

CQRS by Example

Command-Query Responsibility Segregation is an
architectural style for developing applications that split the
Domain Model in Read and Write operations in order to
maximize semantics, performance, and scalability. What
are all the benefits of CQRS? What are the drawbacks? In
which cases does it worth applying it? How does it relate to
Hexagonal Architecture? How do we properly implement
the Write Model and Read Models? How do we keep in
sync both sides? What are the following steps to move
towards Event Sourcing? This book will answer all these
questions and many more, guided through lots of
practical examples. Brought to you by the same authors
behind “Domain-Driven Design in PHP".

Carlos Buenosvinos, Christian Soronellas, and Keyvan Akbary
This book is available at http://leanpub.com/cqrs-by-example

This version was published on 2024-09-02

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2020 - 2024 Carlos Buenosvinos, Christian Soronellas, and Keyvan Akbary

http://leanpub.com/cqrs-by-example
https://leanpub.com/
https://leanpub.com/manifesto

Contents

Preface e 1
Domain-Driven Designin PHP 1
Domain-Driven Design Acceptance Has Rapidly Grown 2
CQRSby Example 3
Who Should Read ThisBook 3
Summary of Chapters 4
Code, Typos, and Examples. 5
Acknowledgements 6

About the Authors 7
Carlos Buenosvinos 7
Christian Soronellas 7
Keyvan Akbary 8

Anatomy of CQRS 1
Cheeper Use Case Analysis 1
Cheeper ala CQRS 2
CORS OVerview e 5
Other CQRS Components. 7
Two Sides of the Same Coin 8
The Command Side 9
The Query Side 9
Syncing the Command and Query Sides L 10
Wrapup e 11

DemoTime e 12
Getting Started 12
Starting the Application e 12
Nothing Up My Sleeve. 13
Signing Up New Authors 16
Consuming NewAuthorSigned Events 20
Following Other Authors 23
Consuming FollowCommand Commands, 27

Verifying an Author’s Followers 29

CONTENTS

Consuming AuthorFollowed Events. 30
Posting Cheeps i 32
Consuming PostCheepCommand Commandst 35
Consuming CheepPosted Events L 38
Consuming AddCheepToTimelineProjection Projections 40
Verifying an Author’s Timeline 42

Wrapup e 43

Preface

Domain-Driven Design in PHP

In 2014, after two years of reading about and working with Domain-Driven Design, Carlos and
Christian, friends and workmates, traveled to Berlin to participate in Vaughn Vernon’s Implementing
Domain-Driven Design Workshop'. The training was fantastic, and all the concepts that were
swirling around in their minds before the trip suddenly became very real.

Around the same time, php[tek]? an annual PHP conference, opened its call for papers, and Carlos
sent one about Hexagonal Architecture. The organization rejected his talk. Months later, Eli White
— of musketeers.me® and php[architect]* fame — got in touch with him. Eli was wondering if he
was interested in writing an article about Hexagonal Architecture for the magazine php[architect].
In June 2014, Hexagonal Architecture with PHP was published in the magazine.

In late 2014, Carlos and Christian talked about extending the article and sharing all their knowledge
of and experience in applying Domain-Driven Design in production. They were very excited about
the idea behind the book: helping the PHP community delve into Domain-Driven Design from a
practical approach. At that time, concepts such as Rich Domain Models and framework-agnostic
Applications weren’t so prevalent in the PHP community. In December 2014, Carlos and Christian
started to work on the already well-known Domain-Driven Design in PHP® book.

Around the same time, in a parallel universe, Keyvan co-founded Funddy, a crowdfunding platform
for the masses built on top of the concepts and building blocks of Domain-Driven Design. Domain-
Driven Design proved itself effective in the exploratory process and modeling of building an
early-stage startup like Funddy. It also helped handle the complexity of the company, with its
constantly changing environment and requirements. After connecting with Carlos and Christian,
they discussed the book and Keyvan proudly signed on as the third writer.

Together, we wrote the book we wanted to have when we started with Domain-Driven Design — full
of examples, production-ready code, shortcuts, and recommendations based on our experiences of
what worked and what didn’t for our respective teams. We arrived at Domain-Driven Design via its
building blocks, which is why the book orbited around what are today known as Tactical Patterns.
And in this book, you’ll learn how to use and implement them. In September 2016, after a couple of
years of tough work Domain-Driven Design in PHP® was finally published online on Leanpub. A
year later, in 2017, the book became a physical reality via PackPub” and Amazon®.

'https://idddworkshop.com

*https://tek.phparch.com

*http://musketeers.me

“https://www.phparch.com

*https://leanpub.com/ddd-in-php

“https://leanpub.com/ddd-in-php
"https://www.packtpub.com/application-development/domain-driven-design-php
*https://www.amazon.es/Domain-Driven-Design-English- Carlos-Buenosvinos-ebook/dp/B06ZYRPHMC

https://idddworkshop.com/
https://idddworkshop.com/
https://tek.phparch.com/
http://musketeers.me/
https://www.phparch.com/
https://leanpub.com/ddd-in-php
https://leanpub.com/ddd-in-php
https://www.packtpub.com/application-development/domain-driven-design-php
https://www.amazon.es/Domain-Driven-Design-English-Carlos-Buenosvinos-ebook/dp/B06ZYRPHMC
https://idddworkshop.com/
https://tek.phparch.com/
http://musketeers.me/
https://www.phparch.com/
https://leanpub.com/ddd-in-php
https://leanpub.com/ddd-in-php
https://www.packtpub.com/application-development/domain-driven-design-php
https://www.amazon.es/Domain-Driven-Design-English-Carlos-Buenosvinos-ebook/dp/B06ZYRPHMC

Preface 2

Needless to say, we were heavily inspired by Vaughn Vernon’s Implementing Domain-Driven
Design’® book (the Red Book), and Eric Evans’ original book, Domain-Driven Design: Tackling
Complexity in the Heart of Software' (the Blue Book). We can’t recommend these books enough.

Domain-Driven Designh Acceptance Has Rapidly Grown

As Domain-Driven Design authors and early adopters, we're thrilled to see how Domain-Driven
Design has taken off, and how its building blocks and its philosophy have permeated the community
and become standard. We love how modern architectures such as Hexagonal Architecture, Ports
and Adapters, Onion Architecture, and Clean Architecture have empowered developers to build
Applications that are easy to evolve, test, and maintain. It’s been pleasing to see the trend of
using Domain Events as a communication pattern between different Applications and business
boundaries.

Due to some characteristic limitations while scaling Hexagonal Architecture Applications, we
thought it’d be a great idea to get deep into Greg Young'"’s work on CQRS, heavily inspired by
Bertrand Meyer'”’s Command-Query Separation (CQS)** principle. We highly recommend Greg’s
workshops and courses on Domain Driven Design, CQRS, and Event Sourcing™*.

In 2017, Carlos presented the Buenosvinos Maturity Model at the Polycon and SymfonyCon Cluj
conferences. This model describes the different maturity levels when architecting Applications:

>
q_
o.
&
9% &
5" L}‘o{\ f
Z
Qe Yl &

Y # ofx g‘f
///////// \x§+ o.o?{g\" Q"'{\QO\\
i e

m— —— &

L4

Buenosvinos Maturity Model

*http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577
*%http://www.amazon.com/Domain-Driven-Design- Tackling-Complexity-Software/dp/0321125215
"https://twitter.com/gregyoung
?https://en.wikipedia.org/wiki/Bertrand_Meyer
https://en.wikipedia.org/wiki/Command%E2%80%93query_separation
“http://subscriptions.viddler.com/GregYoung

http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577
http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://twitter.com/gregyoung
https://en.wikipedia.org/wiki/Bertrand_Meyer
https://en.wikipedia.org/wiki/Command%E2%80%93query_separation
http://subscriptions.viddler.com/GregYoung
http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://twitter.com/gregyoung
https://en.wikipedia.org/wiki/Bertrand_Meyer
https://en.wikipedia.org/wiki/Command%E2%80%93query_separation
http://subscriptions.viddler.com/GregYoung

Preface 3

With this model, you can self-assess in which Architectural Style you find yourself and determine
what actions to take to move to the next level.

In our experience, companies successfully using Hexagonal Architecture experience lots of benefits
against framework coupling or spaghetti code: better semantics and meaningful code, less coupling,
and easier testability. However, we’ve seen that many companies experience limitations that aren’t
that easy to solve — issues such as performance and dependency management at scale. Here’s where
this book comes into play.

CQRS by Example

Four years have passed since our first publication. We established what we think is a solid ground
for Domain-Driven Design building blocks and Hexagonal Architecture. It’s now time to explore
how to solve the limitations some projects may face at scale. We think CQRS is the next natural step
forward, and we want to guide you through it.

COQRS is usually discussed along with Event Sourcing, a pattern where the Application state is a
Projection of the Domain Events that happen through its lifetime. Event Sourcing relies on having
a stream of Domain Events to reconstitute state. Triggering Domain Events is a simple addition
to operations that modify the state of the Application, such as Commands; however, querying the
system now requires some unique mechanisms that aren’t that trivial to implement. We can say that
in Event Sourced systems, CQRS is mandatory for generating the required information to be able to
query later, but the opposite isn’t true. We can develop a CQRS system without Event Sourcing, so
worry not: This book won’t cover Event Sourcing.

In this book, we’ll explore Hexagonal Architecture drawbacks, and we’ll dive into CQRS by exploring
plenty of real examples you can use in your projects. Even though code examples are written in PHP,
the patterns and techniques described in this book apply to any programming language and likely
any paradigm you may be using.

We can’t thank you enough for purchasing this book and being an active contributor to Domain-
Driven Design, Hexagonal Architecture, and CQRS!

Who Should Read This Book

If you’re a developer, architect, or tech lead, we highly recommend this book. It’ll provide you with
some pretty interesting tools for your daily toolbox and may reveal an alternative architectural
approach for your application. If you don’t have much experience, getting into CQRS and modern
architectural patterns may prepare you for what’s to come throughout your career. For the average
reader, understanding the benefits of CQRS and the boundaries between your framework and
your Application may be crucial for writing code that’s easier to maintain in the real world (e.g.
framework migrations, testing). Experienced readers will definitively have some fun exploring
Projections and read layers to increase the performance of Applications.

Preface 4

Additionally, the book is loaded with tons of details and examples, such as how to properly design
and implement all the building blocks of CQRS — including Commands, Command Handlers,
Command Buses, Queries, Query Handlers, Query Buses, Domain Events, Event Buses, Projections,
Read Thin Layers, and more.

Summary of Chapters

The book is arranged with each chapter exploring a separate tactical building block of CQRS. It
also includes an introduction to CQRS, Domain-Driven Design, and the example project we’ll use
throughout the book, Cheeper, which is a Twitter clone that’s experiencing some issues. Each section
below outlines the questions that the corresponding chapter answers.

Chapter 1: CQRS and Domain-Driven Design
What is Domain-Driven Design? What role does it play in complex systems? Is it worth learning

about and exploring? What are the main concepts a developer needs to know when jumping into it?
How does CQRS relate to Domain-Driven Design?

Chapter 2: A Journey Toward CQRS

What’s the foundation of CQRS? What was the context in which CQRS was created? What problems
does CQRS solve? In which scenarios is CQRS useful and in which ones does it not pay oft?

Chapter 3: Anatomy of CQRS
What are the main building blocks of CQRS? What is the Command Side? What is the Query Side?

