Crea AI che
non odierai

By Phil Sturgeon

tradotto da
Damiano Venturin

Crea API che non odierai

Ormai tutti vogliono utilizzare le APl quindi €
decisamente una buona idea imparare a costruirle.

Phil Sturgeon and Damiano Venturin
This book is for sale at http://leanpub.com/crea-api-che-non-odierai

This version was published on 2014-05-06

Leanpub

\)

i

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

©2014 Phil Sturgeon and Damiano Venturin

http://leanpub.com/crea-api-che-non-odierai
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!

Please help Phil Sturgeon and Damiano Venturin by spreading the word about this book on
Twitter!

The suggested tweet for this book is:

Ho appena comprato "Crea API che non odierai”. Non vedo l'ora di leggerlo!

http://bit.ly/1bgkhri
The suggested hashtag for this book is #creaapichenonodierai.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#creaapichenonodierai

http://twitter.com
https://twitter.com/search?q=%23creaapichenonodierai
https://twitter.com/search?q=%23creaapichenonodierai

Indice

1 HATEOAS
1.1 Introduzione
1.2

Negoziazione del contenuto
1.3 Controlli hypermedia (ipermediali)

o e T

1 HATEOAS

1.1 Introduzione

HATEOAS & un argomento difficile da spiegare, ma, di per sé, & piuttosto semplice. E 'acronimo
di “Hypermedia as the Engine of Application State” (“Hypermedia come Motore dello Stato
dell’Applicazione”), e si pronuncia “hat-ee-0s” oppure “hate O-A-S” oppure ancora “hate-ee-ohs”-
che suona un po’ come una marca di cereali per sviluppatori di API.

Comungque lo si voglia chiamare, significa fondamentalmente due cose per la tua APIL:

1. Negoziazione dei contenuti (Content negotiation)
2. Controlli Hypermedia (Hypermedia controls)

Secondo la mia esperienza la negoziazione dei contenuti ¢ una delle prime cose che gli svilup-
patori API implementano. Quando ho costruito la mia estensione Rest-Server per Codelgniter ¢
stata la prima cosa che ho fatto, perché ... ¢ divertente! Modificare I'intestazione Accept e veder
il Content-Type nella risposta passare da JSON a XML o CSV ¢ fico e anche molto facile da fare.

1.2 Negoziazione del contenuto

Alcune API che si auto proclamano RESTful (Twitter, ce ’ho con te) gestiscono la negoziazione

dei contenuti mediante |’estensione file. Fanno cose tipo /statuses/show. json?id=210462857140252672
e /statuses/show.xml?id=210462857140252672 invece di /statuses/210462857140252672 €
lasciare che sia I'intestazione Accept a fare il lavoro.

Gli URI non dovrebbero essere una manciata di cartelle e di nomi di file , e un’API non € un
elenco di file JSON o file XML. Si tratta di un elenco di risorse che possono essere rappresentate
in diversi formati a seconda dell’intestazione Accept, e nient’altro!

Un semplice esempio di una corretta negoziazione RESTful di contenuti che richiede JSON

GET /places HTTP/1.1
Host: localhost:8000
Accept: application/json

La risposta dovrebbe quindi contenere JSON, se I’API supporta JSON come formato di output.

© 00 N O O b W N =

ST ST T = S = G G U G G G Y
N »~ © © 0 1 O O b W N =~ O

HATEOAS 2

Un breve esempio di risposta HITTP con dati JSON

HTTP/1.1 200 OK
Host: localhost:8000
Connection: close

{
"data": [
{
"id": 1,
"name": "Mireille Rodriguez",
"lat": -84.147236,
"lon": 49.254065,
"address1": "12106 Omari Wells Apt. 801",
"address2": "",
"city": "East Romanberg",
"state": "VT",
"zip": 20129,
"website": "http://www.torpdibbert.com/",
"phone": "(029)331-0729x4259"
3
]
}

Molte API RESTful supporteranno JSON come impostazione predefinita (default), o semplice-
mente solo JSON come ha fatto finora I’applicazione di esempio di questo libro anche se non ¢
molto realistico (¢ stato fatto soprattutto per semplicita).

XML é abbastanza difficile da produrre poiché esige dei file di vista (view), argomento che e al
fuori del campo di applicazione di questo capitolo.

YAML ¢, invece, piuttosto facile da produrre, e posso mostrare come funziona la negoziazione dei
contenuti, con un piccolo aggiustamento della la nostra app. Guarda in ~/apisyouwonthate/chapter12/
per vedere in dettaglio le modifiche che ho apportato.

