{C++STORIES |

CPPSTORIES.COM

Lambdas

en C++

Barttomiegj Filipek

Lambdas en C++

Todo lo que necesitas saber sobre las expresiones
lambda en C++ moderno, desde C++03 hasta C++20
Barttomiej Filipek y Javier Estrada

Este libro est4 a la venta en http://leanpub.com/cpplambdaspanish

Esta version se publicé en 2021-07-25

)

Leanpub

Este es un libro de Leanpub. Leanpub anima a los autores y publicadoras con el proceso de
publicacién. Lean Publishing es el acto de publicar un libro en progreso usando
herramientas sencillas y muchas iteraciones para obtener retroalimentacion del lector hasta
conseguir el libro adecuado.

© 2021 Barttomiej Filipek y Javier Estrada

http://leanpub.com/cpplambdaspanish
http://leanpub.com/
http://leanpub.com/manifesto

Indice general

Sobreellibro i
Origenesdellibro. i
Paraquiénesestelibro ii
Comoleerestelibro ii
Retroalimentacion del lector y errata oL L. iii
Codigodeejemplo L iii
Licenciadel codigo o iv
Formateo y secciones especiales iv
Compiladoresenlinea vi

Sobreelautor viii

Sobre el traductor ix

Agradecimientos X

Historial derevisiones xi

1. Lambdasen C++98/03 1
Objectos invocables en C++98/03 2
Problemas con los tipos clase objeto funciéon L. 7
Composicion con auxiliares funcionales 8
Motivacién para una nueva caracteristica oL 10

2. Lambdasen C++11 e 12
La sintaxis de una expresion lambda o oL oo L 13
Definiciones basicas 15
El tipo de una expresion lambda L L oL 17
El operador de llamada a funcién L o L. 19

Capturas 21

INDICE GENERAL

Tipoderetorno L 33
Conversién a un puntero a funciéon L. 35
EFII - Expresion Funcional Inmediatamente Invocada 38
Heredardeunalambda 40
Almacenar lambdas en un contenedor oL L oL 43
Resumen L 43

Referencias e 44

Sobre el libro

Este libro muestra la historia de las expresiones lambda en C++. Aprenderas a usar esta
poderosa caracteristica paso a paso, asimilando lentamente las nuevas capacidades y mejoras
que vienen con cada revision del estindar de C++.

Comenzaremos con C++98/03 y luego pasaremos a los dltimos estandares de C++.

+ C++98/03 - ;Como codificar sin apoyo para lambdas. ;Cual fue la motivacion para la
nueva caracteristica moderna de C++?

+ C++11 - Los primeros dias. Aprenderas todos los elementos de una expresion lambda e
incluso algunos trucos. Este es el capitulo mas largo ya que necesitamos cubrir mucho.

o C++14 - Actualizaciones. Una vez que se adoptaron las lambdas, vimos algunas
opciones para mejorarlas.

+ C++17 - Mas mejoras, especialmente al manejar el puntero this y permitir constexpr.

+ C++20 - En esta seccion veremos el estandar C++20 mas reciente y novedoso.

Ademas, encontraras técnicas y patrones utiles a lo largo de los capitulos para usar lambdas
en tu codigo.

Caminar a través de la evolucion de esta poderosa caracteristica de C++ nos permite no solo
aprender sobre las lambdas, sino también ver como ha cambiado C++ en los tltimos afios. En
una seccidn veras una técnica que luego sera “iterada” y actualizada en capitulos posteriores
cuando haya nuevos elementos de C++ disponibles. Cuando sea posible, el libro se enlazara
con otras secciones relacionadas del libro.

Origenes del libro

Laidea del contenido comenzé después de una presentacion de codificacion en vivo realizada
por Tomasz Kaminski en nuestro Grupo de Usuarios de C++ local de Cracovia.

Tomé las ideas de la presentacion (con el permiso de Tomek, por supuesto :) y luego creé dos
articulos que aparecieron en bfilipek.com:

Sobre el libro ii

« Lambdas: desde C++11 hasta C++20, parte 1*
« Lambdas: desde C++11 hasta C++20, parte 2°

Mas tarde decidi que queria ofrecer a mis lectores no solo publicaciones de blog, sino también
un PDF atractivo. Leanpub proporciona una manera facil de crear dichos PDF, por lo que
fue la eleccion correcta copiar el contenido de los articulos y crear un libro Leanpub.

(Por qué no ir mas alla?

Después de un tiempo, decidi escribir mas contenido, actualizar los ejemplos, proporcionar
mejores casos de uso y patrones. ;Y aqui tienes el libro! jAhora es casi cuatro veces el tamafio
del material inicial que esta disponible en el blog!

Para quién es este libro

Este libro esta dirigido a todos los desarrolladores de C++ a quienes les gusta aprender todo
sobre una caracteristica moderna de C++: las expresiones lambda.

Como leer este libro

Este libro tiene el orden de “historial”, por lo que significa que comienza desde el fondo
detras de las lambdas y luego avanza lentamente con nuevas caracteristicas y capacidades.
Leer este libro de principio a fin puede ser adecuado para un desarrollador experimentado
que quiera recordar los principios, ver la historia de fondo y aprender las novedades de cada
estandar de C++.

Por otro lado, si eres un principiante, es mejor comenzar desde el capitulo de C++11. Ve las
secciones sobre la sintaxis basica, ejemplos, como capturar variables. Luego, cuando estés
listo, puedes omitir algunos temas avanzados y pasar al capitulo de C++14, donde aprenderas
sobre las lambdas genéricas. Las primeras partes del capitulo de C++11 y C++14 son cruciales
para comprender las lambdas. Una vez que obtengas los conceptos basicos, puedes leer las
secciones omitidas y ver técnicas mas avanzadas.

Al final del libro, en el Apéndice A hay una lista util de “técnicas para lambdas”. Puedes
echar un vistazo rapido para ver si hay algo interesante y luego comenzar a leer esa seccion.