What are the overall strategies to keep the Read Model and the Write Model in sync? What are some
real use cases, their main components, and flows of information?

Chapter 4: Command Side and the Write Model

What is a Command? What about a Command Handler? Why are they important? What’s the role
of the Command Bus? What are Async Commands and Sync Commands?

Chapter 5: Query Side and the Read Models

What is a Query? What is a Query Handler? Do we need a Query Bus? What is a Read Thin Layer?
What are the properties of a good Read Model? How many Read Models can I have? What is a
Projection?

Preface 5

Chapter 6: Synchronizing the Write and Read Models

What options do I have to sync the Write Model and the Read Models? Do I need to sync them? Can
I use strategies other than messaging? Is messaging the best approach?

Chapter 7: The Full Picture

How can I put into practice all the previously learned concepts? How many asynchronous steps are
needed for simple use cases? How many for complex ones?

Chapter 8: Optimizations and Edge Cases

How can I optimize the build time of Projections? What challenges will I face when dealing with
Events? How can I recover from duplicate or lost messages?

Chapter 9: CQRS and Event Sourcing

What heuristics do I need to consider using CQRS? How do I move into Event Sourcing? What are
the criteria to decide if I should stop at CQRS or move forward?

Chapter 10: Demo Time

How can I demo multiple use cases, understanding in detail what’s happening in every step? How
do I interact with an Application? How do I consume synchronous and asynchronous Commands?
How do I consume Events? How do I consume Projections?

Code, Typos, and Examples

There’s an organization at GitHub called DDD Shelf™. In this organization, you’ll find Cheeper*®,
a Twitter clone application used throughout the book to teach you all the concepts around CQRS.
You’ll also find additional snippets and tools.

If you find any issue or fix or have a suggestion or comment while reading this book, you can open
an issue in the CQRS By Example Book Issues"” repository. We fix them as they come in. If you’re
interested, we encourage you to follow our projects and provide feedback.

https://github.com/dddshelf
**https://github.com/dddshelf/cheeper-ddd-cqrs-example
https://github.com/dddshelf/cqrs-by-example-book-issues

https://github.com/dddshelf
https://github.com/dddshelf/cheeper-ddd-cqrs-example
https://github.com/dddshelf/cqrs-by-example-book-issues
https://github.com/dddshelf
https://github.com/dddshelf/cheeper-ddd-cqrs-example
https://github.com/dddshelf/cqrs-by-example-book-issues

Preface 6

Acknowledgements

First of all, we’d like to thank all our friends and family. Without their support, writing this book
would’ve been an impossible task. You’re wonderful, and part of the success of this book is also
yours.

It’s no surprise our design skills are quite limited. Our beautiful cover was crafted by our friend and
master designer Carlos Tallon®, and we owe him a huge thanks.

We are three Spaniards who wrote a book in English, so if you’d guess our English is far from perfect,
you’d be correct. The final version of this book has been edited by a professional copy editor, Natalye
Childress®. She has done a great deal of work fixing typos, rewording our phrases, and rethinking
the book structure. Thank you so much. Our book is far easier and more enjoyable to read now.

Thanks to Marco Pivetta?® for his foreword and feedback on the book. The book is now better thanks
to his contributions.

A special mention to Greg Young: Your work has been an incredible source of information and
inspiration for us.

Last but not least, we’d like to express our gratitude to all the people who have reported issues,
made suggestions, and otherwise contributed to our GitHub repository?*. To all of you, thank you.
You've helped us make this book better. More importantly, you’ve helped the community grow
and helped other developers be better developers. Thanks to Mohammad Emran Hasan, Ashish K.
Poudel, Eduardo Anton Santa-Maria, Mohamed Cherif Bouchelaghem, Jose Samonte, Ruben Calvo,
Sami Jnih, Diego Garcia, and David Navarro.

"®https://twitter.com/carlostallon
“http://www.natalye.com/

**https://twitter.com/Ocramius
*'https://github.com/dddshelf/cqrs-by-example-book-issues

https://twitter.com/carlostallon
http://www.natalye.com/
http://www.natalye.com/
https://twitter.com/Ocramius
https://github.com/dddshelf/cqrs-by-example-book-issues
https://twitter.com/carlostallon
http://www.natalye.com/
https://twitter.com/Ocramius
https://github.com/dddshelf/cqrs-by-example-book-issues

About the Authors

Carlos Buenosvinos

Carlos is an Extreme Programmer (XP) and DevOps with more than 20 years of experience in
developing Web and Mobile Applications. For the last ten years, he has played various leading
roles such as Tech Lead, VP of Engineering, and CTO. He has mentored engineering and product
teams of up to 150 members in multiple different markets such as E-commerce, E-Learning, Payment
Processing, Classifieds, and Recruiting Market.

As an employee and consultant, he has contributed to the success of start-ups and well-established
brands. Some examples are SEAT, NewWork/XING, Atrapalo, GMV, PCComponentes, Cash Con-
verters, Emagister, 020, Opositatest, Techpump, Packlink, eBay, Lowpost, Vendo, Riplife, and many
more.

He is the happy creator of Ansistrano?”, the most starred Ansible Galaxy role. He is also the author
of the book Domain-Driven Design in PHP?*. He is also a conference speaker and organizer of the
DevOps Barcelona Conference® and the PHP Barcelona Conference®.

His main areas of expertise are Agile Team Management (Scrum and Kanban), Best Development
Practices (Extreme Programming, Domain-Driven Design, and Microservice Architectures), and
Digital Transformation (Agile, XP, and DevOps).

You can follow him at Twitter*®, at his blog®” or at GitHub?".

Christian Soronellas

Christian is an Extreme Programmer and has over 15 years of experience helping tech companies
succeed from a broad variety of roles, from Software Engineer to CTO. He has helped companies
such as Privalia, Emagister, Atrapalo, Enalquiler, PlanetaHuerto, PcComponentes or Opositatest. He
is the author of the book Domain-Driven Design in PHP?* as well as a conference co-organizer of
DevOps Barcelona Conference® and PHP Barcelona Conference®*

**https://ansistrano.com
“https://leanpub.com/ddd-in-php
**https://devops.barcelona
*https://php.barcelona
%Shttps://twitter.com/buenosvinos
*"https://carlosbuenosvinos.com
**https://github.com/carlosbuenosvinos/
*https://leanpub.com/ddd-in-php
*°https://devops.barcelona
*Thttps://php.barcelona

https://ansistrano.com/
https://leanpub.com/ddd-in-php
https://devops.barcelona/
https://php.barcelona/
https://twitter.com/buenosvinos
https://carlosbuenosvinos.com/
https://github.com/carlosbuenosvinos/
https://leanpub.com/ddd-in-php
https://devops.barcelona/
https://php.barcelona/
https://ansistrano.com/
https://leanpub.com/ddd-in-php
https://devops.barcelona/
https://php.barcelona/
https://twitter.com/buenosvinos
https://carlosbuenosvinos.com/
https://github.com/carlosbuenosvinos/
https://leanpub.com/ddd-in-php
https://devops.barcelona/
https://php.barcelona/

About the Authors 8

You can follow him at Twitter®? or at GitHub**.

Keyvan Akbary

Keyvan is an Engineering Leader and programmer with more than 15 years of experience crafting
products customers love and helping teams succeed. He understands technology as a medium for
providing value, not the end itself. He has a passion for Distributed Systems, Software fundamentals,
SOLID principles, Clean Code, Design Patterns, Domain-Driven Design and, Testing; as well as
being a sporadic Functional Programmer. For the last 7 years he has also focused on growing teams
in high scaleup product companies, advocating for customer-centric product development, Extreme
Programming, DevOps, Lean, and Kanban.

He has worked on countless projects as a freelancer, on video streaming at Youzee, tradesman
marketplace at MyBuilder, in addition to founding his own crowdfunding startup Funddy, and
leading FinTech teams at Wise. Currently, he is leading engineering in the ride-hailing space as
Head of Engineering at Cabity.

2”34

He is also the author of “Domain-Driven Design in PHP”** and “The Manager’s Manual”*.

You can follow him at Twitter*®, at LinkedIn®’, at his blog®® or at GitHub™.

*2https://twitter.com/theUniC
>*https://github.com/theUniC/
**https://leanpub.com/ddd-in-php
**https://leanpub.com/the-managers-manual/
*https://twitter.com/keyvanakbary
*"https://www.linkedin.com/in/keyvanakbary/
**https://keyvanakbary.com
**https://github.com/keyvanakbary/

https://twitter.com/theUniC
https://github.com/theUniC/
https://leanpub.com/ddd-in-php
https://leanpub.com/the-managers-manual/
https://twitter.com/keyvanakbary
https://www.linkedin.com/in/keyvanakbary/
https://keyvanakbary.com/
https://github.com/keyvanakbary/
https://twitter.com/theUniC
https://github.com/theUniC/
https://leanpub.com/ddd-in-php
https://leanpub.com/the-managers-manual/
https://twitter.com/keyvanakbary
https://www.linkedin.com/in/keyvanakbary/
https://keyvanakbary.com/
https://github.com/keyvanakbary/

Anatomy of CQRS

In previous chapters, we explained the relationship between Domain-Driven Design and CQRS and
other Architectural Styles, focusing on Hexagonal Architecture as a foundation for CQRS. Now, it’s
time to provide a proper overview of CQRS: what it is, what the moving parts are, which benefits
and drawbacks it has, and what the valid use cases for such an interesting Architectural Style are.

Cheeper Use Case Analysis

If you were to create Cheeper from scratch, you might end up with your favorite Architectural Style,
i.e. the one you’re most comfortable with. Maybe you’d choose Hexagonal Architecture with all the
Domain-Driven Design Tactical Patterns like Aggregates, Repositories, and Application Services. In
our experience, the code, style, and organization possibilities are endless.

In spite of this, we’re almost certain that everyone would end up with the same or a very similar
Data Model. Such a model would likely be in fifth normal form (5NF)** to reduce redundancy, as
we’'ve been told data redundancy is a bad thing.

Starting with a version of Cheeper developed using Hexagonal Architecture and with a Data
Model following the 5NF, let’s compare some hypothetical needs and the database load for some
Cheeper use cases. There are two primary factors to compare: the number of requests received, and
performance. These will be enough to understand the overall system overhead; a use case with good
performance and low traffic will have a low overhead, and a use case with bad performance that’s
called frequently will have a high overhead.

Use Case Type #Requests Performance Overall System Overhead
Sign Up Author Write Very Low Good Very Low

Follow Author Write Low Good Low

Post Cheep Write Medium Good Low

Count Author Followers Read High Bad High

Read a Cheep and Responses Read High Bad High

Fetch Author Timeline Read Very High Bad Very High

Sign Up Author, Follow Author, and Post Cheep are simple use cases to implement with a good overall
performance. Their implementation consists mainly of creating a new instance of a specific Entity
(Author, Follow, or Cheep) and storing it in the database: a bunch of SELECT operations ending with
an INSERT, and we’re done. These simple use cases aren’t called often either. Many users will end up
using Sign Up Author or Post Cheep, but if we were to compare these actions against Fetch Author
Timeline or Count Author Followers, it’s pretty clear these other use cases are invoked orders of

“*https://en.wikipedia.org/wiki/Fifth_normal_form

https://en.wikipedia.org/wiki/Fifth_normal_form
https://en.wikipedia.org/wiki/Fifth_normal_form

Anatomy of CQRS 2

magnitude less.

