
1

Computer

Programming Using C

DAVID LIVINGSTON J, M.E.

2

Copyright © DAVID LIVINGSTON J 2018

All Rights Reserved.

Written and Published By:

DAVID LIVINGSTON J, M.E.

CFY Literature Service,

Coimbatore—28

Mobile:

99942 86194

Our Websites:

http://ffy.vpweb.in

http://jdlcse.blogspot.com

3

TABLE OF CONTENT!

1. Introduction to Programming Languages 5 (Pg)

2. Structured Programming 10

3. Planning a Computer Program (Part I) 16

4. Planning a Computer Program (Part II) 21

5. Introduction to „C‟ Language 27

6. Fundamental Elements of C 33

7. Primitive Data Types in C 37

8. Enumerated Data Type in C 42

9. Operators and Expressions 46

10. Relational and Logical Operators 52

11. Using Assignment Operators 57

12. Control Flow Statement in C 61

13. Use of Switch & Goto Statement 67

14. Iterative Statements in C (Part I) 72

15. Iterative Statements in C (Part II) 79

 16. User Defined Functions in C 84

17. Pointers and Arrays 88

18. Character Strings 94

19. Using Structures in C 98

4

SECTION I

Basics of Computer
Programming

This section explains some of the basic concepts involved
in Programming using Computers, which include the

following:

Introduction to Programming Languages

Structured Vs. Object Oriented Programming

Software Development Life Cycle (SDLC)

Planning a Program using Flowchart and Pseudo Code

Introduction to C Language

Fundamental Elements of C

Primitive Data Types in C

Using Enumerated Data Type in C

6

Programming languages provide a programmer with

a set of keywords, symbols and a system of rules for

constructing statements that can be executed by a

computer. The symbols and the keywords are having

special meaning in the language. The set of rules (called

syntax) dictate how the symbols should be combined into

statements capable of conveying meaningful instructions to

the CPU.

Generation of Programming Languages

The First Generation programming language is

machine language, which requires the use of binary

symbols (0s and 1s). As machine language is the language

of the CPU, programs written using machine language can

be understood and executed directly by the CPU.

Second Generation languages overcome some of

the difficulties inherent in machine language by replacing

the binary digits with symbols. Thus, the programs written

using second generation language are in more readable

form than that of the machine language. Second generation

languages are also called as Assembly language, since

assembly language programs are converted into binary

language coding before their execution with the help of a

language translator named Assembler.

Third Generation languages are high level

languages that use English-like statements and commands.

Some of the third generation languages are: BASIC,

COBOL, C, and FORTRAN. 3GL languages are easier to

learn and use than machine and assembly languages

because they more closely resembles everyday human

communication and understanding.

7

With third-generation programming languages, each

statement in the language translates into several

instructions in the machine language. A special software

program called compiler converts the programmer's source

code into the machine language instructions consisting of

binary digits, as shown in below figure:

The role of a Compiler

Fourth Generation languages are languages that

support Client/Server technology. They have the following

characteristics which distinguish them from the third

generation languages:

1. Provide features for storing and accessing

information from a database.

2. Emphasize what output results are desired

rather than how programming statements are

to be written.

3. Provide the tools for designing the User

Interface screens easily.

 4GL languages are of two types: Front-ends and

Back-ends. Front-ends are tools that include visual

development tools like PowerBuilder, Delphi, Essbase,

Focus, Powerhouse and SAS. Back-ends are Database

Management Systems (DBMS) such as MS Access, SQL

Server, or Oracle. From the front-end, we can access the

back-end using a database language called SQL (Structured

Computer
Program

Compiler
Machine

language program

8

Query Language) for performing database queries and

manipulations.

 Fifth Generation programming languages are

Visual Programming languages such as Visual Basic,

Visual C++ and PC COBOL. They provide an

environment called Integrated Development Environment

(IDE), which includes all the necessary tools for program

development. Some of the tools available in an IDE are:

Editor, Screen Designer, Code Generator, Compiler and a

Debugger.