"https://www.bfilipek.com/2019/02/lambdas-story-part1.html
*https://www.bfilipek.com/2019/03/lambdas- story-part2.html

https://www.bfilipek.com/2019/02/lambdas-story-part1.html
https://www.bfilipek.com/2019/03/lambdas-story-part2.html
https://www.bfilipek.com/2019/02/lambdas-story-part1.html
https://www.bfilipek.com/2019/03/lambdas-story-part2.html

Sobre el libro iii

Retroalimentacion del lector y errata

Si detectas un error, un error tipografico, un error gramatical o cualquier otra cosa (jespe-
cialmente problemas 16gicos!) que deba corregirse, envia tus comentarios a bartlomiej.filipek
ARROBA bfilipek.com.

Aqui esta la errata con la lista de correcciones:
https://www.cppstories.com/p/cpplambdaspanish/

iTus comentarios son importantes! Si escribes una critica honesta, puedes ayudar con la
promocion del libro y la calidad de mi trabajo posterior.

Si compraste este libro a través de Amazon, en versién impresa o Kindle, por favor deja una
resefia alli.

Ademas, el libro tiene una pagina dedicada en GoodReads. Por favor comparte tus comenta-
rios:

C++ Lambda Story @GoodReads®

Cédigo de ejemplo

Puedes encontrar el codigo fuente de todos los ejemplos en este repositorio ptblico indepen-
diente de Github.

github.com/fenbf/cpplambdastory-code*

Puedes buscar archivos individuales o descargar toda la rama:
github.com/fenbf/cpplambdastory-code/archive/main.zip®

Cada capitulo tiene su carpeta, por ejemplo, “Lambdas en C++11” tiene su codigo en “cpp11”.

Cada ejemplo tiene un nimero en el titulo. Por ejemplo:

Ex2_3: std:: function y deduccién de tipo auto ...

// cédigo de ejemplo...

*https://www.goodreads.com/book/show/53609731-c-lambda-story
*https://github.com/fenbf/cpplambdastory-code
*https://github.com/fenbf/cpplambdastory- code/archive/main.zip

https://www.goodreads.com/book/show/53609731-c-lambda-story
https://github.com/fenbf/cpplambdastory-code
https://github.com/fenbf/cpplambdastory-code/archive/main.zip
https://www.goodreads.com/book/show/53609731-c-lambda-story
https://github.com/fenbf/cpplambdastory-code
https://github.com/fenbf/cpplambdastory-code/archive/main.zip

Sobre el libro iv

Significa que puedes ir a la carpeta del segundo capitulo - C++11 y luego buscar el tercer
ejemplo. Tiene el siguiente nombre de archivo:

chapter2_cppll\ex2_3_std_function_and auto.cpp.

Muchos ejemplos del libro son relativamente breves. Puedes copiar y pegar las lineas en tu
compilador/entorno de desarrollo favorito y luego ejecutar el fragmento de cédigo.

Licencia del cédigo

El cédigo del libro esta disponible bajo la licencia Creative Commons.

Formateo y secciones especiales

Los ejemplos de codigo se presentan en una fuente monoespaciada, similar al siguiente
ejemplo:

Para ejemplos mas largos:

Titulo del ejemplo

#include <iostream>

int main() {
const std::string text { "Hola, mundo" }
std::cout << text << '\n';

O fragmentos maés cortos (sin titulo y a veces con instrucciones include):

int foo() {
return std::clamp(100, 1000, 1001);

Cuando esté disponible, también veras un enlace al compilador en linea donde puedes jugar
con el cddigo. Por ejemplo:

Sobre el libro v

Titulo de ejemplo. Cédigo en vivo @Wandbox

#include <iostream>

int main() {
std::cout << "Hola,!";

Puedes hacer clic en el enlace en el titulo y luego debera abrirse el sitio web de un compilador
en linea determinado (en el caso anterior es Wandbox). Puedes compilar la muestra, ver el
resultado y experimentar con el cédigo directamente en tu navegador.

Los fragmentos de programas mas largos generalmente se acortaron para presentar solo la
mecanica principal.

Limitaciones de resaltado de sintaxis

La version actual del libro puede mostrar algunas limitaciones con respecto al resaltado de
sintaxis.

Por ejemplo:

« if constexpr - Enlace al asunto Pygments: C++ if constexpr no se reconoce (C++17)
- Asunto #1136°.

« El primer método de una clase no esta resaltado - Primer método de clase no resaltado
en C++ - Asunto #791.

+ El método de plantilla no esta resaltado C++ analizador léxico no reconoce la funcién
si el tipo de retorno tiene una plantilla - Asunto #1138%.

Los atributos de C++ moderno a veces no se reconocen correctamente.

Otros asuntos de C++ y Pygments: Asuntos de C++ - github/pygments/pygments®.

“https://github.com/pygments/pygments/issues/1136
"https://github.com/pygments/pygments/issues/791
*https://github.com/pygments/pygments/issues/1138
*https://github.com/pygments/pygments/issues?q=is%3Aissue+is%3Aopen+C%2B%2B

https://wandbox.org/permlink/Yz44BM8w5Smjhkm4
https://github.com/pygments/pygments/issues/1136
https://github.com/pygments/pygments/issues/1136
https://github.com/pygments/pygments/issues/791
https://github.com/pygments/pygments/issues/791
https://github.com/pygments/pygments/issues/1138
https://github.com/pygments/pygments/issues/1138
https://github.com/pygments/pygments/issues?q=is:issue+is:open+C%2B%2B
https://github.com/pygments/pygments/issues/1136
https://github.com/pygments/pygments/issues/791
https://github.com/pygments/pygments/issues/1138
https://github.com/pygments/pygments/issues?q=is:issue+is:open+C%2B%2B

Sobre el libro vi

Secciones especiales
A lo largo del libro también puedes ver las siguientes secciones:

o Este es un cuadro de informacion, con notas adicionales relacionadas con la

seccién actual.