In contrast, Fetch Author Timeline and Count Author Followers are frequently used. If you're a
Twitter user, stop and reflect on how you use it; most of the time is spent reading Timelines. From
time to time, you’ll check on Authors, and for that, you’ll need to display the Follower count too. Due
to this high load of requests, performance gets worse. These use cases turn into database Queries that
take time and are complex in terms of JOINs. As a result, the database will not only require forever-
increasing computational power that scales with the user base, but write and read operations will
affect one another negatively in terms of performance.

On Twitter, this cross-table aggregation is difficult, if not impossible, to run. The data is too
big to be held by a single database instance, and it’s sharded into different servers, making
JOIN infeasible.

The 5NF aims to make things more consistent. This is mainly enforced by INSERT, UPDATE, and DELETE
operations. However, it isn’t ideal for reads and operations such as SELECT, because consistency
benefits writes and not reads. This is the main reason applications end up with slow and complex
join-aggregated-like Queries.

A way to alleviate performance issues on reads is by using a cache. Keep in mind that using a cache
brings other problems to the table. In an application like Cheeper, it’d be difficult to have a high hit
ratio for people Timelines, as these change frequently. We can keep the cache for minutes, but this
will hurt the experience; people won’t be able to see new Cheeps unless the cache refreshes. The
cache could be invalidated at the right time too — like when you follow a new Author, or post or
delete a Cheep — to squeeze the best possible experience out of it, but it’ll be complex. Even then,
Timelines are complicated beasts, and they’ll require hitting the database at some point. These hits
will have to aggregate data from a lot of places, making it difficult to scale at the expense of user
experience.

Given this, maybe we can consider an alternative approach to improving performance in use cases
like Count Author Followers or Fetch Author Timeline. Let’s explore how we’d face these issues using

CORS.

Cheeper a la CQRS

Starting with the challenge of improving overall performance — specifically, the Count Author
Followers and Fetch Author Timeline use cases — let’s see how the flow would go through a typical
COQRS application.

Reducing the Number of Hits to the Storage

As a rule of thumb, for every use case, we should always try to keep the number of hits to the storage
mechanism to a minimum. These aren’t only slow, but they’ll be a challenge to scale. For any given

Anatomy of CQRS 3

use case, how many requests would you like to perform to the storage? Ideally one single request.
How many JOINs would you like this Query to perform? The fewer the better. That means no JOINs,
no WHERESs, nothing. How would you like this Query to appear? For viewing a Timeline, just a plain
lookup Query by an Author identifier with all the information flattened and ready to be presented
to the user would be great.

The terminology “ready to be presented to the user” is important here. While some read use cases
would require a tabular structure, like listing the Cheeps of a Timeline, others would require a nested
structure, like unfolding a single Cheep with its interactions (e.g. Cheep information with a nested
list of Cheeps). In Domain-Driven Design and CQRS, these read use cases are known as Queries.

Choosing the Right Storage

Considering that you only want to perform a single Query, what kind of storage would you choose
to store such information? Well, it depends on the read use case. In the case of the Timeline, it could
be a table hosted under the same database for your application or even in an external database.
For viewing a Cheep, maybe document-oriented storage like Elastic or Mongo would play well. For
the Followers counter, Redis could be a nice option. The takeaway is that even though Relational
databases cover most of our Data Model needs, we shouldn’t limit ourselves to a single storage
mechanism. Every read use case may potentially have an optimized storage type and Data Model.

Filling the Storage

Who or what fills these secondary storages? There must be some process responsible for preparing
and transmitting the data. There are multiple options for implementing such a process; a simple one
could be to have a scheduled cron job process projecting every Author Timeline into Elasticsearch,
or projecting the count of Followers for every Author into Redis. The problem with a cron-like job
is that it’s a bit of overkill, as there will be times it won’t have anything to process, and there will
be times it’ll have too many things to do. What’s worse is the cadence for execution will delay
spreading changes in the same way a cache would. We need a perfect balance. Syncing more often
than the speed at which Timelines change means we’ll be wasting CPU. Syncing less often means
changes to Timelines will take time to be indexed into Elasticsearch, and customers will see stale
information (eventual consistency). We need a precise process to be triggered at the right time, just
when the changes that affect the data happen.

Let’s assume for now that this process exists: a process that calculates the Author Timelines, and
another process that calculates and stores the Follower count for Authors.

Triggering the Process

Who or what triggers this kind of process? A message or Event will do. For Author Timelines, we can
trigger an Event every time there’s a new Cheep, so the previously defined process can update or fully
rebuild the Timeline of the affected Authors. The same mechanism would apply for counting the

Anatomy of CQRS 4

number of Followers, reacting upon “Author followed” and “Author unfollowed” Events. In Domain-
Driven Design, we call these Domain Events; these represent something that happened in the past
that’s relevant in terms of the business operation. In our Cheeper application, there could be Events
such as “Cheep posted,” “Author followed,” “Bio updated,” “Cheep answered,” and more.

Emitting the Event

For the Fetch Author Timeline Query use case, we’ll have to trigger Projections each time a new
Cheep is posted, edited, or deleted. So, who or what emits the necessary Domain Event?

The answer is the corresponding write use cases: Post Cheep, Update Cheep, and Delete Cheep. These
write use cases are what we call Commands in Domain-Driven Design and CQRS. The Domain
Events that trigger the process for projecting the data “ready to be read” for the Count Author
Followers use case are “Author followed” and “Author unfollowed.” These Events will be triggered by
the corresponding Commands: Follow Author and Unfollow Author. But in the end, who’s invoking
these Commands? Our customers. Users may use the UI of a client for our API or the website to post
a new Cheep. Customer actions invoke their corresponding Commands and then trigger a specific
Domain Event, and these Events also trigger a process (also known as a worker, process manager, or
Event Saga) that ends up projecting the data in an optimal format and storage, ready to be consumed
from the Query side, allowing all the required information to be fetched with a single request.

Circle of Life

This is, in essence, what CQRS is all about: For every Command, there’s a Domain state change that
triggers Events, and these Events trigger the syncing process between the Write Model and the Read
Models that allow optimal querying for our application. The great thing about this approach is that
it doesn’t matter how much additional information we append into a specific Query; the Read Model
is always optimized to answer blazingly fast. In comparison, with a normal 5NF-based application,
every new piece of information in a read use case will require an additional database Query or JOIN,
further degrading the performance of the system. More features, less performance. Does this sound
familiar?

I X 3
Ttem Page % A auery

Command Handler Domain Event

CORS Flow

Anatomy of CQRS 5

?’ Restaurant Booking System

Once we worked for a company that had a classified restaurant website. You were able to
search for restaurants, choose one, and show everything customers would expect to read
on the restaurant page. This included basic information about the restaurant, menus, offers,
pictures, customer reviews, and more. Considering all the different pieces of information,
how many Queries do you think the application made to the database on this single
page? Well, around 620 Queries in the development environment and 250 in the production
environment with all the caching enabled. 250 Queries! 250 Queries with tons of complex
JOINs for a single restaurant page! As an exercise, starting from the Query that gets the
information for the restaurant page, try to find the Domain Events and Commands that will
trigger the Projections for optimal querying.

We like this approach to explain how the flow of CQRS works. It’s important to understand that
Queries (the read use cases) and Commands (the write use cases) are two sides of the same coin; one
of them doesn’t make sense without the other. With this simple and powerful concept, we optimize
the application for great performance without losing maintainability. Now, it’s time for a deep dive
into CQRS.

CQRS Overview

CORS stands for Command-Query Responsibility Segregation. Coined and originally developed
by Greg Young, it’s an architectural pattern built upon the shoulders of Hexagonal Architecture
and the Command-Query Separation*' principle by Bertrand Meyer. At its heart, CQRS defends
having different Data Models for writes and reads. With this, Greg Young proposes making all the
Application Views an Infrastructure concern — turning the entire Delivery Mechanism into a Port,
and each View into an Adapter. The Model should be split into two different parts:

« The Write Model — Also known as the Command Model or the Write side, it performs the
writes and takes responsibility for the Domain Logic.

+ The Read Model — Also known as the Query Model or the Read side, it takes responsibility
for the reads within the application and treats them as something that should be outside of the
Domain Model, i.e. an Infrastructure detail.

Our users will interact with either side, depending on what type of use case they need to perform.
They’ll make use of the Query Side while requesting information from the Domain, and they’ll make
use of the Command Side when they perform some action that modifies the state of the application.

“‘https://en.wikipedia.org/wiki/Command%E2%80%93query_separation

https://en.wikipedia.org/wiki/Command%E2%80%93query_separation
https://en.wikipedia.org/wiki/Command%E2%80%93query_separation

Anatomy of CQRS 6

5 Pro;\e,c+$ +o

—

S e_ve_wruz;\l ll/ consistent

with
:Dod'a ne_e;ie_d ‘o
3 W Changes state Asks for dot l buld DTo
1V
Coovee 7
Sends Returns
Sends Query DT1o
2 command 7 o

Requests Serialized
Messoge AcCk/mAck Resource DTo
| g 13 [
client | Client o,

Typical CQRS Architecture

As you’ll discover while reading this book, one of the biggest challenges while implementing CQRS
is the synchronization of the Write side with the Read side.

Commands and Queries

Continuing with the two Models, in CQRS, we can effectively classify our application requests as:

« Commands — Requests that change the state of a system but don’t return a value.
 Queries — Requests that return a result and don’t change the state of the system.

In Cheeper, and in almost all the applications you’ve developed and used, you can classify use cases
either as ones that modify the state of the Domain, or ones that read the state. Posting a Cheep,
updating an Author bio, or following another Author are examples of requests that modify the state
of the application, i.e. Commands. Loading your Timeline, counting the number of Followers, or
fetching an Author bio are examples of requests that read the application state, i.e. Queries.

Bw N

W N

Anatomy of CQRS 7

This classification isn’t something new. As mentioned before, this split was already proposed as a
design principle by Bertrand Meyer in his book Object-Oriented Software Construction*’, and it’s
called Command Query Separation (CQS).

o Command-Query Separation (CQS)
Asking a question should not change the answer - Bertrand Meyer.

According to Wikipedia*’, “Every method should be either a command that performs an
action, or a query that returns data to the caller, but not both.”

We can see CQRS as scaling CQS to the entire application.

Commands and Queries will have a code representation in our application. They’ll be implemented
as Data Transfer Objects (DTOs):

final class PostCheepCommand

{
s

final class TimelineQuery

{
/)

Using Commands and Queries offers many benefits, including better decoupling from the framework
and the chosen Infrastructure, more meaningful and semantic code in terms of user experience, and
improved possibilities for adding asynchronous operations.

Other CQRS Components

In CQRS, there aren’t only Commands and Queries, but a handful of other concepts and components
that make the entire flow work. Let’s take a quick look:

+ Queries — Requests that represent which information the user wants to get, and the parameters
required to fetch it.

« Commands — Requests that represent the action the user wants to perform with all the
parameters required.

