Computer
Programming Using C

DAVID LIVINGSTON J, M.E.



Copyright © DAVID LIVINGSTON J 2018
All Rights Reserved.

Written and Published By:

DAVID LIVINGSTON J, M.E.
CFY Literature Service,
Coimbatore—28

Mobile:
99942 86194

Our Websites:
http://ffy.vpweb.in

http:// jdIcse.blogspot.com

2



TABLE OF CONTENT!

1. Introduction to Programming Languages 5 (Pg)
2. Structured Programming 10
3. Planning a Computer Program (PartI) 16
4. Planning a Computer Program (Part IT) 21
5. Introduction to ‘C’ Language 27
6. Fundamental Elements of C 33
7. Primitive Data Types in C 37
8. Enumerated Data Type in C 42
9. Operators and Expressions 46
10. Relational and Logical Operators 52
11. Using Assignment Operators 57
12. Control Flow Statement in C 61
13. Use of Switch & Goto Statement 67
14. Iterative Statements in C (Part I) 72
15. Iterative Statements in C (Part II) 79
16. User Defined Functions in C 84
17. Pointers and Arrays 88
18. Character Strings 94
19. Using Structures in C 98



SECTION |

—— O ——

Basics of Computer
Programming

This section explains some of the basic concepts involved
in Programming using Computers, which include the
following:

Introduction to Programming Languages
Structured Vs. Object Oriented Programming
Software Development Life Cycle (SDLC)
Planning a Program using Flowchart and Pseudo Code
Introduction to C Language
Fundamental Elements of C

Primitive Data Types in C

Using Enumerated Data Type in C



Chapter 1

SISO

INTRODUCTION TO
PROGRAMMING LANGUAGES

Programming languages are coding schemes that
are used for providing instructions to a computer system in
order to perform a processing activity by it. They are used
by IS professionals to develop both Operating Systems and
Application Software. They were developed to help solve

particular problems.

Third Fifth
Senenstion Generation

Generations of Programming Languages

[




Programming languages provide a programmer with
a set of keywords, symbols and a system of rules for
constructing statements that can be executed by a
computer. The symbols and the keywords are having
special meaning in the language. The set of rules (called
syntax) dictate how the symbols should be combined into
statements capable of conveying meaningful instructions to
the CPU.

Generation of Programming Languages

The First Generation programming language 1s
machine language, which requires the use of binary
symbols (Os and 1s). As machine language is the language
of the CPU, programs written using machine language can
be understood and executed directly by the CPU.

Second Generation languages overcome some of
the difficulties inherent in machine language by replacing
the binary digits with symbols. Thus, the programs written
using second generation language are in more readable
form than that of the machine language. Second generation
languages are also called as Assembly language, since
assembly language programs are converted into binary
language coding before their execution with the help of a
language translator named Assembler.

Third Generation languages are high level
languages that use English-like statements and commands.
Some of the third generation languages are: BASIC,
COBOL, C, and FORTRAN. 3GL languages are easier to
learn and use than machine and assembly languages
because they more closely resembles everyday human
communication and understanding.



With third-generation programming languages, each
statement in the language translates into several
instructions in the machine language. A special software
program called compiler converts the programmer's source
code into the machine language instructions consisting of
binary digits, as shown in below figure:

Computer C . Machine
ompiler
Program language program

\ 4

\ 4

The role of a Compiler

Fourth Generation languages are languages that
support Client/Server technology. They have the following
characteristics which distinguish them from the third
generation languages:

1. Provide features for storing and accessing
information from a database.

2. Emphasize what output results are desired
rather than how programming statements are
to be written.

3. Provide the tools for designing the User
Interface screens easily.

4GL languages are of two types: Front-ends and
Back-ends. Front-ends are tools that include visual
development tools like PowerBuilder, Delphi, Essbase,
Focus, Powerhouse and SAS. Back-ends are Database
Management Systems (DBMS) such as MS Access, SQL
Server, or Oracle. From the front-end, we can access the
back-end using a database language called SQL (Structured



Query Language) for performing database queries and
manipulations.

Fifth Generation programming languages are
Visual Programming languages such as Visual Basic,
Visual C++ and PC COBOL. They provide an
environment called Integrated Development Environment
(IDE), which includes all the necessary tools for program
development. Some of the tools available in an IDE are:
Editor, Screen Designer, Code Generator, Compiler and a
Debugger.

Moreover, fifth generation languages use a visual or
graphical development interface to create source language
code that is usually compiled with a 3GL or 4GL language
compiler. Microsoft Visual Studio 7, now known as Visual
Studio.Net allows 20-some programming languages such as
COBOL, C++, Perl, SmallTalk, C#, Jscript, Visual Basic,
Visual Foxpro and even Java to share a single GUIL

Object-Oriented Programming (OOP) Languages

The third generation languages separate data
elements from the procedures or actions that will be
performed on them. They give more importance to actions
(called procedures) than the data handled by them. In this
approach, language programs are divided into smaller
programs known as functions. Most of the functions share
the data globally.