La modifica principale, oltre ad includere il componente YAML per Symfony' é stata quella
di aggiornare ’ApiController: :respondWithArray() per controllare 'intestazione Accept e
reagire di conseguenza.

*http://symfony.com/doc/current/components/yaml/introduction.html

http://symfony.com/doc/current/components/yaml/introduction.html
http://symfony.com/doc/current/components/yaml/introduction.html

O 0O = O O » wWw N =

W W W W W W W W W W NDNDNDDNDDNDDNDDNDDNDDNR-S= 2 B » 2 B
© 0 < O O b W N~ O O 0 3 O U » W N~ O © 0 1 O O b W N =~ O

HATEOAS

protected function respondWithArray(array $array, array $headers = [])
{

// E possibile che tu voglia fare qualcosa di intelligente con il charset, \
se fornito.

// Questo capitolo, semplicemente, lo ignora e considera solo il valore de\
1 mime-type

$mimeParts = (array) explode(';', Input::server('HTTP_ACCEPT'));
$mimeType = strtolower($mimeParts[0]);

switech ($mimeType) {
case 'application/json':
$contentType = 'application/json';
$content = json_encode($array);
break;

case 'application/x-yaml':
$contentType = 'application/x-yaml';
$dumper = new YamlDumper();
$content = $dumper->dump($array, 2);
break;

default:
$contentType = 'application/json';
$content = json_encode([
'error' => [
'code' => static::CODE_INVALID_MIME_TYPE,
"http_code' => 415,
'message' => sprintf('Content of type %s is not supported.\
", $mimeType),

1);

$response = Response: :make($content, $this->statusCode, $headers);
$response->header ('Content-Type', $contentType);

return $response;

Molto semplice e specificando un altro mime-type, si avra un formato diverso:

O© 0 N O O & W N =

=Y
(]

O© 0 I O O & W N =

HATEOAS 4

Una richiesta HTTP che specifica il mime-type preferito

GET /places HTTP/1.1
Host: localhost: 8000
Accept: application/x-yaml

La risposta sara in YAML.

Un breve esempio di risposta HTTP con dati YAML

HTTP/1.1 200 OK
Host: localhost:8000
Connection: close

data:

- { id: 1, name: 'Mireille Rodriguez', lat: -84.147236, lon: 49.254065, ad\
dress1: '12106 Omari Wells Apt. 801', address2: '', city: 'East Romanberg', st\
ate: VT, zip: 20129, website: 'http://www.torpdibbert.com/', phone: (029)331-0\
729x4259 }

Eseguire queste richieste programmaticamente & semplice.

Utilizzo di PHP e del pacchetto Guzzle per richiedere una risposta personalizzata

use GuzzleHttp\Client;
$client = new Client(['base_url' => 'http://localhost:8000']);
$response = $client->get('/places', |

'headers' => ['Accept' => 'application/x-yaml']

1);

$response->getBody(); // YAML, ready to be parsed

Questa non esaurisce la conversazione sulla negoziazione dei contenuti, perché c’¢ ancora
qualcosa da dire sui vendor-based mime-type per le risorse, che possono essere soggetti a
versioning. Per mantenere questo capitolo in tema, questa discussione verra ripresa nel Capitolo
13: API versioning.

1.3 Controlli hypermedia (ipermediali)

La seconda parte di HATEOAS, pero, ¢ drasticamente sottoutilizzata, ed ¢ il tassello mancante
per rendere la tua API una vera API RESTful.

HATEOAS 5

BUTIT'SINOT
“RESTRIF IEYOU..

Batman ha una risposta pronta alle osservazioni inutili del tipo “Ma non é RESTful se...” di Troy Hunt
(@troyhunt)

Mentre si sentono spesso lamentele del tipo “ma non & RESTful!” che tirano in ballo cose
stupide, questa ¢ invece un caso fondato. Senza controlli hypermedia hai solo un’API, non un’API
RESTful. Questo € un aspetto in cui il 99% di tutte le API falliscono.

RESTful Nirvana

1. “La Palude di POX”. Stai usando HTTP per effettuare chiamate RPC. HTTP ¢&
utilizzato, in realta, come tunnel.

2. Risorse. Invece di fare ogni chiamata ad un endpoint del servizio, hai piu
endpoint che vengono utilizzati per rappresentare le risorse, e per comunicare
con loro. Questo é solo I'inizio del vero supporto REST.

3. verbi HTTP Questo ¢ ci6 che Rails, ad esempio, offre nativamente: interagisci
con le risorse utilizzando i verbi HTTP, anziché utilizzare sempre POST.