“’https://www.amazon.com/dp/0136291554/ref=cm_sw_r_tw_dp_U_x_g56YEbZG065YT
“*https://en.wikipedia.org/wiki/Command%E2%80%93query_separation

https://www.amazon.com/dp/0136291554/ref=cm_sw_r_tw_dp_U_x_g56YEbZG065YT
https://en.wikipedia.org/wiki/Command%E2%80%93query_separation
https://www.amazon.com/dp/0136291554/ref=cm_sw_r_tw_dp_U_x_g56YEbZG065YT
https://en.wikipedia.org/wiki/Command%E2%80%93query_separation

Anatomy of CQRS 8

« Domain Events — Messages that represent something that happened in the Domain that will
make other CQRS components react. They’re usually triggered by Command Handlers, and
they’re key for synchronizing the Write and the Read Models with one another.

« Projections — Specialized, persisted, and optimal Read Models generated for every Query.

« Query Handlers — The mechanism responsible for accessing and preparing the information the
user wants to get for a specific Query.

« Command Handlers — The mechanism responsible for performing the actual business logic for
a specific Command.

« Event Handlers — The mechanisms responsible for listening to Domain Events and triggering
Commands for orchestrating long-running processes or triggering Projections. These are also
known as Process Managers or Sagas.

« Projection Handlers — The mechanisms responsible for generating the Projections, also known
as Projectors.

Customers will interact with Cheeper most likely through a client, such as a Single-Page Application
(SPA) or a Mobile Application. These frontend clients will interact with an API with the help of a
framework of your choice. In turn, this framework will transform these API requests into Commands
or Queries, depending on the use case, and it’ll invoke the corresponding Command Handler or
Query Handler and return the appropriate results if necessary.

Behind the scenes, the Domain Events — triggered by the affected Command Handlers and Entities
— will be handled by one or multiple Event Handlers that will invoke Projection Handlers that will
in turn generate the Read Models optimized for the Query Side. Query requests will simply go and
fetch the data ready to be presented to customers.

Two Sides of the Same Coin

Every time a Command is sent to the Write Model, the Domain Model is evaluated, and the resulting
state changes are persisted into the Write Storage, which is different from the Read Model storage.
Why do we all of this? Doesn’t it sound overengineered? Well, we have different needs in our system,
and having these two different Models is quite convenient:

Consistency Storage Scalability
Write Model Immediate Data is saved, Small number of
consistency usually in a transactions

normalized form

Read Model Eventual consistency Data can be Usually, there are a
denormalized when lot more
generated / updated, transactions, so
so there’s not too scalability here is
little performance critical.
cost when queried.

Anatomy of CQRS 9

The Write side and Read side are two sides of the same coin. The main goal is to get the most
performance and composition without compromising maintenance. Let’s explore these a bit more.

The Command Side

The Command side is the one that sends messages to the Domain layer. Once it’s split from the Query
side and freed from reading concerns, Aggregates suddenly no longer need to expose internal state,
and Repositories have no Query methods aside from the usual of1d. We've fixed our anemic problem;
just by extracting Queries, we’re left with rich Domain Models.

Commands are somewhat specialized DTOs that carry relevant information needed to fulfill specific
Domain operations with semantic names named after the Ubiquitous Language. As Commands may
travel through many types of channels, it’s better to use primitive types instead of more complex
types. We're effectively transitioning from asking the Domain for stuff to instructing it to execute
Commands on behalf of the client.

Commands and Queries need handlers to be interpreted and executed. Command Handlers are
responsible for executing the Domain behavior associated with the Command sent. Command
Handlers don’t perform the Domain Logic; they only transform the outside world data into Domain
concepts and coordinate these concepts to activate the intended Domain Logic. We recommend
the use of invokable classes for Command Handlers, as this enforces a single handler interface for
all Commands, and it allows you to think about the appropriate name in terms of the Ubiquitous
Language.

Separating Commands from Query requires more work, but the performance benefits make up for it.
In many cases, separating the two will make it easier to optimize Queries on the Query side than if
we’d left them on the Command side. In addition, it lowers the conceptual complexity when working
on the Domain Model, as the Command side only has to worry about state changes.

The Query Side

The Query side is all about optimally fetching data to build DTOs that will later be serialized in
a format the client understands. Before CQRS, this process was done by loading Aggregates and
getting their internal structure to satisfy the Ul needs. Due to the impedance mismatch between the
Domain Model and the View, the loading of entire Aggregates just to satisfy the Ul needs may be
extremely inefficient and difficult.

Anatomy of CQRS 10

o Impedance Mismatch

The object-oriented paradigm, which is what we usually use to represent the Domain, is
based on proven engineering principles. The Relational paradigm, which tend to use for our
Data Model, is based upon mathematical principles. Because of these underlying principles,
the two technologies don’t work seamlessly together.

The object-oriented paradigm works with relationships, whereas in the Relational paradigm,
you join the data rows in tables.

This impedance mismatch between the Domain Model and the Relational Data Model comes
with a big cost. This is what Object Relational Mappers (ORMs) such as Doctrine somehow
try to mitigate. However, even if the mapping between the two gets alleviated by ORMs,
Developers need to be familiar with both and know how to reconcile their differences.

One of the benefits of having a separate Read Model is that it won’t suffer from impedance
mismatch, as there’s no need to translate from the Data Model to the Domain Model. Rather,
data can be accessed directly.

Query Handlers query the Read Model store directly and return the data itself, with no need for
transformations or complex mappings. The Delivery Mechanism can then serialize it back to the
clients.

Syncing the Command and Query Sides

If Commands trigger Domain behavior on the Write Model, how does the Read Model get notified
about such changes? The simplest approach to this is to let both sides write and read from the same
storage. The problem with this approach is that we don’t get the performance benefits we’re looking
for. The Read Model isn’t optimized for the Query operations, so to retrieve the information, we fall
into the multiple Queries and complex JOINs scenario, which was outlined in the example of the
restaurant booking system above.

Another option is to treat them as if they were two integrated systems; separate data sources
will allow Data Models to be optimized independent of each other. Many well-known integration
patterns can help to keep either immediate or eventual consistency between both sides. Every second
spent thinking about how to synchronize the Models before the implementation will be well spent.
However, changing how things get synchronized afterward will be an expensive undertaking. In
this case, there should be some kind of process that takes notifications from the Write Model and
updates the Read Model, thereby making the Read Model eventually consistent with the Write
Model (after a certain time window). There may be a window of time where the Ul may present
stale information to the customer. Caches behave in a similar way. They don’t represent the source
of truth, rather, there’s a propagation delay that makes them eventually consistent.

These kinds of processes, speaking in CQRS terminology, are called Write Model Projection Handlers,
or just Projectors, while the optimized Read Models are called Projections. We project the Write
Model onto the Read Model. This process can be synchronous or asynchronous, depending on

Anatomy of CQRS 11

your needs, and it can be done thanks to another useful Tactical Design Pattern: Domain Events.
Write Model Projections take published Domain Events and update the Read Model based on the
aggregated information.

Wrapup

We've seen what CQRS stands for and looked at the main elements of CQRS. We also gained
understanding as to the purpose of the Write and Read Models and how important it is to keep
them in sync. Finally, we got a grasp on how complicated syncing the Models is.

In the upcoming chapters, we’ll dive into the specifics of how to send Commands and Queries
effectively, and we’ll explore what message buses are all about. We’ll also follow up on how to
synchronize the Write and Read Models, and how to manage the Read Model’s eventual consistency.

Demo Time

In this chapter, we’ll see how to run Cheeper and follow what we’ve seen in previous chapters
step by step. We’ll begin without any data — no Authors, no Cheeps, and no relationships and
follows between Authors. We’ll see how to Sign Up Authors, make them follow people, and how get
the Follower Count and Author Timelines. We’ll also see how the data gets stored and propagated
through MySQL, RabbitMQ, and Redis.

Getting Started

The best way to get everything running in all kinds of environments — macOS, Windows, or Linux
— is by using Docker**, which is free for individuals. Download it** and follow the installation
instructions.

Docker Compose and Makefile

All the services required to run Cheeper are run and coordinated by Docker Compose, and
you can find the definitions in the docker-compose.yaml file. Although Cheeper is a PHP
Application that runs with the Symfony PHP framework, it requires MySQL for the Domain
Model storage, RabbitMQ as the messaging system, and Redis for Projections. We’ll use
Makefile for command-line tasks.

We'll interact with Cheeper via HTTP requests to its API. Through this chapter, we’ll use HTTPie**
as the HTTP client, but feel free to use curl®’, wget*®, or your favorite HTTP client to send requests
to Cheeper. To install HTTPie on your system, please follow the installation instructions®.

Starting the Application

Once Docker and httpie are installed, the next step is to clone the Cheeper repository onto your
machine:

“*https://www.docker.com/
“*http://docs.docker.com/get-docker/
“Shttps://httpie.io/cli

“"https://curl.se/
“®https://www.gnu.org/software/wget/
“’https://httpie.io/docs/cli/installation

https://www.docker.com/
http://docs.docker.com/get-docker/
https://httpie.io/cli
https://curl.se/
https://www.gnu.org/software/wget/
https://httpie.io/docs/cli/installation
https://www.docker.com/
http://docs.docker.com/get-docker/
https://httpie.io/cli
https://curl.se/
https://www.gnu.org/software/wget/
https://httpie.io/docs/cli/installation

o N O O b W N =

Demo Time 13

git clone https://github.com/dddshel f/cheeper-ddd-cqrs-example
To start the Application in Docker with all its dependencies, you can run:

cd cheeper-ddd-cqrs-example
make start
make deps

As we're starting the Application for the first time, we’ll need to create the database in MySQL, flush
all Redis entries, and clear all RabbitMQ queues. We have a Makefile task just for that. Open a new
terminal in the project and run:

make infrastructure
If you need to stop all services, run:

make stop

Nothing Up My Sleeve

Up to this point, there’s no data in our Application — No Authors, no Cheeps, and no following
relationships between Authors.

We could try to get the Author Follower Count for a non-existing Author with ID a64a52cc-3ee9-4a15-918b-099e18t

http --json --body http://127.0.0.1:8000/chapter7/author/ab64a52cc-3ee9-4a15-918b-099\
e18b43119/followers-counter

However, we’d get an HTTP 404 Not Found response:

{
"data": {
"message": "Author \"ab64a52cc-3ee9-4a15-918b-099e18b43119\" does not exist"
3
"meta": {
"message_id": "c7f70cal-30fe-4072-99dd-8aad781cd386"
}
}

The same thing happens if we try to get a non-existing Author Timeline:

0w N O O b~ W N

Demo Time 14

http --json --body http://127.0.0.1:8000/chapter7/author/a64a52cc-3ee9-4a15-918b-099\
e18b43119/timeline

The difference, in this case, is that we decided to return an empty Cheep list instead of an HTTP 404
Not Found response by design:

"data": {
"cheeps": []
3
"meta": {
"message_id": "04d6el178-34b9-4788-beldd-90e21c3a5693"

Although we have the schema initialized in MySQL with all the tables and constraints set up, the
database is empty of data.

[N) cheeper - follows
Database ; Cheeper - MariaDB - @localhost db ; tables) FFH follows Add Configuration

Database Explorer €3 = & EH authors

+ 52 0 rows (2] Tx: Auto oo Q

v AL Cheeper - MariaDB - @localhc
v @a db
7 tables
> HEE authors
> [EH cheeps
> [follows ER follows
> EH popular_cheep

B author_id + FHvuser_name =+ MEemail < K name < IEbiography + BE location < IF websit

((# Database Explorer

A 0 rows Tx: Auto DDL
> Server Objects Q

1% follow_id + M from_author_id ¢+ M to_author_id

[cheeps

0 rows Tx: Auto pbL Q

¥pcheep_id ¢ BB author_id + M3 cheep_message_message + K3 cheep_date_date

ontrol = TODO @ Problems Q Event Log

rieved in 16 ms (execution: 7 ms, fetching: 8 ms)

MySQL is empty

RabbitMQ has all the queues ready, but no messages waiting.