Este es un cuadro de advertencia con riesgos y amenazas potenciales relacionados
con un tema determinado.

Este es un cuadro de citas. A menudo se usa en el libro para citar el estandar de C++.

Compiladores en linea

En lugar de crear proyectos locales para jugar con las muestras de cédigo, también puedes
aprovechar los compiladores en linea. Ofrecen un editor de texto basico y por lo general te
permiten compilar solo un archivo fuente (el cddigo que editas). Son convenientes si deseas
jugar con ejemplos de codigo y verificar los resultados utilizando varios proveedores de
compiladores y distintas versiones.

Por ejemplo, muchas de las muestras de c6digo para este libro se crearon utilizando Coliru
Online, Wandbox o Compiler Explorer y luego se adaptaron para el libro.

Aqui tienes una lista de algunos de los servicios utiles:

« Coliru" - Usa GCC 9.2.0 (a julio de 2020); ofrece compartir enlaces y un editor de texto
basico, es simple pero muy efectivo.

« Wandbox'' - Ofrece una gran cantidad de compiladores, incluidas la mayoria de las
versiones de Clang y GCC, que pueden usar bibliotecas Boost; ofrece intercambio de
enlaces y compilacion de multiples archivos.

« Compiler Explorer' - Ofrece muchos compiladores, muestra el cédigo ensamblador

°http://coliru.stacked- crooked.com/
hitps://wandbox.org/
*https://gcc.godbolt.org/

http://coliru.stacked-crooked.com/
https://wandbox.org/
https://gcc.godbolt.org/
http://coliru.stacked-crooked.com/
https://wandbox.org/
https://gcc.godbolt.org/

Sobre el libro vii

generado, puede ejecutar el cddigo o incluso realizar analisis de codigo estatico.

+ CppBench® - Ejecuta pruebas de rendimiento simples de C++ (utilizando la biblioteca
de referencia de Google).

« BuildBench'* - Permite comparar los tiempos de construccién de dos programas C++,
comparte una interfaz de usuario similar a CppBench.

+ C++ Insights® - Una herramienta basada en Clang para la transformacion de fuente
a fuente. Muestra como el compilador ve el cddigo al expandir las lambdas, auto,
vinculos estructurados, deduccién de plantillas y paquetes variadicos o bucles for
basado en rango.

También hay una lista atil de compiladores en linea reunidos en este sitio web: Lista de
compiladores de C++ en linea™.

*http://quick-bench.com/
“https://build-bench.com
“https://cppinsights.io/
*“https://arnemertz.github.io/online-compilers/

http://quick-bench.com/
https://build-bench.com/
https://cppinsights.io/
https://arnemertz.github.io/online-compilers/
https://arnemertz.github.io/online-compilers/
http://quick-bench.com/
https://build-bench.com/
https://cppinsights.io/
https://arnemertz.github.io/online-compilers/

Sobre el autor

Bartlomiej (Bartek) Filipek es un desarrollador de software de C++ de la bella ciudad de
Cracovia, al sur de Polonia. Inicié su carrera profesional en 2007 y se gradué de la Universidad
Jagiellonian con una Maestria en Ciencias de la Computacién.

Bartek actualmente trabaja en Xara'’, donde desarrolla funciones para editores de documen-
tos avanzados. También tiene experiencia con aplicaciones de graficos de escritorio, desarro-
llo de juegos, sistemas a gran escala para la aviacion, escritura de controladores de graficos
e incluso la biorretroalimentacién. En el pasado, Bartek también ha ensefiado programacion
(principalmente cursos de programacion de juegos y graficos) en universidades locales en
Cracovia.

Desde 2011 Bartek ha escrito blogs regularmente en bfilipek.com' y ultimamente en
cppstories.com'’. Inicialmente, los temas giraban en torno a la programacién de graficos, pero
ahora el blog se centra en las caracteristicas principales de C++. También es coorganizador
del Grupo de Usuarios de C++ en Cracovia®. Puedes escuchar a Bartek en un episodio de
@CppCast®* donde habla sobre C++17, blogs y procesamiento de texto.

Desde octubre de 2018, Bartek ha sido un Experto de C++ para el Organismo Nacional Polaco
que trabaja directamente con ISO/IEC JTC 1/SC 22 (el comité internacional ISO para la
normalizacién del lenguaje C++). En el mismo mes, Bartek recibi6 su primer titulo de MVP
para los afios 2019/2020 por Microsoft.

En su tiempo libre, le encanta coleccionar y montar modelos de Lego con su pequerio hijo.

Bartek es el autor de C++17 en detalle??.

http://www.xara.com/

*https://www.bfilipek.com
https://www.cppstories.com]
**https://www.meetup.com/C-User-Group- Cracow/
*hitp://cppcast.com/2018/04/bartlomiej-filipek/
**https://leanpub.com/cpp17indetail

http://www.xara.com/
https://www.bfilipek.com/
https://www.cppstories.com]/
https://www.meetup.com/C-User-Group-Cracow/
http://cppcast.com/2018/04/bartlomiej-filipek/
http://cppcast.com/2018/04/bartlomiej-filipek/
https://leanpub.com/cpp17indetail
http://www.xara.com/
https://www.bfilipek.com/
https://www.cppstories.com]/
https://www.meetup.com/C-User-Group-Cracow/
http://cppcast.com/2018/04/bartlomiej-filipek/
https://leanpub.com/cpp17indetail

Sobre el traductor

Javier Estrada es un desarrollador de software de C++ en el sur de California. Inicié su
carrera profesional en 1988 y se gradué del Instituto Tecnoldgico de Chihuahua con una
Ingenieria Industrial en Electronica.

Javier actualmente trabaja en Motorola Solutions®®, donde desarrolla software para seguridad
publica en C++ y Java. En el pasado Javier también ha impartido cursos de programacion
en Python y Java para equipos de robdética de escuelas preparatorias regionales en el sur de
California.