But, Object Oriented Programming languages tie
both data and functions (actions) into a single unit called an
Object. An object consists of data and the functions that
can be performed on the data. Programming languages that
are based on the object oriented concepts such as objects,

8



encapsulation, data hiding, polymorphism and inheritance
are called Object Oriented languages.

In this type of programming, any real world entity
can be modeled as object. The whole software is
considered as a group of objects that work together to
accomplish a particular task. During execution, objects
interact with each other by sending messages and receiving
responses. For instance, in a program that performs
withdrawal from an account, a customer object may send a
withdraw message to a bank account object in order to
perform withdrawal. Any object that communicates with
another object need not be aware of its internal workings
but only its function signatures.

Thus, OOP is defined as a method of programming
in which programs are organized as co-operative
collections of objects, each of which represents a real world
entity. The entire programming is centered on concepts
such as objects, classes, polymorphism and inheritance.



Chapter 2

GEeI s

STRUCTURED PROGRAMMING

Software development is a process of creating new
software or modifying existing software for meeting the
current requirements of its users. This process consists of
various stages or phases in it.

Product reguiremants docunvant

,w | $ Softwars architectura
——
Implementationf > sutaurs

R

Verification

—

Maintenance

Software Development Life Cycle (SDLC)
10



Steps involved in Software Development process
include the following:

1. Problem Definition (Analysis)
2. Program Design

3. Coding / Implementation

4. Testing and

5. Maintenance

A complete set of all these activities involved in
developing software is known as Software Development
Life Cycle (SDLC). This is because the same sequence of
steps are to be followed whenever we develop new
software from scratch or modifying existing software for up
gradation.

Some small programs like text editor (e.g.,
Notepad) can be coded directly without following all the
steps involved in SDLC. But, large programs like MS
Word or MS Excel involve complexity in areas like
understanding the problem domain, meeting the customer
needs and delivering a good quality product in time.

To overcome the complexities involved in software
development, many methodologies, tools and languages
were introduced. Following are two major methodologies
introduced for simplifying software development process:

» Structured (Procedural) Programming

» Object Oriented Programming (OOP)

11



Structured Programming:

In structured programming model, software
designers tend to use Top-Down approach, in which the
overall objective of the system is defined first. Then the
system is divided into various sub tasks or sub modules.
With this methodology, software development is done by
writing a set of sub programs, called functions that can be
integrated together to form a complex system.

In Structured programming, the primary focus is on
functions. A function is a sub program that performs a
specific task using the values given to it through input
variables (called parameters) and then returns the result to
its calling program. Each function consists of a set of
program statements and some local variables.

A function when invoked behaves as though its
code is inserted at the point of its call. The communication
between the caller (calling function) and the callee (called
function) takes place through parameters. A typical
program structure for structured approach is shown below:

Main Program

/ ! \
Function 1 Function 2 Function 3
Function 4 Function 5

/ ! / \
Function 6 Function 7 Function 8

12



At the time of function call, the control is
transferred from the caller to the first statement of the
callee. All the statements in the function body are executed
and then the control is transferred back to the caller to
resume the execution of other statements.

Some characteristics exhibited by Structured or
Procedural-oriented approach are:

=>» Emphasis is on doing things (algorithms)

=> Large programs are divided into smaller programs
called functions.

=> Most of the functions share global data.

=>» Data move openly around the system from function
to function and

=> Employs Top-down approach in program design

Limitations of Structured Programming:

Structured programming was a powerful tool that
enabled programmers to write moderately complex
programs fairly easily. However, as the programs grew
larger, this approach failed to show the desired results in
terms of bug-free, easy-to-maintain and reusability of
programs.

In this approach, very little attention is given to data
used by the function. And, in a multi-function program,
many important data items are placed in the global scope,
so that they may be accessed by all functions. But, this
leads to the problem of accidental modification of data due
to its access from various functions of the program. Hence,
in a large program it is difficult to keep track of the data
items having global scope.

13



The following picture depicts the relationship of
data and function in structured (or) procedural

programming:

Global Data

Global Data

<

Function 1

Local Data

Relationship of data and functions in

Function 2

Local Data

Structured programming

Function 3

Local Data

Another series drawback with the procedural
approach is that it does not model the real world entities to

the elements in a program in a one-to-one manner. This is

because the functions are action-oriented and they do not
really correspond to the elements of the problem.

Object Oriented Programming:

Object Oriented Programming is centered on new

concepts such as objects, classes, polymorphism, and
inheritance. OOP is defined as follows: It is a method of

programming in which programs are organized as co-

operative collections of objects, each of which represents

an instance of some class and whose classes are all

members of a hierarchy of classes united through the

property called inheritance.