Demo Time

RabbitMQ Management

® 127.0.0.1

E R b b .t Refreshed 2022-03-14 21:59:52 | Refresh every 5 seconds -

RabbitMQ 3.9.13 Erlang 24.3 Virtual host | All v
Cluster rabbit@406d722f5517
Overview C i Cl h @ Admin User guest

Queues
All queues (4)

Pagination

of 1 - Filter: [J Regex ? Displaying 4 items , page size up to: 100

Overview Messages Message rates +/-
Name Type Features State Ready ked Total ing deliver / get ack
commands classic D idle 0 0 0

events classic D idle 0 0 0

failed_messages classic D idle 0 0 0

projections classic D idle 0 0 0

Add a new queue

HTTP API Server Docs Tutorials Community Support ~Community Slack Commercial Support Plugins GitHub Changelog

S ——————

RabbitMQ has no messages only the queues

There are no keys in Redis.

15

W N

Demo Time 16

L N Redis GUI

* Redis GUI ® default v

Search...

Redis is empty

Signing Up New Authors

The way we configured the Author Sign Up Command in Cheeper is to be run synchronously. Once
we send an HTTP request to perform the operation and wait for the response, it’ll be completed.
At the end of the process, an Author will be stored in MySQL without further interactions. The
Symfony Controller receives the HTTP requests, creates the SignUpCommand with all the necessary
information to perform the Command, and finally sends it to the Command Bus. The Command Bus
finds the appropriate Command Handler, the SignUpCommandHandler, and executes it immediately,
doing all the necessary work to Sign Up an Author:

http --json --body POST http://127.0.0.1:8000/chapter7/author \
author_id="a64a52cc-3ee9-4a15-918b-099e18b43119" \
username="bob" \

email="bob@bob.com"

BwWw N - o N O U b~ W N W N 0 N O O b W N =

0w N O O b W N -

Demo Time 17

{
"data": {
"author_id": "ab64ab52cc-3ee9-4a15-918b-099e18b43119"
H
"meta": {
"message_id": "8437fb8a-4bdd-49d4-8dal-fb@f4054a3e8"
}
}

http --json --body POST http://127.0.0.1:8000/chapter7/author \
author_id="1£d7d739-2ad7-41a8-8c18-565603e3733f" \
username="alice" \

email="alice@alice.com"

{
"data": {
"author_id": "1£fd7d739-2ad7-41a8-8c18-565603e3733f"
H
"meta": {
"message_id": "35644e59-142f-4bb2-9a3b-T7f937{f7fc6T72"
}
}

http --json --body POST http://127.0.0.1:8000/chapter7/author \
author_id="1da1366f-b066-4514-9b29-7346df41e371" \
username="charlie" \

email="charlie@charlie.com"

{
"data": {
"author_id": "1dal366f-b066-4514-9b29-7346df41e371"
},
"meta": {
"message_id": "b5e159bd-38a2-4b22-ac2d-1894efe800d4"
}
}

Through this process, multiple NewAuthorSigned Domain Events are raised by the Command
Handler, and they end up being stored in RabbitMQ. These Events are waiting to be consumed by

Demo Time 18

asynchronous processes in a RabbitMQ queue. Remember that these Events are the ones necessary
to build the Author Follower Count Projection, so until they get consumed, the Follower Count for
these newly created Authors will still return an HTTP 404 Not Found response.

[N] cheeper - follows
Database) Cheeper - MariaDB - @localhost db , tables) FFH authors Add Configuration

Database Explorer €3 = < % [F authors

S % i 3 rows poL Q

q

Z Cheeper - MariaDB - @localhc
k= db
87 tables
> HE authors
> EH cheeps
>
>

< A

¥ author_id ¢+ BBuser_name + Jemail ¢+ IEname + IE biograj

({() Database Explorer

charlie@ rlie.com
.com
R follows ab 99e 4 ob bob@bob .com
EE popular_cheep
> Server Objects

BT follows

0 rows Tx: Auto

I3 follow_id + M8 from_author_id + M8 to_author_id

EH cheeps

0 rows (= X poL Q

Y3 cheep_id *+ BHauthor_id *+ BE cheep_message_message + KHcheep_date_date

P Version Control iZ TODO @ Problems Q Event Log
)

The three Authors in the database

Demo Time

[NN] 3 RabbitMQ Management

< C ® 127.0.0.1:

1 . Refreshed 2022-03-14 22:01:07 | Refresh every 5 seconds VI
E R d IO b I t RabbitMQ 3.9.13 Erlang 24.3 Virtual host | All v

Cluster rabbit@406d722f5517

Overview C i Ch I h. Admin User guest

Queues
All queues (4)

Pagination

Page| 1 v| of 1 - Filter: [J Regex ? Displaying 4 items , page size up to: 100
Overview Messages Message rates +/-

Name Type Features State Ready Total i ing deliver / get ack

commands classic D idle 0 0 0

events classic D idle 3 0 53 0.00/s

failed_messages classic D idle 0 0 0

projections classic D idle 0 0 0

Add a new queue

HTTP API Server Docs Tutorials Community Support ~Community Slack Commercial Support Plugins GitHub Changelog

\—)

Three NewAuthorSigned Events awaiting to be processed

L N Redis GUI

= Redis GUI ® default v

Search...

Redis is still empty

19

© 00 N O O & W N =

I =V SN
WD s,

Demo Time

20

Consuming NewAuthorSigned Events

The next step will be to consume the Domain Events pending processing in RabbitMQ. For that, we
can go into the app Docker service and ask Symfony Messenger to consume the Events from the
events_async channel:

docker compose exec app php bin/console messenger:consume events_async --1limit 3 -vv

This will return something like what’s shown in the following logs. A worker receives the message
and delegates its processing on to the appropriate Event Handler:

INFO
INFO
ler

INFO
INFO
INFO
ler

INFO
INFO
INFO
ler

INFO
INFO
INFO

[messenger |

[messenger |

[messenger |
[messenger |

[messenger |

[messenger |
[messenger |
[messenger |

[messenger |
[messenger |

[messenger |

Received message ...\NewAuthorSigned

Message ...\NewAuthorSigned handled by ...\NewAuthorSignedEventHand\
... \NewAuthorSigned was handled successfully

Received message ...\NewAuthorSigned

Message ...\NewAuthorSigned handled by ...\NewAuthorSignedEventHand\
... \NewAuthorSigned was handled successfully

Received message ...\NewAuthorSigned

Message ...\NewAuthorSigned handled by ...\NewAuthorSignedEventHand\
... \NewAuthorSigned was handled successfully

Stopping worker. "events_async"

Worker stopped due to maximum count of 3 messages processed

Because we created three Authors in the previous step, there are three NewAuthorSigned Domain
Events waiting to be processed. These types of Events are handled by the NewAuthorSignedEventHandler,
which will trigger another message to generate the CreateFollowersCounterProjection. Projections

in the system are configured to be run synchronously, so there’s no need to store them in RabbitMQ

or tell Symfony Messenger to consume the messages. Each Author will finally end up with their
own Follower Count Projection in Redis initialized to 0.

Demo Time 21

L N Redis GUI

= Redis GUI @ default v db0 (3 keys) v

Searchos _ author_followers_counter_projection:1fd7d739-2ad
™ 7-4128-8¢18-565603€3733f hash (ziplist

Search...

4a52cc-3ee9-4a 99e18b43119 id

1fd7d739-2ad7-41a8-8¢c18-565603e3733f

username

alice

followers

Projection is calculated

Now that all Domain Events are processed and their corresponding Projections are calculated, there
are no messages left to be processed.

© 00 =N O O & W N =~

N
()

Demo Time 22

RabbitMQ Management

® 127.0.0.1
. Refreshed 2022-03-14 22:02:46 | Refresh every 5 seconds -
& R a b b I t RabbitMQ 3.9.13 Erlang 24.3 Virtual host | All v
Cluster rabbit@406d722f5517
Overview C i Cl h @ Admin User guest
Queues
All queues (4)
Pagination
Page of 1 - Filter: [Regex ? Displaying 4 items , page size up to: 100
Overview Messages Message rates +/-
Name Type Features State Ready ked Total i ing deliver / get ack
commands classic D idle 0 0 0
events classic D idle 0 0 0 0.00/s 0.00/s 0.00/s
failed_messages classic D idle 0 0 0
projections classic D idle 0 0 0

Add a new queue

HTTP API Server Docs Tutorials Community Support ~Community Slack Commercial Support Plugins GitHub Changelog

e ——

RabbitMQ has no pending messages

We can once again run the request to get the Follower Count for an Author, and we’ll no longer get
an empty response:

http --json --body http://127.0.0.1:8000/chapter7/author/ab64a52cc-3ee9-4a15-918b-099\
e18b43119/followers-counter

"data": {
"authorId": "a64ab52cc-3ee9-4a15-918b-099e18b43119",
"authorUsername": "bob",
"numberOfFollowers": 0

}I
"meta": {

"message_id": "ab9b470b-6d81-4c66-84bd- £52305d50edd"

However, the Timeline is still empty. This is because nobody on the platform has posted a Cheep

yet, which means there are no following relationships between Authors, and there are no Timelines
built:

0 N O O B W N =

Demo Time

23

http --json --body http://127.0.0.1:8000/chapter7/author/a64a52cc-3ee9-4a15-918b-099\
e18b43119/timeline

"data": {

},

"cheeps": []

"meta": {

"message_id":

((() Database Explorer

'Y
Database) Cheeper - MariaDB - @localhost ; db) tables

& EH authors

Database Explorer €@ Z =

+ s 5 m L 3rows
I Cheeper - MariaDB - @localhc
v &2 db
@ tables
> EH authors
> [EH cheeps
> [follows
> [EH popular_cheep
Server Objects

E follows

0 rows

5% follow_id

EH cheeps

0 rows

3 cheep_id

nControl = TODO @ Problems

§% author_id

cheeper - follows

F authors
Tx: Auto

¢ B2 user_name

Tx: Auto

+ B from_author_id

n
S

¢+ BF author_id

No changes in the database

Following Other Authors

¢ BF email

+ IF cheep_message_message

"cTaee96e-64c5-435e-82eb-4ad93e5e7639"

Add Configuration...

b Q

H name + [E biograj
ch, ie@charlie.com
al lice.com

bob@bob.com

¢+ BHto_author_id

¢ BHcheep_date_date

Q) Event Log

Author Timelines are built over the relationships they have with other Authors. To begin creating
the Timeline, we can start there.

Following an Author is a Command that, unlike the Sign Up Author Command, is configured to

be run asynchronously. This means that once the request to Cheeper’s API sends the Command
to be processed by an Application worker, it’ll return immediately, without waiting for a response.