 Moreover, fifth generation languages use a visual or

graphical development interface to create source language

code that is usually compiled with a 3GL or 4GL language

compiler. Microsoft Visual Studio 7, now known as Visual

Studio.Net allows 20-some programming languages such as

COBOL, C++, Perl, SmallTalk, C#, Jscript, Visual Basic,

Visual Foxpro and even Java to share a single GUI.

Object-Oriented Programming (OOP) Languages

 The third generation languages separate data

elements from the procedures or actions that will be

performed on them. They give more importance to actions

(called procedures) than the data handled by them. In this

approach, language programs are divided into smaller

programs known as functions. Most of the functions share

the data globally.

 But, Object Oriented Programming languages tie

both data and functions (actions) into a single unit called an

Object. An object consists of data and the functions that

can be performed on the data. Programming languages that

are based on the object oriented concepts such as objects,

9

encapsulation, data hiding, polymorphism and inheritance

are called Object Oriented languages.

 In this type of programming, any real world entity

can be modeled as object. The whole software is

considered as a group of objects that work together to

accomplish a particular task. During execution, objects

interact with each other by sending messages and receiving

responses. For instance, in a program that performs

withdrawal from an account, a customer object may send a

withdraw message to a bank account object in order to

perform withdrawal. Any object that communicates with

another object need not be aware of its internal workings

but only its function signatures.

Thus, OOP is defined as a method of programming

in which programs are organized as co-operative

collections of objects, each of which represents a real world

entity. The entire programming is centered on concepts

such as objects, classes, polymorphism and inheritance.

11

Steps involved in Software Development process

include the following:

1. Problem Definition (Analysis)

2. Program Design

3. Coding / Implementation

4. Testing and

5. Maintenance

A complete set of all these activities involved in

developing software is known as Software Development

Life Cycle (SDLC). This is because the same sequence of

steps are to be followed whenever we develop new

software from scratch or modifying existing software for up

gradation.

Some small programs like text editor (e.g.,

Notepad) can be coded directly without following all the

steps involved in SDLC. But, large programs like MS

Word or MS Excel involve complexity in areas like

understanding the problem domain, meeting the customer

needs and delivering a good quality product in time.

To overcome the complexities involved in software

development, many methodologies, tools and languages

were introduced. Following are two major methodologies

introduced for simplifying software development process:

 Structured (Procedural) Programming

 Object Oriented Programming (OOP)

12

Structured Programming:

In structured programming model, software

designers tend to use Top-Down approach, in which the

overall objective of the system is defined first. Then the

system is divided into various sub tasks or sub modules.

With this methodology, software development is done by

writing a set of sub programs, called functions that can be

integrated together to form a complex system.

In Structured programming, the primary focus is on

functions. A function is a sub program that performs a

specific task using the values given to it through input

variables (called parameters) and then returns the result to

its calling program. Each function consists of a set of

program statements and some local variables.

A function when invoked behaves as though its

code is inserted at the point of its call. The communication

between the caller (calling function) and the callee (called

function) takes place through parameters. A typical

program structure for structured approach is shown below:

Main Program

Function 1 Function 2 Function 3

Function 4 Function 5

Function 6 Function 7 Function 8

13

At the time of function call, the control is

transferred from the caller to the first statement of the

callee. All the statements in the function body are executed

and then the control is transferred back to the caller to

resume the execution of other statements.

Some characteristics exhibited by Structured or

Procedural-oriented approach are:

 Emphasis is on doing things (algorithms)

 Large programs are divided into smaller programs

called functions.

 Most of the functions share global data.

 Data move openly around the system from function

to function and

 Employs Top-down approach in program design

Limitations of Structured Programming:

 Structured programming was a powerful tool that

enabled programmers to write moderately complex

programs fairly easily. However, as the programs grew

larger, this approach failed to show the desired results in

terms of bug-free, easy-to-maintain and reusability of

programs.

In this approach, very little attention is given to data

used by the function. And, in a multi-function program,

many important data items are placed in the global scope,

so that they may be accessed by all functions. But, this

leads to the problem of accidental modification of data due

to its access from various functions of the program. Hence,

in a large program it is difficult to keep track of the data

items having global scope.