Javier publica en su blog Se Habla C++%*), donde trata temas generales y resefias de
presentaciones en CPPCON por distintos autores.

Javier es el traductor de C++17 - La guia completa® y uno de los editores principales de
Referencia de C++%¢. Puedes escuchar a Javier en un par de platicas relampago en CPPCON:
A Conversion Story: Improving from_chars and to_chars in C++17%, e If You Build It, Will
They Come?*®

En su tiempo libre, Javier disfruta de una buena partida de ajedrez y un buen libro.

#https://motorolasolutions.com
**https://javierestrada.blog
*https://leanpub.com/cpp17es
*https://es.cppreference.com
*"https://www.youtube.com/watch?v=7HB4AejLHZs
*$https://www.youtube.com/watch?v=I18lVKve_bEk

https://motorolasolutions.com/
https://javierestrada.blog/
https://leanpub.com/cpp17es
https://es.cppreference.com/
https://www.youtube.com/watch?v=7HB4AejLHZs
https://www.youtube.com/watch?v=I8lVKve_bEk
https://www.youtube.com/watch?v=I8lVKve_bEk
https://motorolasolutions.com/
https://javierestrada.blog/
https://leanpub.com/cpp17es
https://es.cppreference.com/
https://www.youtube.com/watch?v=7HB4AejLHZs
https://www.youtube.com/watch?v=I8lVKve_bEk

Agradecimientos

Este libro no seria posible sin la aportacion del experto de C++ Tomasz Kaminski (véase el
perfil profesional de Tomek en Linkedin®).

Tomek dirigi6 una presentacion de codificacion en vivo sobre la “historia” de las lambdas en
nuestro grupo de usuarios de C++ local en Cracovia:

Lambdas: desde C++11 hasta C++20 - Grupo de Usuarios de C++ en Cracovia®
Muchos de los ejemplos usados en este libro provienen de esa sesion.

Si bien la version inicial del libro era relativamente corta, la version extendida (100 paginas
adicionales!) es el resultado de los comentarios y el aliento que recibi de JFT (John Taylor).
John dedicé mucho tiempo a encontrar incluso pequefias cosas que podrian mejorarse y
ampliarse.

Ademas, me gustaria agradecer a Dawid Pilarski (panicsoftware.com/about-me*®') por sus
utiles comentarios y una revision del libro completo.

Agradecimientos adicionales para Bjorn Fahller (@playfulprogramming®?), Javier Estrada
(Se Habla C++°*) y Andreas Fertig (andreasfertig.info®*) por revisiones y discusiones
adicionales.

Por altimo, pero no menos importante, recibi muchos comentarios y opiniones de los lectores
del blog, Patreon Discord Server y discusiones en C++ Polska®. jGracias a todos!

iCon toda la ayuda de esa gente amable, la calidad del libro fue mejorando cada vez mas!

*https://www.linkedin.com/in/tomasz-kami%C5%84ski-208572b1/
*°https://www.meetup.com/pl- PL/C-User-Group- Cracow/events/258795519/
*'https://blog.panicsoftware.com/about-me/
**https://playfulprogramming.blogspot.com/

**https://javierestrada.blog/

**https://andreasfertig.info/

**https://cpp-polska.pl/

https://www.linkedin.com/in/tomasz-kami%C5%84ski-208572b1/
https://www.linkedin.com/in/tomasz-kami%C5%84ski-208572b1/
https://www.meetup.com/pl-PL/C-User-Group-Cracow/events/258795519/
https://blog.panicsoftware.com/about-me/
https://playfulprogramming.blogspot.com/
https://javierestrada.blog/
https://andreasfertig.info/
https://cpp-polska.pl/
https://www.linkedin.com/in/tomasz-kami%C5%84ski-208572b1/
https://www.meetup.com/pl-PL/C-User-Group-Cracow/events/258795519/
https://blog.panicsoftware.com/about-me/
https://playfulprogramming.blogspot.com/
https://javierestrada.blog/
https://andreasfertig.info/
https://cpp-polska.pl/

Historial de revisiones

+ 24 de julio de 2021 - Primera edicion en linea

1. Lambdas en C++98/03

Para empezar, es bueno crear algunos antecedentes para nuestro tema principal. Para hacer
esto, nos trasladaremos al pasado y veremos el cédigo que no usa ninguna técnica de C++
moderno, lo que significa que usaremos la especificacion de C++98/03.

En este capitulo aprenderas:

« Cémo pasar objetos funcion a los algoritmos de la biblioteca estandar de la “forma
antigua”.

« Las limitaciones de los tipos clase objetos funcion.

« Por qué los auxiliares funcionales no eran lo suficientemente buenos.

La motivacién de las lambdas para C++0x/C++11.

Lambdas en C++98/03 2

Objectos invocables en C++98/03

Una de las ideas fundamentales de la biblioteca estandar es que los algoritmos como
std::sort, std::for_each, std::transform y muchos otros, pueden tomar cualquier
objeto invocable y llamarlo en elementos del contenedor de entrada. Sin embargo, en
C++98/03 esto solo incluia punteros a funcién o tipos clase con el operador de llamada a
funcién (comunmente denominado “funtor”).

Como ejemplo, echemos un vistazo a una aplicacion que imprime todos los elementos de un
vector.

En la primera versién usaremos una funcién regular:

Ex1_1: Una funcién de impresioén basica. Cdédigo en vivo @Wandbox

#include <algorithm>
#include <iostream>
#include <vector>

void PrintFunc(int x) {
std::cout << x << '"\n'j;

int main() {
std::vector<int> v;
v.push_back(1l); // ino hay inicializacidén uniforme en C++03!
v.push_back(2); // solo push_back esta disponible... :)
std::for_each(v.begin(), v.end(), PrintFunc);

El cddigo anterior usa std: : for_each para iterar sobre un vector (usamos C++98/03 ya que
el bucle for basado en rango no esta disponible) y luego pasa a PrintFunc como un objeto
invocable.