Bw N

© 00 9 O O b W N =~

O 00 N O O & W N =

Demo Time 24

Although the HTTP request gives a response almost instantaneously, the database won’t change
until the Command is processed:

http --json --body POST http://127.0.0.1:8000/chapter7/follow \
follow_id="8cc71bf2-£827-4c92-95a5-43bb1bc622ad" \
from_author_id="1£fd7d739-2ad7-41a8-8c18-565603e3733f" \
to_author_id="a64a52cc-3ee9-4a15-918b-099e18b43119"

{
"data": {
"from_author_id": "1fd7d739-2ad7-41a8-8c18-565603e3733f",
"to_author_id": "ab64ab52cc-3ee9-4a15-918b-099e18b43119"
3,
"meta": {
"message_id": "34fbcd28-9b85-4f4d-bd5f-13d78cef6652"
}
}

http --json --body POST http://127.0.0.1:8000/chapter7/follow \
follow_id="£3088920-841e-4577-a3c2-efdc80f0dead" \
from_author_id="1da1366f-b066-4514-9b29-7346df41e371" \
to_author_id="a64a52cc-3ee9-4a15-918b-099¢18b43119"

{
"data": {
"from_author_id": "1dal366f-b066-4514-9b29-7346df41e371",
"to_author_id": "ab64ab52cc-3ee9-4a15-918b-099e18b43119"
3
"meta": {
"message_id": "4327f5e1-6256-4856-bb0c-c33c59d97b13"
}
}

Now’s a good time to test the resiliency of our system. We can simulate a duplicated request and
verify that our system is idempotent later on:

Bw N

O© 00 J O O b W N =~

Demo Time 25

http --json --body POST http://127.0.0.1:8000/chapter7/follow \
follow_id="£f3088920-841e-4577-a3c2-efdc80f0deadb" \
from_author_id="1da1366f-b066-4514-9b29-7346df41e371" \
to_author_id="a64a52cc-3ee9-4a15-918b-099e18b43119"

{
"data": {
"from_author_id": "1dal1366f-b066-4514-9b29-7346df41e371",
"to_author_id": "ab64a52cc-3ee9-4a15-918b-099e18b43119"
3
"meta": {
"message_id": "4cd40043-fd48-4a63-a559-e1773a385d28"
}
}

At this point, we should have three FollowCommands waiting to be consumed in the commands

RabbitMQ queue. In the same way as with Domain Events, we’ll need to kick off a worker to consume
these messages.

RabbitMQ Management

© 127.0.0.1 6 cuest
. Refreshed 2022-03-14 22:04:10 | Refresh every 5 seconds -
E Ra b b I t RabbitMQ 3.9.13 Erlang 24.3 Virtual host | All v
Cluster rabbit@406d722f5517
Overview Ci i Cl @ Admin User guest
Queues
All queues (4)
Pagination
Page of 1 - Filter: O Regex ? Displaying 4 items , page size up to: 100
Overview Messages Message rates +/-
Name Type Features State Ready Total i ing deliver / get ack
commands classic D idle 3 0 B 0.20/s
events classic D idle 0 0 0 0.00/s 0.00/s 0.00/s
failed_messages classic D idle 0 0 0
projections classic D idle 0 0 0

Add a new queue

HTTP API Server Docs Tutorials Community Support Community Slack Commercial Support Plugins GitHub Changelog

S ———————

RabbitMQ has three commands pending

Demo Time

(X] cheeper - authors

Database) Cheeper - MariaDB - @localhost ; db ; tables) FFH authors Add Configuration

Database Explorer € = = & BH authors
3rows Tx: Auto oL Q 2 T 45

o

q

a
Cheeper - MariaDB - @localhc =
db
tables

8% author_id ¢ Muser_name * Mjemail : BEname + BE biogra|

(((# Database Explorer

authors 1dal366f-b066-4514-9b29-7346dF41 charlie charlie@charlie.com
8 cheeps 1fd7d739-2ad7-41a8-8¢18-565603 alice alice@alice.com
follows abka52cc-3ee9-4a15-918b-099e18b43.. bob bob@bob . com
popular_cheep
Server Objects
EF follows

0 rows S Tx: Auto oL Q

|

9 follow_id + B from_author_id ¢ B8 to_author_id

[cheeps
(T Tx: Auto oo Q

Y-

¥pcheep_id + BEauthor_id + MH cheep_message_message + KHcheep_date_date +

M Bookmarks

P Version Control 0DO @ Problems Q Event Log
[0 0 rows retrieved in 14 ms ution: 11 ms, fetching: 3 ms) SUM: Not enough values i

Follows are not yet in the database

(] Redis GUI

= Redis GUI ® default v [E] dbo (3 keys) v

Search... author_followers_counter_projection:1fd7d739-2ad
® 7-41a8-8c18-565603e3733f hash (ziplist)
followers_counter_projection
1da1366f-b066-4514-9b29-7346df41e371 Search...
@ 1fd7d739-2ad7-41a8-8c18-565603e3733f
ab4a52cc-3ee9-4a15-918b-099e18b43119 id

1fd7d739-2ad7-41a8-8c18-565603e3733f

username

alice

followers

Redis has no changes

© 00 N O O & W N =

[==Y
W N =~ o

Demo Time

27

Consuming FollowCommand COmmands

The command line to process FollowCommand is similar to the one we used to consume Domain
Events. However, this time we have to specify that Symfony Messenger should consume messages
from the commands_async channel:

docker compose exec app php bin/console messenger:consume commands_async --limit 3 -\

\AY

Here’s the resulting output:

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

messenger
messenger
messenger
messenger
messenger

messenger

messenger
messenger
messenger
messenger
messenger

[]
[]
[]
[]
[]
(]
[messenger |
[]
[]
[]
(]
[]
[]

messenger

Received message ...\FollowCommand

Sending message ...\AuthorFollowed with events_async sender ...
...\FollowCommand handled by

... \FollowCommand was handled successfully

Message ...\FollowCommandHandler ...

Received message ...\FollowCommand
Sending message ...\AuthorFollowed with events_async sender ...
...\FollowCommand handled by

... \FollowCommand was handled successfully

Message ...\FollowCommandHandler

Received message ...\FollowCommand
Message ...\FollowCommand handled by FollowCommandHandler ...
...\FollowCommand was handled successfully

Stopping worker. "commands_async"

Worker stopped due to maximum count of 3 messages processed

Two new following relationships will be created, and two new AuthorFollowed Domain Events will
be triggered for processing.

Demo Time

Database ; Chee

Database Expl

=
]

db

| Database Explorer

>
>
>

>

Server Objects

ion Control

tables

fH authors
fH cheeps
£ follows
R popular

cheeper - authors

localhost) db) tables) B authors

o

per - MariaDB -

orer € EH authors

3 rows Tx: Auto

4

Cheeper - MariaDB - @localhc

8% author_id

85 user_name
charlie

_Cheep

E follows

2 rows Tx: Auto

2 follow_id 13 from_author_id

6F-b066-4

1dal36

ad7-41a8-

[l cheeps

0 rows

% cheep_id 83 author_id B3 cheep_message_message

TODO @ Problems

starting from 1in 16 ms (execution: 9 ms, fetc!

Follows are now in the database

RabbitMQ Management

DDL

+ M email

28

Add Configuration

+ 7

Q

H name H biograj

charlie@charlie.com

ce@alice.com

bob@bob .com

L7

I3 to_author_id
9-4a15-91

8¢18-565603 9-4215-91

8 cheep_date_

) 127.0.0.1:
- Refreshed 2022-03-14 22:05:45 | Refresh every 5 seconds v
E R a b b I t RabbitMQ 3.9.13 Erlang 24.3 Virtual host | All v
Cluster rabbit@406d722f5517
Overview Ci ion: Cl m Admin User guest
Queues
All queues (4)
Pagination
of 1 - Filter: (J Regex ? Displaying 4 items , page size up to: 100
Overview Messages Message rates +/-
Name Type Features State Ready Total i deliver / get ack
commands classic D idle 0 0 0 0.00/s 0.00/s 0.00/s
events classic D idle 2 0 2 0.00/s 0.00/s 0.00/s
failed_messages classic D idle 0 0 0
projections classic D idle 0 0 0
Add a new queue
HTTP API Server Docs Tutorials Community Support Community Slack Commercial Support Plugins GitHub Changelog

e ——

RabbitMQ has two pending Events

O© 00 1 O O b W N =

N
)

Demo Time

L N Redis GUI

= Redis GUI @ default v db0 (3 keys) v

Searchos _ author_followers_counter_projection:1fd7d739-2ad
™ 7-4128-8¢18-565603€3733f hash (ziplist

& author_followers_counter_projection
@ 1da1366f-b066-4514-9b29-7346df41e371 Search...
@ 1fd7d739-2ad7-41a8-8c18-565603e3733f
8 264a52cc-3e€9-4a15-918b-09918b43119 id

1fd7d739-2ad7-41a8-8¢c18-565603e3733f

username

alice

followers

0

Redis has no changes

Verifying an Author’s Followers

Although the Author bob has two Followers, the follow count for him hasn’t been updated:

29

http --json --body http://127.0.0.1:8000/chapter7/author/at4a52cc-3ee9-4a15-918b-099\

e18b43119/followers-counter

{
"data": {
"authorId": "a64ab52cc-3ee9-4a15-918b-099e18b43119",
"authorUsername": "bob",
"numberOfFollowers": 0
}
"meta": {
"message_id": "0e9df870-894f-4d37-a140-4d598941fadf"
}
}

The number of Followers is still 0 because the AuthorFollowed Domain Events are waiting to be

consumed once again.

© 00 N O O b W N =

N
N O

Demo Time 30

Consuming AuthorFollowed Events

As we did before, we need to tell Symfony Messenger to spin off a worker to consume the
AuthorFollowed Events waiting in the events_async channel transport:

docker compose exec app php bin/console :consume events_async --limit 2 -vv

INFO [messenger]| Received message ...\AuthorFollowed
INFO [messenger| Message ...\AuthorFollowed handled by ...\AuthorFollowedEventHandle\

r
INFO [messenger] ...\AuthorFollowed was handled successfully
INFO [messenger| Received message ...\AuthorFollowed

INFO [messenger| Message ...\AuthorFollowed handled by ...\AuthorFollowedEventHandle\

r
INFO [messenger]| ...\AuthorFollowed was handled successfully
INFO [messenger]| Stopping worker. ... "events_async"

INFO [messenger| Worker stopped due to maximum count of 2 messages processed

Now all the Events have been handled and the Follower Count Projection for bob is updated.
Remember that Projections are configured to run synchronously, so there’s no need to tell Symfony
Messenger to consume the Projection messages triggered by the Event Handler.

