics on Django channels so please refer to it for more

information or clarifications.

You can find the source code for this day one journey in GitHub

In next tutorial Day two we will learn how to modify our Channel to use our models Chat and Message and to

implement persistent messages. We will also learn how to secure our Chat server with authentication and we will setup

an API with Django Rest Framework.

Questions / Answers
1. What are Django models ?

Models are classed which will represent your entities and will be used to create the database tables.
2. By default,

which field is using Django for authenticating users : Username or email ? Username
3. What is the library name to

create web sockets with Django ? Django Channels
4. What do we have to setup to enable multiple asynchronous

connection with Django Channels ? A channel layer

https://channels.readthedocs.io/en/stable/tutorial/index.html
https://github.com/csurbier/chattuto.git