4. Hypermedia Controls. HATEOAS. Sei 100% compatibile con REST. -Fonte:
Steve Klabnik, “Haters gonna HATEOAS™?

Quell’articolo é basato su di un altro articolo scritto da Martin Fowler® chiamato “Richardson
Maturity Model™ che spiega un modello scritto da Leonard Richardson® che copre ci6 che lui
considera i quattro livelli di maturita REST.

Allora che cosa sono i controlli hypermedia? Sono solo dei link, alias “collegamenti ipertestuali”,
ci6 che hai probabilmente utilizzato per anni in HTML. Sin dall’inizio del libro ho detto che
REST utilizza solamente HTTP e le stesse convenzioni usate in internet (anziché inventarne di

®http://timelessrepo.com/haters-gonna-hateoas
*http://martinfowler.com/
“http://martinfowler.com/articles/richardsonMaturityModel. html

*http://www.crummy.com/

http://timelessrepo.com/haters-gonna-hateoas
http://martinfowler.com/
http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/articles/richardsonMaturityModel.html
http://www.crummy.com/
http://timelessrepo.com/haters-gonna-hateoas
http://martinfowler.com/
http://martinfowler.com/articles/richardsonMaturityModel.html
http://www.crummy.com/

©O© 0 N O O & W N =

T S T = S G G G i G G
, O O 0 9 O O b W N =~ 0o

HATEOAS 6

nuove), quindi ha effettivamente senso che il collegamento ad altre risorse avvenga in un’API
esattamente come avviene in una pagina web.

Il tema di fondo di HATEOAS, in generale, ¢ che I’API deve avere perfettamente senso per
applicazione client e per I'umano che guarda le risposte, tutto senza dover andare a caccia nella
documentazione per capire cosa sta succedendo.

Ho state subdolamente intriso questo libro di concetti HATEOAS, dal suggerire che i codici
di errore debbano essere combinati con messaggi di errore leggibili e da collegamenti alla
documentazione, all’aiutare ’applicazione client evitandole di far conti quando si interagisce
con contenuto paginato. Il tema di fondo ¢ sempre quello di rendere i controlli, come successivo,
precedente o qualsiasi altro tipo di interazione, chiari sia ad un essere umano o che a un computer.

Comprendere i controlli hypermedia

Questa e la parte piu facile della costruzione di un’API RESTful, e mi sforzeré davvero di non
concludere questa sezione scrivendo: “Basta che aggiungi i link, ciccio” - che sarebbe ci6 che direi
a chiunque mi chiedesse di HATEOAS.

Il nostro solito blocco di dati viene ritornato in output in modo che rappresenti una o piu
risorse. Di per sé, questo blocco dati € completamente isolato dal resto del’API. A questo punto
lo sviluppatore per continuare a interagire con I’API dovrebbe aver letto la documentazione,
aver capito quali dati possono essere correlati e dove sono. Non é esattamente il massimo della
comodita.

Legare un Luogo alle relative risorse, sotto-risorse o collezioni ¢ facile.

"data": |
"id": 1,
"name": "Mireille Rodriguez",
"lat": -84.147236,
"lon": 49.2540065,
"address1": "12106 Omari Wells Apt. 801",

nn

"address2": ,
"city": "East Romanberg",

"state": "VT",

"zip": 20129,

"website": "http://www.torpdibbert.com/",
"phone": "(029)331-0729x4259",

"links": [
{
"rel": "self",
"uri": "/places/2"
},
{
"rel": "place.checkins",

"uri": "/places/2/checkins"

22
23
24
25
26
27
28
29

HATEOAS 7

3,
{
"rel": "place.image",
"uri": "/places/2/image"
}

Qui ci sono tre semplici elementi, il primo é autoreferenziale. Tutti contengono unuri (Unviver-
sal Resource Indicator) e un rel (Relazione).

G URI vs URL
L’acronimo “URI” & spesso usato per riferirsi al solo contenuto dopo il protocollo,
ovvero il nome host e la porta (ovvero URI é: percorso + estensione + stringa di query),
mentre “URL” & usato per descrivere I'indirizzo completo. Anche se questa distinzione
non € rigorosa, si perpetua in molti progetti software come Codelgniter. Wikipedia® e il
W37 si contraddicono, ma mi sento dire che un URI e semplicemente un qualsiasi tipo
di identificatore della posizione di una risorsa su internet.

Un URI puo essere parziale o assoluto. URL é considerato da alcuni come un termine
del tutto inesistente, ma questo libro usa URL per descrivere un URI assoluto, che ¢é
quello che vedi nella barra degli indirizzi. Giusto o sbagliato che sia. Capito?