L N J Redis GUI

= Redis GUI ® default v dbo (3 keys) v

Searchi _ author_followers_counter_projection:a64a52cc-3ee9
™ _4a15-918b-099e18b43119 hash iplisy

@ author_followers_counter_projection
@ 1da1366f-b066-4514-9b29-7346df41e371 Search...
fd7d739-2ad7-4128-8¢18-565603e3733f

B a64a52cc-3ee9-4a15-918b-099e18b43119 id

a64a52cc-3ee9-4a15-918b-099e18b43119

username

bob

followers

2

Redis Projection has been updated

© © 0 =N O O & W N =

[N

Demo Time 31

http --json --body http://127.0.0.1:8000/chapter7/author/a64a52cc-3ee9-4a15-918b-099\
e18b43119/followers-counter

"data": {
"authorId": "a64a52cc-3ee9-4a15-918b-099e18b43119",
"authorUsername": "bob",

"numberOfFollowers": 2

b
"meta": {

"message_id": "QObbTfe5-f2ba-4cc2-bbca-9fa4d26fbf69"

RabbitMQ Management

® 127.0.0.1
. Refreshed 2022-03-14 22:06:35 | Refresh every 5 seconds -
h Ra b b | t RabbitMQ 3.9.13 Erlang 24.3 Virtual host | All v

Cluster rabbit@406d722f5517

Overview C i Cl h m Admin User guest

Queues
All queues (4)

Pagination

Page of 1 - Filter: [Regex ? Displaying 4 items , page size up to: 100
Overview Messages Message rates +/-

Name Type Features State Ready ked Total i ing deliver / get ack

commands classic D idle 0 0 0 0.00/s 0.00/s 0.00/s

events classic D idle 0 0 [} 0.00/s 0.00/s 0.00/s

failed_messages classic D idle 0 0 0

projections classic D idle 0 0 0

Add a new queue

HTTP API Server Docs Tutorials ~Community Support ~Community Slack Commercial Support Plugins GitHub Changelog

S ——————

RabbitMQ has 0 pending messages

W N

Demo Time 32

[N) cheeper — authors
Database) Cheeper - MariaDB - @localhost db ; tables) FFH authors Add Configuration
= & [authors

Database Explorer € =
S =z P 3rows Tx: Auto oL Q

q

<+

~I Cheeper - MariaDB - @localhc
v = db
7 tables
fH authors

8% author_id ¢ Muser_name * Mjemail : + IE biogra)

(((# Database Explorer

> arlie
> EH cheeps
> [follows
> EH popular_cheep
> B= Server Objects B follows

1
2
3

2 rows Tx: Auto

83 follow_id + BJ from_author_id

1dal

[l cheeps

0 rows pbL Q

¥pcheep_id + BF author_id + MH cheep_message_message + BH cheep_date_date

vent Log

ues

Database has no changes

Posting Cheeps

It’s time to show how a Cheep posted by bob ends up updating his Follower Timelines. In the
same way as with the Follow Author use case, Post Cheep is an asynchronous Command, which
means that the HTTP response will be instantaneous and that the Command will be waiting inside
RabbitMQ to be processed by a worker:

http --json --body POST http://127.0.0.1:8000/chapter7/cheep \
cheep_id="28bc90bd-2dfb-4b71-962f-81f02b0b3149" \
author_id="a64a52cc-3ee9-4a15-918b-099e18b43119" \
message="Hello world, this is Bob"

W N 0 N O O b W N =

o N O U b~ W N

0w N O O b W N -

Demo Time

{
"data": {
"cheep_id": "28bc90bd-2dfb-4b71-962f-81f02b0b3149"
3
"meta": {
"message_id": "Oefl17e3c-6532-4b06-8fc4-T73c78c4eccdd”
}
}

http --json --body POST http://127.0.0.1:8000/chapter7/cheep \
cheep_id="04efc3af-59a3-4695-803f-d37166c3af56" \
author_id="1£d7d739-2ad7-41a8-8c18-565603e3733f" \
message="Hello world, this is Alice"

{
"data": {
"cheep_id": "©@4efc3af-59a3-4695-803f-d37166c3af56"
}
"meta": {
"message_id": "fb8fd10f-c096-4e30-a46b-16a2d93b8f89"
}
}

http --json --body POST http://127.0.0.1:8000/chapter7/cheep \
cheep_1d="8a5539e6-3be2-4fa7-906e-179efcfcadbb" \
author_id="1da1366f-b066-4514-9b29-7346df41e371" \
message="Hello world, this is Charlie"

{
"data": {
"cheep_id": "8ab5539e6-3be2-4fa7-906e-1T79efcfcadbb”
3
"meta": {
"message_id": "6fbal49b-1£f70-489d-a4ea-1aa3e23b2b3a"
}

33

Demo Time

RabbitMQ Management

) 127.0.0.1
. Refreshed 2022-03-14 22:08:10 | Refresh every 5 seconds -
& R a b b I t RabbitMQ 3.9.13 Erlang 24.3 Virtual host | All v

Cluster rabbit@406d722f5517

Overview C i Cl h @ Admin User guest

Queues
All queues (4)

Pagination

of 1 - Filter: [J Regex ? Displaying 4 items , page size up to: 100

Overview Messages Message rates +/-
Name Type Features State Ready ked Total i ing deliver / get ack
commands classic D idle 3 0 B 0.00/s 0.00/s 0.00/s
events classic D idle 0 0 0 0.00/s 0.00/s 0.00/s
failed_messages classic D 0 0 0

projections classic D idle 0 0 0

Add a new queue

HTTP API Server Docs Tutorials Community Support ~Community Slack Commercial Support Plugins GitHub Changelog

e ——

RabbitMQ has three Commands waiting

(N] cheeper - authors
Database ; Cheeper - MariaDB - @localhost db ; tables) FFH authors Add Configuration

Database Explorer & = & [authors

+

S & = > Tx: Auto oL Q < + 7T

B

Cheeper - MariaDB - @localhc
i db _ . ; ;
& (el ¢+ MHyser_name + I email ¢ BEname + IE biograj

Database Explorer

E3 authors 6 0 9b29-7346df4le.. rlie@charlie.com
BEH cheeps 2 d 9 d a 603e37.. L alice@alice.com
A follows

> EH popular_cheep

bob@bob .com

Server Objects

Tx: Auto

I8 from_author_id

49-a7fb-034 " dal366f-bB66-4514-9b29- Bl = 4a15-91

0-96 ab7. 7 Fd7 2ad7-41a8-8c18-565603e37.. ab4 3 -4a15-91

EH cheeps

0 rows L Tx: Auto oo Q
I author_id + B3 cheep_message_message ¢ BHcheep_date_date

ion Control = TODO @ Problems Q Event Log

: Not enough values

Database has no changes

34

O© 00 1 O O b W N =

N =
a b W N =~ O

Demo Time 35

L N Redis GUI

= Redis GUI @ default v db0 (3 keys) v

. _ author_followers_counter_projection:ab4a52cc-3ee9
™ _4a15-918b-099e18043119 hash (plist

& author_followers_counter_projection
@ 1da1366f-b066-4514-9b29-7346df41e371 Search...
@ 1fd7d739-2ad7-41a8-8¢18-565603e3733f
8 a64a52cc-3ee9-4215-918b-099e18b43119 id

a64a52cc-3ee9-4al5-918b-099e18b43119

username

bob

followers

2

Redis has no changes

Consuming PostCheepCommand COmmands

As with other messages configured to be processed asynchronously, we’ll need to instruct Symfony
Messenger to consume the three PostCheepCommand messages waiting to be processed in the
commands_async channel:

docker compose exec app php bin/console :consume commands_async --limit 3 -\
vV

INFO [messenger] Received message ...\PostCheepCommand

INFO [messenger| Sending message ...\CheepPosted with events_async sender

INFO [messenger| Message ...\PostCheepCommand handled by ...\PostCheepCommandHandler
INFO [messenger]| ...\PostCheepCommand was handled successfully

INFO [messenger]| Received message ...\PostCheepCommand

INFO [messenger] Sending message ...\CheepPosted with events_async sender

INFO [messenger| Message ...\PostCheepCommand handled by ...\PostCheepCommandHandler
INFO [messenger]| ...\PostCheepCommand was handled successfully

INFO [messenger| Received message ...\PostCheepCommand

INFO [messenger| Sending message ...\CheepPosted with events_async sender

INFO [messenger]| Message ...\PostCheepCommand handled by ...\PostCheepCommandHandler
INFO [messenger] ...\PostCheepCommand was handled successfully

16
17

Demo Time

INFO [messenger| Stopping worker.

"commands_async"

INFO [messenger]| Worker stopped due to maximum count of 3 messages processed

Now we should have the three Cheeps stored in the MySQL Data Model database.

Database | Cheeper - MariaDB -

Database Explorer €3

“
]

o+

q

Cheeper - MariaDB - @localhc
db
tables
> [authors
> [EH cheeps
> EF follows
> EH popular_cheep
Server Objects

Database Explorer

ion Control = TODO

localhost

cheeper - authors

db) tables) FH authors

& EH authors

3 rows Tx: Auto poL Q

8B user_name * BF email

§% author_id

1dal366f- 45] 2! 46 e.. charlie

alice

R follow
Tx: Auto

13 follow_id 13 from_author_id

1 640eB78-c 1dal366f-bB66-4514-9b29 -
EH cheeps

3 rows
9 author_id

fb-4b71-

e2-4fa’7-

© Problems

Database has the Cheep messages

Add Configuration

£ 7

E name H biograj

ie@charlie

2z T

+ §5 to_author_id
346dfale. ab4ab2cc-3ee9-4al15-91

i

JH cheep_message_message
Hello world, this is Alice
Hello world, t is Bob

Hello world, this is Ch

ent Log

Not enough values

(]

36

Demo Time

§3 RabbitMQ Management

C ® 127.0.0.1:15¢

. Refreshed 2022-03-14 22:09:22 | Refresh every 5 seconds -
E R a b b |t RabbitMQ 3.9.13 Erlang 24.3 Virtual host | All v

Cluster rabbit@406d722f5517

Overview C i Ch I h. m Admin User guest

Queues
All queues (4)

Pagination

Page| 1 | of 1 - Filter: [J Regex ? Displaying 4 items , page size up to: 100
Overview Messages Message rates +/-

Name Type Features State Ready Total ing deliver / get ack

commands classic D idle 0 0 0 0.00/s 0.00/s 0.00/s

events classic D idle 3 0 53 0.00/s 0.00/s 0.00/s

failed_messages classic D idle 0 0 0

projections classic D idle 0 0 0

Add a new queue

HTTP API Server Docs Tutorials Community Support ~Community Slack Commercial Support Plugins GitHub Changelog

M—

RabbitMQ has now three Events waiting

L N J Redis GUI

= Redis GUI ® default v dbo0 (3 keys) v
SeErtdh _ author_followers_counter_projection:a64a52cc-3ee9
-4a15-918b-099e18b43119 hash (ziplist)

@ author_followers_counter_projection
B 1da1366f-b066-4514-9b29-7346df41e371 Search...
1fd7d739-2ad7-41a8-8¢18-565603e3733f
= ab64a52cc-3ee9-4a15-918b-099e18b43119 id

ab64a52cc-3ee9-4a15-918b-099e18b43119

username

bob

followers

Redis has no changes

37

© 00 N O O b W N =

N ==
=~ O O b W0 N~

Demo Time

Consuming CheepPosted Events

38

Once the Command Handler finishes, there should be three CheepPosted Domain Events waiting to
be processed in the events_async channel. To consume them, do the following:

docker compose exec app php bin/console messenger:consume events_async --limit 3 -vv

INFO
INFO
sync
INFO
sync
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

[messenger |
[messenger |
sender

[messenger |
sender

messenger
messenger
messenger
messenger
messenger
messenger
messenger
messenger

messenger

— — — — — — — — —

]
]
]
]
]
]
]
]
]
]

messenger

Received message ...\CheepPosted

Sending message
Sending message
Message ...\CheepPosted handled by ...\CheepPostedEventHandler
... \CheepPosted was handled successfully

... \CheepPosted

... \CheepPosted handled by ...\CheepPostedEventHandler
... \CheepPosted was handled successfully

Received message ...\CheepPosted

... \CheepPosted handled by ...\CheepPostedEventHandler
... \CheepPosted was handled successfully