14

The following picture depicts the relationship of

data and function in structured (or) procedural

programming:

Relationship of data and functions in

Structured programming

Another series drawback with the procedural

approach is that it does not model the real world entities to

the elements in a program in a one-to-one manner. This is

because the functions are action-oriented and they do not

really correspond to the elements of the problem.

Object Oriented Programming:

Object Oriented Programming is centered on new

concepts such as objects, classes, polymorphism, and

inheritance. OOP is defined as follows: It is a method of

programming in which programs are organized as co-

operative collections of objects, each of which represents

an instance of some class and whose classes are all

members of a hierarchy of classes united through the

property called inheritance.

In this approach, any real world entity can be

modeled as an object. The whole software is considered as

Global Data Global Data

Function 1

Local Data

Function 2

Local Data

Function 3

Local Data

15

a group of objects that work together to accomplish a

particular task. During execution, objects interact with

each other by sending messages and receiving responses.

For instance, in a program that performs withdrawal

from an account, a customer object may send a withdraw

message to a bank account object in order to perform a

withdrawal operation. Any object that communicates with

another object need not be aware of its internal workings

but only its function signatures.

17

In a computer program, all the instructions must be

written in a proper sequence. When the order is not correct

or some of the instructions are left out, the computer will

calculate a wrong answer. To ensure the correct order and

the appropriateness of the computer instructions, a program

must be planned first. Planning a computer program is

done with the help of planning tools and techniques, which

include Algorithm, Flowchart and Pseudo code.

A sequence of instructions is called an algorithm.

Algorithms are a fundamental part of computing. There are

two commonly used tools to help to document program

logic (the algorithm). They are flowcharts and Pseudo

code. Generally, flowcharts work well for small problems

but Pseudo code is used for larger problems.

Using Algorithm

The term algorithm refers to the logic of the

program. An algorithm is defined as a step-by-step

description of how to arrive at the solution of a given

problem. An algorithm contains a set of instructions that

must be executed in a specified sequence to produce a

desired result. The characteristics of a good algorithm are

listed below:

1. Each and every instruction should be precise

and unambiguous.

2. Each instruction should be designed in such a

way that it can be performed in a finite time.

3. Not a single instruction should be repeated

infinitely, i.e., there should be an end for an

algorithm both logically and physically.

18

4. After the termination of an execution, the user

must be able to get the desired output.

The following are three ways in which an algorithm

can be represented:

 As Programs

 As Flowcharts

 As Pseudo codes

The first one is the language representation of an

algorithm that can be compiled and executed by a computer

to produce an expected output. When a high-level

language is used for representing an algorithm, it becomes

a computer program. The syntax and semantics of that

particular programming language must be followed to write

the program in it.

Normally an algorithm is written in a simple and

plain English. No rules and regulations are formed for

writing an algorithm except some characteristics, which

qualify a set of instructions to be an algorithm. To

represent an algorithm pictorially a flowchart is used.

Using Flowchart

A flowchart is a pictorial representation of an

algorithm. Programmers often use it as a visual tool for

organizing the sequence of steps necessary to solve a

problem. The process of drawing a flowchart for an

algorithm is often referred to as flowcharting.

A set of symbols is provided for drawing a

flowchart and to represent different operations to be

executed by a computer. The symbols used in a flowchart

are connected together using arrow headed solid lines to

19

indicate the sequence in which the instructions must be

evaluated. Flowcharting is a task that must be done after

writing the algorithm for a computer program. It is a

pictorial representation of a program.

With flowcharting, essential steps of an algorithm

are shown using the shapes above. The flow of data

between steps is indicated by arrows, or flow lines.

Some of the common symbols used in flowcharts

are shown below. It is followed by a flowchart (and

equivalent Pseudo code) drawn for calculating the interest

for a given loan amount. The second flowchart and the

equivalent Pseudo code given above is for computing sum,

average and product of three numbers.

Symbols used in a Flowchart

20

Flowchart & Its Corresponding Pseudo

Code

Read NAME,
BALANCE, RATE

Compute INTEREST
as BALANCE x
RATE

Write (Display)
NAME and
INTEREST

Read Read X, Y, Z

Compute Sum (S) as X + Y + Z

Compute Average (A) as S / 3

Compute Product (P) as X x Y x
Z

Write (Display) the Sum,
Average and Product