Alcuni credono che sel f sia inutile. E ovvio che tu sappia qual é 'URL che hai appena chiamato,
ma non ¢é detto che quel'URL coincida sempre quello indicato da self. Se, per esempio,
hai appena creato una risorsa Luogo, avrai chiamato POST /places che non ¢ certamente
I'URI che vuoi chiamare di nuovo per avere informazioni aggiornate sulla stessa risorsa.
Indipendentemente dal contesto, 'output di un place necessita sempre di avere una relazione
self e quel self non coincide sempre con I'URL della barra degli indirizzi. In sostanza, la
relazione sel f identifica il luogo in cui vive la risorsa, non il corrente indirizzo.

Per quanto riguarda le altre voci rel, si tratta di collegamenti alle risorse correlate. Il contenuto
dei tag é arbitrario, basta che sia coerente. La convenzione utilizzata in questo esempio ¢ quella
di usare namespace univoci per le relazioni. Due diversi tipi di risorse potrebbero avere una
relazione checkin (ad esempio: users e luoghi); mantenerle uniche é un beneficio quantomeno
per la documentazione. Magari preferisci rimuovere il namespace, ma questo sta a te.

Tali relazioni personalizzate hanno nomi abbastanza univoci, ma per relazioni piu generiche puoi
considerare di usare il Registry of Link Relations® definito da IANA, che é utilizzato da Atom
(RFC 4287°) e da molte altre cose.

®http://wikipedia.org/wiki/Uniform_Resource_Identifier
"http://www.w3.org/TR/uri- clarification/
*http://www.iana.org/assignments/link-relations/link-relations.xhtml
*http://atompub.org/rfc4287.html

http://wikipedia.org/wiki/Uniform_Resource_Identifier
http://www.w3.org/TR/uri-clarification/
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://atompub.org/rfc4287.html
http://wikipedia.org/wiki/Uniform_Resource_Identifier
http://www.w3.org/TR/uri-clarification/
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://atompub.org/rfc4287.html

© 00 N O O b W N =

W W N N DNDDDNDDNDDNDDNDNDNDNS A~ » 2 2 2 2 1
O © 00 N O O B W NP OO O 0N O O » W~ 0o

HATEOAS 8

Creazione di controlli hypermedia

In questo caso sono stati sparati alcuni link in output. Comunque tu decida di farlo, puoi
includerli nel layer di “trasformazione” o “presentazione”.

Se utilizzi il componente Fractal - che ¢ stato utilizzato come un esempio per tutto il libro - puoi
fare cosi:

PlaceTransformer con collegamenti inclusi nella risposta.lang=php

public function transform(Place $place)

{
return |
'ig! => (int) $place->id,
"name’ => $place->name,
"lat! => (float) $place->lat,
"lon' => (float) $place->1lon,
'address1' => $place->addressi,
'address2' => $place->address?,
‘city' => $place->city,
'state’ => $place->state,
'zip' => (float) $place->zip,
'website' => $place->website,
'phone’ => $place->phone,
'links' =
[
'rel' => 'self',
'uri' => '/places/'.$place->id,
1,
[
'rel' => 'place.checkins',
'uri' => '/places/'.$place->id."'/checkins',
1,
[
'rel' => 'place.image',
'uri' => '/places/'.$place->id."'/image',
]
1,
1;
}

Alcuni usano automatismi per sembrare pid intelligenti e ritornano le relazioni in base alle
impostazioni di $_SERVER o sulla base di relazioni ORM, ma questo causa solo problemi. Se usi i
transformers, devi solo scrivere qualche riga di codice ed eviterai di esporre la logica del database
e otterrai un codice leggibile e comprensibile.

© 00 N O O b W N =

T O ==Y
O 0 1 O O b w0 N =~ O

2

HATEOAS 9

Dopo aver inserito i collegamenti, gli utilizzatori hanno bisogno di sapere come interagirci.
Potresti pensare “Ci devo mettere GET o PUT cosi la gente sa che cosa fare” Sbagliato. Si tratta
di collegamenti a risorse, non di azioni. Abbiamo un’immagine per Luogo, e possiamo supporre
ciecamente che possiamo fare determinate azioni su di essa, oppure possiamo chiedere alla’API
quali azioni sono possibili e memorizzare il risultato nella cache.