In this approach, any real world entity can be
modeled as an object. The whole software is considered as

14




a group of objects that work together to accomplish a
particular task. During execution, objects interact with
each other by sending messages and receiving responses.

For instance, in a program that performs withdrawal
from an account, a customer object may send a withdraw
message to a bank account object in order to perform a
withdrawal operation. Any object that communicates with
another object need not be aware of its internal workings
but only its function signatures.

15



Chapter 3

GEeI s

PLANNING A COMPUTER PROGRAM
(PartI)

Planning a computer program is nothing but
planning the logic of the program. In order to produce a
correct and effective computer program, the logic of the
program has to be planned first. Without having the logic,
a programmer can’t write the program well.

Methods of describing algorithm

FLOWCHARTS (Pictorial
representation of an algorithm)

PSEUDOCODE (Planning tool used for
planning program logic)

Methods of Planning a Computer Program

16



In a computer program, all the instructions must be
written in a proper sequence. When the order is not correct
or some of the instructions are left out, the computer will
calculate a wrong answer. To ensure the correct order and
the appropriateness of the computer instructions, a program
must be planned first. Planning a computer program is
done with the help of planning tools and techniques, which
include Algorithm, Flowchart and Pseudo code.

A sequence of instructions is called an algorithm.
Algorithms are a fundamental part of computing. There are
two commonly used tools to help to document program
logic (the algorithm). They are flowcharts and Pseudo
code. Generally, flowcharts work well for small problems
but Pseudo code is used for larger problems.

Using Algorithm

The term algorithm refers to the logic of the
program. An algorithm is defined as a step-by-step
description of how to arrive at the solution of a given
problem. An algorithm contains a set of instructions that
must be executed in a specified sequence to produce a
desired result. The characteristics of a good algorithm are
listed below:

1. Each and every instruction should be precise
and unambiguous.

2. Each instruction should be designed in such a
way that it can be performed in a finite time.

3. Not a single instruction should be repeated
infinitely, i.e., there should be an end for an
algorithm both logically and physically.

17



4. After the termination of an execution, the user
must be able to get the desired output.

The following are three ways in which an algorithm
can be represented:

% As Programs
+» As Flowcharts
*» As Pseudo codes

The first one is the language representation of an
algorithm that can be compiled and executed by a computer
to produce an expected output. When a high-level
language is used for representing an algorithm, it becomes
a computer program. The syntax and semantics of that
particular programming language must be followed to write
the program in it.

Normally an algorithm is written in a simple and
plain English. No rules and regulations are formed for
writing an algorithm except some characteristics, which
qualify a set of instructions to be an algorithm. To
represent an algorithm pictorially a flowchart is used.

Using Flowchart

A flowchart is a pictorial representation of an
algorithm. Programmers often use it as a visual tool for
organizing the sequence of steps necessary to solve a
problem. The process of drawing a flowchart for an
algorithm is often referred to as flowcharting.

A set of symbols is provided for drawing a
flowchart and to represent different operations to be
executed by a computer. The symbols used in a flowchart
are connected together using arrow headed solid lines to

18



indicate the sequence in which the instructions must be
evaluated. Flowcharting is a task that must be done after
writing the algorithm for a computer program. Itis a
pictorial representation of a program.

With flowcharting, essential steps of an algorithm
are shown using the shapes above. The flow of data
between steps is indicated by arrows, or flow lines.

Some of the common symbols used in flowcharts
are shown below. It is followed by a flowchart (and
equivalent Pseudo code) drawn for calculating the interest
for a given loan amount. The second flowchart and the
equivalent Pseudo code given above is for computing sum,
average and product of three numbers.

Use in flowchart

Name Symbol
Oval - Denotes the begiming or end of a program.

Denotes the directon of logic fow in a
program.

Flowline —»

Denotes ether an input operation (e.g., INPUT)
or an output operation (2.9, PRINT).

Recta Denotes a process to be carried out
o (e.9., an addition).

Denotes a decision (or branch) to ba made. The
Diamond program should continue along one of two routes
(eg, IFTHEN/ELSE).

Symbols used in a Flowchart

19



Flowchart & Its Corresponding Pseudo

Code
Read NAME, Read NAME,
BALAMCE, RATE BALANCE, RATE
¢ Compute INTEREST
INTEREST = BALANCE ¥ RATE as BALANCE x
RATE
4’ Write (Display)
Wirite MAME, NAME and
INTEREST INTEREST

v

/ Headi, ¥, L /

Read Read X, Y, Z
S=X+Y¥+7

Compute Sum (S) as X +Y +Z A=5/3
P=KuY¥YuxZ

Compute Average (A)as S /3

Compute Product (P) as X x Y x

Z

X ) Write =, A, P
Write (Display) the Sum, / e /
Average and Product

20