Podemos convertir esta funcién en un tipo clase con el operador de llamada a funcién

https://wandbox.org/permlink/XiMBBTOG122vplUS

Lambdas en C++98/03 3

Ex1_2: Un tipo objeto funcion de impresién basico. Codigo en vivo @ Wandbox

#include <algorithm>
#include <iostream>
#include <vector>

struct Printer {
void operator() (int x) const {
std::cout << x << '"\n';

s

int main() {
std::vector<int> v;
v.push_back(1l); // no hay lista de dnicializadores
v.push_back(2); // en C++98/03...
std: :for_each(v.begin(), v.end(), Printer());

El ejemplo define un tipo struct con el operador de llamada a funcién, operator (), que
significa que puedes “llamar” a este objeto como una funcion regular:

Printer printer;
printer(); // 1lama a operator()
printer.operator()(); // llamada equivalente

Si bien las funciones que no son miembros suelen no tener estado’, los tipos clase similares a
funciones pueden albergar datos miembro no estaticos que permiten almacenar estado. Un
ejemplo es contar el nimero de invocaciones de un objeto invocable en un algoritmo. Esta
solucion necesita mantener un contador que se actualice con cada llamada:

'Puedes usar variables globales o estaticas en una funcién regular, pero no es la mejor solucién. Este enfoque dificulta el control
del estado en muchos grupos de invocaciones de lambdas.

https://wandbox.org/permlink/HQYkbHmuOX9o6FUf

Lambdas en C++98/03 4

Ex1_3: Objeto funcién con estado. Codigo en vivo @Wandbox

#include <algorithm>
#include <iostream>
#include <vector>

struct PrinterEx {
PrinterEx(): numCalls(0) { }

void operator() (int x) {
std::cout << x << '"\n'j;
++numCalls;

int numCalls;

+s

int main() {
std::vector<int> v;
v.push_back(1);
v.push_back(2);
const PrinterEx vis = std::for_each(v.begin(), v.end(), PrinterEx());
std::cout << "num calls: " << vis.numCalls << '\n'j;

En el ejemplo anterior, hay un dato miembro numCalls que se utiliza para contar el nimero
de invocaciones del operador de llamada a funcion. std:: for_each devuelve el objeto
funcién que le pasamos, por lo que podemos tomar este objeto y obtener el dato miembro.

Como puedes predecir facilmente, debemos obtener el siguiente resultado:

1
2
num calls: 2

También podemos “capturar” variables dentro del &mbito de la llamada. Para hacer eso, tene-
mos que crear un dato miembro en nuestro objeto funcién e inicializarlo en el constructor.

https://wandbox.org/permlink/ZqKiBjzwjM9shDJ5

Lambdas en C++98/03

Ex1_4: Objeto funcién con una variable capturada. Cédigo en vivo @Wandbox

#include <algorithm>

#include <iostream>

#include <string>

#include <vector>

struct PrinterEx {

+s

int

PrintEx(const std::string& str):
strText(str), numCalls(0) { }

void operator() (int x) {
std::cout << strText << x << '"\n';
++numCalls;

std::string strText;
int numCalls;

main() {

std: :vector<int> v;

v.push_back(1);

v.push_back(2);

const std::string introText("Elem: ");

const PrinterkEx vis = std::for_each(v.begin(), v.end(),
PrinterEx(introText));

std::cout << "num calls: " << vis.numCalls << '\n';

En esta version, PrinterEx toma un parametro adicional para inicializar un dato miembro.
Entonces esta variable se usa en el operador de llamada a funcion y el resultado esperado es
el siguiente:

Elem: 1
Elem: 2
num calls: 2

https://wandbox.org/permlink/wT9c3NWO0ZDd1dpp

Lambdas en C++98/03 6

¢Qué es un “funtor”?

En algunas secciones anteriores me referi a que los tipos clase con operator () a veces se
denominan “funtores”. Si bien este término es util y mucho mas corto que “tipo clase objeto
funcién”, no es correcto.

Como puede verse, “funtor” proviene de la programacioén funcional y tiene un significado
diferente al que se usa coloquialmente en C++.

Citando a Bartosz Milewski en funtores®:

Un funtor es una correspondencia entre categorias. Dadas dos categorias, C y D, un funtor
F corresponde objetos en C a objetos en D; es una funcién en objetos.

Es muy abstracto, pero afortunadamente, también podemos buscar una definicién mas
simple. En el capitulo 10 de “Programacién Funcional en C++”* Ivan Cukic “traduce” esas
definiciones abstractas en una mas practica para C++:

Una plantilla de clase F es un funtor si tiene una funcién transform (o map) definida en
ella.

También, tal funcion transform debe obedecer dos reglas sobre identidad y composicion.

El término “funtor” no esta presente de ninguna forma en la especificacién de C++ (incluso
en C++98/03), por lo tanto, en el resto de este libro intentaremos evitarlo.

Recomiendo las siguientes fuentes para leer mas sobre funtores:

» Functors, Applicatives, And Monads In Pictures - adit.io*
« Functors | Bartosz Milewski’s Programming Cafe’

« What are C++ functors and their uses? - Stack Overflow®

*https://bartoszmilewski.com/2015/01/20/functors/

*Programacién Funcional en C++: Cémo mejorar tus programas de C++ usando técnicas funcionales 1ra Edicién” @Amazon
“https://adit.io/posts/2013-04- 17-functors,_applicatives,_and_monads_in_pictures.html
*https://bartoszmilewski.com/2015/01/20/functors/
“https://stackoverflow.com/questions/356950/what-are-c-functors-and-their-uses

https://bartoszmilewski.com/2015/01/20/functors/
https://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
https://bartoszmilewski.com/2015/01/20/functors/
https://stackoverflow.com/questions/356950/what-are-c-functors-and-their-uses
https://bartoszmilewski.com/2015/01/20/functors/
https://amzn.to/3oEMVMY
https://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
https://bartoszmilewski.com/2015/01/20/functors/
https://stackoverflow.com/questions/356950/what-are-c-functors-and-their-uses

Lambdas en C++98/03 7

« Funtor - Wikipedia’

Problemas con los tipos clase objeto funcion

Como puedes ver, crear tipos clase con el operador de llamada a funcién es muy poderoso.
Tienes control total y puedes disefiarlos como quieras.