Scoprire le risorse programmaticamente

Se hai un output come questo:

{
"data": [
"links": [
{
"rel": "self",
"uri": "/places/2"
},
{
"rel": "place.checkins",
"uri": "/places/2/checkins"”
},
{
"rel": "place.image",
"uri": "/places/2/image"
}
]
]
}

Puoi supporre che un GET funzionera sia con 'endpoint self che con I'endpoint place.checkins,
ma cos altro ci puoi fare? Inoltre, che ci fai con 'endpoint place. image?

HTTP corre in nostro aiuto, per rispondere a quelle domande, mediante un verbo semplice ed
efficace di cui non ho ancora parlato: OPTIONS (OPZIONI).

Una richiesta HTTP utilizzando il verbo OPTIONS

OPTIONS /places/2/checkins HTTP/1.1
Host: localhost:8000

B W N =

O O B W N

HATEOAS 10

La risposta alla richiesta HTTP precedente

HTTP/1.1 200 OK
Host: localhost:8000
Connection: close
Allow: GET,HEAD,POST

Ispezionando I'intestazione Allow, noi esseri umani (come pure un’applicazione client) siamo in
grado di capire quali opzioni sono disponibili per un qualsiasi endpoint. Questo € cio che spesso
fa JavaScript, senza che nessuno lo sappia, per eseguire le richieste AJAX.

La maggior parte dei client HTTP ti permette di fare una chiamata OPTIONS con la stessa facilita
con cui effettui una chiamata GET o POST. Se il tuo client HTTP non te lo consente buttalo e
trovane un altro.

Fare una richiesta HTTP OPTIONS utilizzando PHP ed il pacchetto Guzzle

use GuzzleHttp\Client;

$client = new Client(['base_url' => 'http://localhost:8000']);

$response = $client->options('/places/2/checkins');

$methods = array_walk('trim', explode(',', $response->getHeader('Accept'));
var_dump($methods); // Outputs: ['GET', 'HEAD', 'POST']

Analizzando il risultato, sappiamo che possiamo ottenere un elenco di checkin per un luogo
usando GET, e possiamo aggiungerne di nuovi facendo una richiesta HTTP POST a tale URL.
Possiamo anche fare controlli con HEAD, che é la stessa cosa di un GET mancante del corpo HTTP.
HEAD e utile per controllare se una risorsa o una raccolta esiste senza dover scaricare I'intero
corpo (i.e: vedi se ottieni un 200 o un 404).

Forse ti pu6 sembrare pazzesca 1'idea di interagire in questo modo con un’API, ma in realta é
molto piu facile che scartabellare la documentazione. Pensaci, vai sul sito della documentazione,
cerca il microscopico link “Developers” (“Sviluppatori”), passati tutta la documentazione per
I’API corretta (perché sono cosi fighi che hanno 3 API), chiediti se hai la versione giusta...
non ¢ divertente. Pensa invece ad un’API auto-documentante, che si aggiorna ed espande
automaticamente col tempo: non c¢’é paragone, fidati.

Se sei certo che un API segue i principi RESTful allora dovresti essere sicuro che segue HATEOAS
- perché se viene sbandierata come RESTful senza che segua HATEOAS allora é menzogna
puzzolente. Purtroppo, dietro alla maggior parte delle API pit popolari si nascondono bugiardi
puzzolenti.

GitHub risponde con un 500, Reddit con 501 Not Implemented, le mappe di Google
con 405 Method Not Allowed. Hai capito cosa intendo no?. Ne ho provate molte altre,
ed i risultati sono generalmente simili. Talvolta ritornano qualcosa di simile ad una
risposta GET. Nessuna API si comporta in modo corretto. — Fonte: Zac Stewart, “The
HTTP OPTIONS method and potential for self-describing RESTful APIs”*

"®http://zacstewart.com/2012/04/14/http-options-method.html

http://zacstewart.com/2012/04/14/http-options-method.html
http://zacstewart.com/2012/04/14/http-options-method.html
http://zacstewart.com/2012/04/14/http-options-method.html

HATEOAS 11

Se stai costruendo la tua API, allora puoi decidere come si deve comportare e farla come dio
comanda cosi i tuoi utenti sapranno che sai uno che sa come costruire un’API decente.

Questo é tutto quanto c’é da sapere su HATEOAS. Ora ne dovresti sapere abbastanza da costruire
un’API che non odierai (in teoria). Purtroppo, a prescindere da tutto, dovrai probabilmente
scriverne una nuova versione nel giro di pochi mesi (succede sempre cosi) quindi non resta che
affrontare il capitolo sulle versioni.

	Indice
	HATEOAS
	Introduzione
	Negoziazione del contenuto
	Controlli hypermedia (ipermediali)