Received message
Message

Message

Stopping worker. "events_async"

Worker stopped due to maximum count of 3 messages processed

.. .\AddCheepToTimelineProjection with projections_a\

... \AddCheepToTimelineProjection with projections_a\

39

Demo Time

(X] cheeper - authors

Database) Cheeper - MariaDB - @localhost ; db ; tables) FFH authors Add Configuration

Database Explorer € = @ [authors

:=:] 3 rows Tx: Auto oo Q 7T

o

q

<

[Cheeper - MariaDB - @localhc =
db
tables
fH authors
8 cheeps 2 1fd7d739-2ad7-4la

£ follows = B
R follows

Database Explorer

author_id 8 user_name * B3 email : BEname + BE biogra|

1 1dal366f-bB66-4514-9b29-7346df4le.. charlie charlie@charlie.com
8c18-5656 . alice alice@alice.com

R popular_cheep

Server Objects 2rows S Tx: Auto

follow_id + B3 from_author_id + B3 to_author_id
1 640e07f8-cc24-4c49-a7fb-0348dcfdd. 1dal3é6f-b066-4514-9b29-7346df4le.. ab4bab2cc-3ee9-4al5-91
[cheeps 5

3 rows S Tx: Auto b Q csv + 7

¢ M author_id 33 cheep_message_message
a3-4695-803f-d37166c3a. 1fd7d739-2ad7-41a8-8c18-565 7.. Hello world, this is Alice
f

b-4b71-962f-81f02b0Ob3.. ab4ab2cc-3ee?-4al5-918b-099e18b43.. Hello world, this is Bob
e2-4fa7-906e-179efcfca. 1dal3bééf-b066-4514-9b2! 346df4le.. Hello world, this is Charlie

M Bookmarks
aimonas &

n Control © Problems Q Event Log
SUM: Not enough values i

[m]

Database has no changes

(] Redis GUI

= Redis GUI ® default v dbo (3 keys) v

- author_followers_counter_projection:a64a52cc-3ee9
-4a15-918b-099e18b43119 hash (ziplist)

Search...
_followers_counter_projection
1da1366f-b066-4514-9b29-7346df41e371 Search...
1fd7d739-2ad7-41a8-8¢18-565603e3733f
a64a52cc-3ee9-4a15-918b-099e18b43119 id

ab4a52cc-3ee9-4a15-918b-099e18b43119

username

bob

followers

Redis has no changes

© 00 N O O & W N =

[==Y
w N =~ o

Demo Time 40

[X] RabbitMQ Management
< C ® 127.0.0.1:15672/#]q
. Refreshed 2022-03-14 22:10:30 | Refresh every 5 seconds -
E R a b b] t RabbitMQ 3.9.13 Erlang 24.3 Virtual host | All v
Cluster rabbit@406d722f5517
Overview C i Ch I h. m Admin User guest
Queues
All queues (4)
Pagination
Page| 1 v| of 1 - Filter: [Regex ? Displaying 4 items , page size up to: 100
Overview Messages Message rates +/-
Name Type Features State Ready Total i il deliver / get ack
commands classic D idle 0 0 0 0.00/s 0.00/s 0.00/s
events classic D idle 0 0 0 0.00/s 0.00/s 0.00/s
failed_messages classic D idle 0 0 0
projections classic D idle 2 0 2 0.00/s
Add a new queue
HTTP API Server Docs Tutorials Community Support Community Slack Commercial Support Plugins GitHub Changelog

S ——

RabbitMQ has now two Projections waiting

Consu ming AddCheepToTimelineProjection Projections

The CheepPostedEventHandler triggers two AddCheepToTimelineProjections — one for each Fol-
lower of bob — but this time, the Projections will be run asynchronously due to the heaviness of
building Timelines. These Projection messages will be stored temporarily in RabbitMQ while waiting
to be processed. To start consuming messages from the projection_async channel:

docker compose exec app php bin/console messenger:consume projections_async --limit \
2 -vv

INFO [messenger| Received message ...\AddCheepToTimelineProjection

INFO [messenger| Message ...\AddCheepToTimelineProjection handled by ...\AddCheepToT\
imelineProjectionHandler

INFO [messenger]| ...\AddCheepToTimelineProjection was handled successfully

INFO [messenger| Received message ...\AddCheepToTimelineProjection

INFO [messenger| Message ...\AddCheepToTimelineProjection handled by ...\AddCheepToT\
imelineProjectionHandler

INFO [messenger]| ...\AddCheepToTimelineProjection was handled successfully

INFO [messenger| Stopping worker. ... "projections_async"

INFO [messenger]| Worker stopped due to maximum count of 2 messages processed

Demo Time 41

L N Redis GUI

= Redis GUI @ default v db0 (5 keys) v
. author_timeline_projection:1fd7d739-2ad7-41a8-8c
18-565603e3733f list (quicklist)
followers_counter_projection
1da1366f-b066-4514-9b29-7346df41e371 Search...
1fd7d739-2ad7-41a8-8¢18-565603e3733f
8 a64a52cc-3ee9-4a15-918b-099e18b43119
@ author_timeline_projection

“"cheep_id": 2 fl 1-962f-81f02b0b3149"
%6 1da1366f-b066-4514-9b29-7346df41e371

"cheep_message" Hello world, this is Bob"

3

1fd7d739-2ad7-41a8-8c18-565603e3733f "cheep_date": "2022-03-14T21:08:50+00:00"

Redis has the two timelines

LN I RabbitMQ Management

& C ® 127.0.01

- Refreshed 2022-03-14 22:11:25 | Refresh every 5 seconds v
E R a b b |t RabbitMQ 3.9.13 Erlang 24.3 Virtual host | All v

Cluster rabbit@406d722f5517

Overview Connections Channels Exchanges m Admin User guest

Queues
All queues (4)

Pagination
Page‘ 1 v| of1 - Filter: O Regex ? Displaying 4 items , page size up to: 100
Overview Messages Message rates +/-
Name Type Features State Ready Total deliver / get ack
commands classic D idle 0 0 0 0.00/s 0.00/s 0.00/s
events classic D idle 0 0 0 0.00/s 0.00/s 0.00/s
failed_messages classic D idle 0 0 0
projections classic D idle 0 0 [} 0.00/s 0.00/s 0.00/s

Add a new queue

HTTP API Server Docs Tutorials Community Support Community Slack Commercial Support Plugins GitHub Changelog

—

RabbitMQ has no pending messages

0w N O O b W N -

Demo Time 42

o0 cheeper - authors

Database) Cheeper - MariaDB - @localhost db ; tables) FFH authors Add Configuration

= x [authors

S =P 3rows Tx: Auto poL Q

Database Explorer €3

q

<+

~I Cheeper - MariaDB - @localhc
v & db
7 tables
> MEH authors 1 1lda -b 9b29-734 4 arlie
> [EH cheeps 2 1fd7d =7 a alice
> [follows -
> EH popular_cheep
> Server Objects Tx: Auto v 7T

8% author_id ¢ Muser_name * Mjemail ¢ BEname : IFbiograj

(((# Database Explorer

R follov

1% follow_id + B3 from_author_id + M to_author_id
1 640e07f8-cc24-4c49-a7fb-0348dcfdd. 1dal3é6f-bB66-4514-9b29-7346df4le. ab4ab2cc-3ee9-4al5-91
EH cheeps -

3 rows S Tx: Auto oL Q

¢ M author_id
1fd7d739-2ad7-4!
2 fb-4b71-962f-81F02bOb3. ab4a52cc-3 a15-918

3 e2-4fa

iZ TODO @ Problems

Database has no changes

Verifying an Author’s Timeline

Now we can finally verify that Author Timelines are being built correctly. Each Follower of bob
should have the Cheep we just posted before as part of their Timeline. By design, we decided not to
include Cheeps in one’s own Author Timeline, so bob won’t have Cheeps in his Timeline:

http --json --body http://127.0.0.1:8000/chapter7/author/ab64a52cc-3ee9-4a15-918b-099\
e18b43119/timeline

"data": {
"cheeps": []
3
"meta": {
"message_id": "c48c8334-b624-4d5f-a71a-e8d99b3e30ec”

However, both alice and charlie — who follow bob — should have our previous Cheep included in
their Timelines:

O© 00 N O O & W N =~

I = U SN
B W N,

O 00 N O O & W N =~

= U SN
B W N s,

Demo Time 43

http --json --body http://127.0.0.1:8000/chapter7/author/1£d7d739-2ad7-41a8-8c18-565\
603e3733f/timeline

{
"data": {
"cheeps": |
{
"cheep_date": "2022-03-14T21:08:50+00:00",
"cheep_id": "28bc90bd-2dfb-4b71-962f-81f02b0b3149",
"cheep_message": "Hello world, this is Bob"
}
]
3,
"meta": {
"message_id": "fdbf9ad6-edc4-4013-a980- f95e7a37850f"
}
}

http --json --body http://127.0.0.1:8000/chapter7/author/1dal1366f-b066-4514-9b29-734\
6df41e371/timeline

{
"data": {
"cheeps": |
{
"cheep_date": "2022-03-14T21:08:50+00:00",
"cheep_id": "28bc90bd-2dfb-4b71-962f-81f02b0b3149",
"cheep_message": "Hello world, this is Bob"
}
]
},
"meta": {
"message_id": "79be4121-5432-44fb-a6f0- fed4ced613224"
}
}
Wrapup

In this chapter, we demonstrated how to run and debug the use cases and flows we developed and
evolved through the book. We started from scratch with no schemas or data in our databases, and

Demo Time 44

we ran use cases such as Sign Up Author, Follow Author, Post Cheep, and Fetch Author Timeline.
We also looked in detail at how the flow of messages and Buses worked.

A full CQRS flow that persists the Domain Model into the Write Side and prepares the Read Model
Projections to be optimally queried has the following incremental steps:

Controller
Command
Command Bus
Command Handler
Domain Event
Event Handler
Projection
Projection Handler

® N RN

To fetch the information, the flow of the CQRS components would have the following steps:

1. Controller

2. Query
3. Query Bus

Additionally, we saw how the Infrastructure layer evolved after each step and how the workers
responsible for processing asynchronous messages glued everything together. We now not only know
how to run Cheeper, but we also understand how every piece in CQRS fits into the architecture and
how it works.

	Table of Contents
	Preface
	Domain-Driven Design in PHP
	Domain-Driven Design Acceptance Has Rapidly Grown
	CQRS by Example
	Who Should Read This Book
	Summary of Chapters
	Code, Typos, and Examples
	Acknowledgements

	About the Authors
	Carlos Buenosvinos
	Christian Soronellas
	Keyvan Akbary

	Anatomy of CQRS
	Cheeper Use Case Analysis
	Cheeper à la CQRS
	CQRS Overview
	Other CQRS Components
	Two Sides of the Same Coin
	The Command Side
	The Query Side
	Syncing the Command and Query Sides
	Wrapup

	Demo Time
	Getting Started
	Starting the Application
	Nothing Up My Sleeve
	Signing Up New Authors
	Consuming NewAuthorSigned Events
	Following Other Authors
	Consuming FollowCommand Commands
	Verifying an Author's Followers
	Consuming AuthorFollowed Events
	Posting Cheeps
	Consuming PostCheepCommand Commands
	Consuming CheepPosted Events
	Consuming AddCheepToTimelineProjection Projections
	Verifying an Author's Timeline
	Wrapup