Sin embargo, en C++98/03 el problema era que tenias que definir un tipo objeto funcién en
un lugar diferente al de la invocacién del algoritmo. Esto podria significar que el invocable
podria estar decenas o cientos de lineas antes o después en el archivo fuente, o incluso en
una unidad de compilacién diferente.

Como solucién potencial, es posible que hayas intentado escribir clases locales, ya que C++
siempre ha admitido esa sintaxis, pero eso no funcioné con las plantillas.

Observa este codigo:

Un tipo objeto funcién local

int main() {
struct LocalPrinter {
void operator () (int x) const {
std::cout << x << '"\n';

}s

std::vector<int> v(10, 1);
std::for_each(v.begin(), v.end(), LocalPrinter());

Trata de compilarlo con -std=c++98 y veras el siguiente error en GCC:

error: template argument for

'template<class _IIter, class _Funct> _Funct
std::for_each(_IIter, _IIter, _Funct)'

uses local type 'main()::LocalPrinter'

"https://es.wikipedia.org/wiki/Funtor

https://es.wikipedia.org/wiki/Funtor
https://es.wikipedia.org/wiki/Funtor

Lambdas en C++98/03 8

Como puede verse, en C++98/03 no se podia crear una instancia de una plantilla con un tipo
local.

Los programadores de C++ comprendieron rapidamente esas limitaciones y encontraron
formas de solucionar los problemas con C++98/03. Una solucién fue preparar un conjunto
de auxiliares. Revisémoslos en la siguiente seccion.

Composicidon con auxiliares funcionales

(Qué tal tener algunos auxiliares y objetos funcién predefinidos?

Si revisas el archivo de encabezado <functional> de la biblioteca estandar, encontraras
muchos tipos y funciones que se pueden usar inmediatamente con los algoritmos estandar.

Por ejemplo:

o std::plus<T>() - Toma dos argumentos y devuelve su suma.
+ std::minus<T>() - Toma dos argumentos y devuelve su diferencia.

o std::less<T>() - Toma dos argumentos y devuelve si el primero es menor que el
segundo.

« std::greater_equal<T>() - Toma dos argumentos y devuelve si el primero es mayor
o igual que el segundo.

+ std::bindlst - Crea un objeto invocable con el primer argumento fijo a un valor
dado.

« std::bind2nd - Crea un objeto invocable con el segundo argumento fijo a un valor
dado.

 std::mem_fun - Crea un objeto envolvente de una funcién miembro.

 y muchos mas.

Escribamos algo de co6digo que se beneficie de los auxiliares:

Lambdas en C++98/03 9

Ex1_5: Usar los viejos auxiliares funcionales de C++98/03. Cédigo en vivo @Wandbox

#include <algorithm>
#include <functional>
#include <vector>

int main() {
std::vector<int> v;
v.push_back(1);
v.push_back(2);
// .. push back hasta 9...
const size_t smaller5 = std::count_if(v.begin(), v.end(),
std::bind2nd(std::less<int>(), 5));

return smaller5;

El ejemplo usa std::less y fija su segundo argumento usando std: :bind2nd. Toda esta
“composicion” se pasa a count_if®. Como probablemente puedes adivinar, el codigo se
expande en una funcién que realiza una comparacién simple:

return x < 5;

Si deseas mas auxiliares listos para usar, también puedes ver la biblioteca Boost. Por ejemplo,
boost: :bind.

Desafortunadamente, el problema principal con este enfoque es la complejidad y la sintaxis
dificil de aprender. Por ejemplo, escribir cédigo que componga dos o mas funciones no es
natural. Echa un vistazo a continuacién:

®pind1st, bind2nd y otros auxiliares funcionales quedaron obsoletos en C++11 y se eliminaron en C++17. El cédigo de este
capitulo los usa solo para ilustrar problemas de C++98/03. Utiliza otras alternativas modernas en tus proyectos. Véase el capitulo de
C++14 para mas informacion.

https://wandbox.org/permlink/9KgfRwwC3Dza2ZVh

Lambdas en C++98/03 10

Ex1_6: Componer auxiliares funcionales. Cédigo en vivo @Wandbox

#include <algorithm>
#include <functional>
#include <vector>

int main() {
using std::placeholders::_1;

std::vector<int> v;

v.push_back(1);

v.push_back(2);

// push_back hasta 9...

const size_t val = std::count_if(v.begin(), v.end(),
std::bind(std: :logical_and<bool>(),
std::bind(std::greater<int>(),_1, 2),
std::bind(std::less_equal<int>(),_1,6)));

return val;

La composicién usa std::bind (de C++11, asi que hicimos un poco de trampa, no es
C++98/03) con std::greater y std::less_equal conectados con std::logical_and.
Ademas, el codigo usa _1, que es un marcador de posicién para el primer argumento de
entrada.

Si bien el cdédigo anterior funciona y puedes definirlo localmente, probablemente estés de
acuerdo en que es una sintaxis complicada y no natural. Sin mencionar que esta composicién
representa solo una condicion simple:

return x > 2 && x <= 6;

(Hay algo mejor y mas sencillo de usar?

Motivacion para una nueva caracteristica

Como puedes ver, en C++98/03 habia varias formas de declarar y pasar un objeto invocable
a los algoritmos y las utilerias de la biblioteca estandar. Sin embargo, todas esas opciones

https://wandbox.org/permlink/D7XjbyM0i2nslhRU

Lambdas en C++98/03 11

eran un poco limitadas. Por ejemplo, no se podia declarar un tipo objeto funcién local, o era
complicado componer una funcién con objetos auxiliares funcionales.

jAfortunadamente con C++11 finalmente vimos muchas mejoras!

En primer lugar, el comité internacional ISO para la normalizacion del lenguaje C++ eliminé
la limitacion de la instanciacion de plantillas con un tipo local. Desde C++11, puedes escribir
tipos clase con el operador de llamada a funcion localmente en el lugar donde los necesites.

Es méas, C++11 también dio vida a otra idea: ;qué pasa si tenemos una sintaxis corta y luego
el compilador puede “expandirla” en una definicién de tipo objeto funcién local?

iY ese fue el nacimiento de las “expresiones lambda”!

Si vemos N3337° el borrador final de C++11, podemos ver una secciéon separada para
lambdas: [expr.prim.lambda]*’.

Echemos un vistazo a esta nueva caracteristica en el proximo capitulo.

*https://timsong-cpp.github.io/cppwp/n3337/
1%https://timsong- cpp.github.io/cppwp/n3337/expr.prim.lambda

https://timsong-cpp.github.io/cppwp/n3337/
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda
https://timsong-cpp.github.io/cppwp/n3337/
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda

2. Lambdas en C++11

iHurra! El comité internacional ISO para la normalizacién del lenguaje C++ escucho las
opiniones de los desarrolladores y desde C++11 tenemos las expresiones lambda.

Las lambdas se convirtieron rapidamente en una de las caracteristicas mas reconocibles de
C++ moderno.

Puedes leer la especificacion completa que se encuentra en N3337": el borrador final de
C++11.

Y la seccién separada para lambdas: [expr.prim.lambda]?.

Creo que el comité agrego las lambdas al lenguaje de una manera inteligente. Incorporan una
nueva sintaxis, pero luego el compilador las “expande” en un tipo objeto funciéon “oculto”
sin nombre. De esta manera tenemos todas las ventajas (y desventajas) del lenguaje real
fuertemente tipado, y es relativamente facil razonar sobre el codigo.

En este capitulo aprenderés:

« La sintaxis basica de las lambdas.

« Como capturar variables.

« Como capturar datos miembro no estaticos de una clase.
« El tipo de retorno de una lambda.

+ Lo que es un objeto cierre.

« Como una lambda puede convertirse en un puntero a funcién y usarse con una API
estilo C.

+ Lo que es el acronimo EFII y por qué es util.

« Como heredar de una expresion lambda.

iVamos!

'https://timsong-cpp.github.io/cppwp/n3337/
*https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda

https://timsong-cpp.github.io/cppwp/n3337/
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda
https://timsong-cpp.github.io/cppwp/n3337/
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda

Lambdas en C++11 13

La sintaxis de una expresion lambda

A continuacion puedes encontrar un diagrama que ilustra la sintaxis de las lambdas en
C++11:

el introductor de lambda con una lista de captura opcional cuerpo de la lambda

N

[T () especificadores excepcién attr -> ret { /*cédigo*/ }

(tipo de retorno al final
(opcional)
lista de parametros

(opcional cuando no se tabl ificacion d -
agregan especificadores) mutable, especificacion de excepeién o
noexcept, atributos

(opcional)

Sintaxis de las lambdas en C++11

Veamos algunos ejemplos para crear intuicion.

Algunos ejemplos de las expresiones lambda

// 1. La lambda mas simple:
[1{3;

En el primer ejemplo, puedes ver una expresion lambda “minima”. Solo necesita la seccion
[1 (el introductor lambda) y luego la parte vacia {} para el cuerpo de la funcién. La lista de
argumentos - () - es opcional y no es necesaria en este caso.

// 2. Con dos parametros:
[I(float f, int a) { return a * f; };
[J(int a, int b) { return a < b; };

En el segundo ejemplo, probablemente uno de los mas comunes, puedes ver que los
argumentos se pasan a la seccion () al igual que para una funcién normal. El tipo de retorno
no es necesario, ya que el compilador lo deducira automéaticamente.

Lambdas en C++11 14

// 3. Tipo de retorno al final:
[I(MyClass t) -> 1dint { auto a = t.compute(); print(a); return a; };

En el ejemplo anterior, establecemos explicitamente un tipo de retorno. El tipo de retorno al
final también esta disponible para la declaracion de funciones regulares desde C++11.

// 4. Especificadores adicionales:

[x](int a, int b) mutable { ++x; return a < b; };

[1(float param) noexcept { return paramxparam; };

[x](int a, int b) mutable noexcept { ++x; return a < b; };

El dltimo ejemplo muestra que puedes usar otros especificadores antes del cuerpo de la
lambda. En el cédigo usamos mutable (para poder cambiar la variable capturada) y también
noexcept. La tercera lambda usa mutable y noexcept y tienen que aparecer en ese orden
(no puedes escribir noexcept mutable ya que el compilador lo rechazaria). Si bien la parte
() es opcional, si deseas aplicar mutable 0 noexcept, entonces () debe estar en la expresion:

// 5. () opcional
[x] { std::cout << x3; }; // no se necesita ()

[x] mutable { ++x; }; // ino compila!

[x]() mutable { ++x; }; // estd bien - se requiere () antes de mutable
[1 noexcept { }; // ino compila!

[1() noexcept { }; // estad bien

El mismo patroén se aplica a otros especificadores que se pueden aplicar en las lambdas, como
constexpr o consteval en C++17 y C++20, respectivamente.

Después de los ejemplos basicos, ahora podemos intentar comprender cémo funciona y
aprender todas las posibilidades de las expresiones lambda.

Lambdas en C++11 15

Definiciones basicas

Antes de continuar, es util traer algunas definiciones basicas del estandar de C++:

De [expr.prim.lambda#2]*:

La evaluacion de una expresion lambda da como resultado un valor temporal. Este temporal
se llama objeto cierre.

Como nota al margen, una expresion lambda es un pr-valor que es un “r-valor puro”. Este
tipo de expresiones generalmente producen inicializaciones y aparecen en el lado derecho
de la asignacion (o en una declaracion de retorno). Leer mas en la referencia de C++*.

Y otra definicién de [expr.prim.lambda#3]°:

El tipo de la expresiéon lambda (que también es el tipo del objeto cierre) es un tipo clase no
unién Unico, sin nombre, llamado tipo cierre.

Expansion del compilador

De las definiciones anteriores, podemos entender que el compilador genera algin tipo cierre
unico a partir de una expresion lambda. Entonces podemos tener una instancia de este tipo
a través del objeto cierre.

Aqui hay un ejemplo basico que muestra como escribir una expresion lambda y pasarla a
std::for_each. A modo de comparacién, el cédigo también ilustra el tipo objeto funcién
correspondiente generado por el compilador:

*https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#2
“https://es.cppreference.com/w/cpp/language/value_category
*https://timsong- cpp.github.io/cppwp/n3337/expr.prim.lambda#3

https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#2
https://es.cppreference.com/w/cpp/language/value_category
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#3
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#2
https://es.cppreference.com/w/cpp/language/value_category
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#3

Lambdas en C++11 16

Ex2_1: Una lambda y un tipo objeto funcion correspondiente. Cédigo en vivo @WandBox

#include <algorithm>
#include <iostream>
#include <vector>

int main() {
struct {
void operator() (int x) const {
std::cout << x << '"\n'j;
}

} somelnstance;

const std::vector<int> v { 1, 2, 3 };

std: :for_each(v.cbegin(), v.cend(), somelnstance);

std::for_each(v.cbegin(), v.cend(), [] (int x) {
std::cout << x << '\n';

)

En el ejemplo, el compilador transforma ...
[IJ(int x) { std::cout << x << '"\n'; }

... en un objeto funciéon anénimo, que en una forma simplificada puede verse de la siguiente
manera:

struct {
void operator () (int x) const {
std::cout << x << '\n';
}

} someInstance;

El proceso de traduccién o “expansion” se puede ver facilmente en C++ Insights®, una
herramienta en linea que toma cédigo C++ valido y luego produce una version del codigo

“https://cppinsights.io/

https://wandbox.org/permlink/XXR02LXYAngHF5dt
https://cppinsights.io/
https://cppinsights.io/

Lambdas en C++11 17

fuente que el compilador genera: similar a los objetos funciéon anénimos para las lambdas, la
instanciacion de plantillas y muchas otras caracteristicas de C++.

En las siguientes secciones, profundizaremos mas en las partes individuales de la expresion

lambda.

El tipo de una expresion lambda

Dado que el compilador genera un nombre Unico para cada lambda (el tipo cierre), no hay
forma de “deletrearlo” por adelantado.

Es por eso que tienes que usar auto (0 decltype) para deducir el tipo.
auto myLambda = [](int a) -> double { return 2.0 % a; };
Ademas, si tienes dos lambdas que se ven iguales:

auto firstLam = []J(int x) { return x * 2; };
auto secondLam = [](int x) { return x * 2; };

iSus tipos son diferentes incluso si el “cddigo subyacente” es el mismo! El compilador debe
declarar dos tipos tnicos sin nombre para cada lambda.

Podemos probar esta propiedad con el siguiente codigo:

Ex2_1: Tipos distintos, mismo cddigo. Codigo en vivo @Wandbox

#include <type_traits>

int main() {
const auto onelLam = [](int x) noexcept { return x * 2; };

const auto twolLam [1(int x) noexcept { return x x 2; };
static_assert(!std::is_same<decltype(oneLam), decltype(twoLam)>::value,

"must be different!");

El ejemplo anterior verifica si los tipos de cierre para oneLamy twoLam no son iguales.

https://wandbox.org/permlink/dimC66ghOFL3GF3q

Lambdas en C++11 18

En C++17 podemos usar static_assert sin mensaje y también plantillas de
variable auxiliares para los rasgos de tipo is_same_v:

static_assert(std::is_same_v<double, decltype(baz(10))>);

Sin embargo, aunque no conoces el nombre exacto, puedes deletrear la signatura de la
lambda y luego almacenarla en std: : function. En general, lo que no se puede hacer con
una lambda definida como auto se puede hacer si la lambda se “expresa” a través del tipo
std: : function<>. Por ejemplo, la lambda anterior tiene una signatura de double(int) ya
que toma un int como parametro de entrada y devuelve double. Entonces podemos crear
un objeto std: : function de la siguiente manera:

std: :function<double(int)> myFunc = [](int a) -> double { return 2.0 * aj; };

std::function es un objeto pesado porque necesita manejar todos los objetos invocables.
Para hacer eso, requiere mecanicas internas avanzadas como manipulaciéon de tipos o
incluso asignacién de memoria dinamica. Podemos comprobar su tamarfio en un experimento
sencillo:

Ex2_3: std::function y deduccién de tipo auto. Codigo en vivo @ Wandbox

#include <functional>
#include <jostream>

int main() {
const auto mylLambda = [](int a) noexcept -> double {
return 2.0 * a;

+s

const std::function<double(int)> myFunc =
[](int a) noexcept -> double {
return 2.0 * a;

}s

std::cout << "sizeof(myLambda) is " << sizeof(myLambda) << '\n';
std::cout << "sizeof(myFunc) is " << sizeof(myFunc) << '"\n'j;

return myLambda(10) == myFunc(10);

https://wandbox.org/permlink/bTJHEc4uWAMTteyN

Lambdas en C++11 19

En GCC el c6digo imprimira:

sizeof (myLambda) 1is 1
sizeof (myFunc) is 32

Ya que myLambda es solo una lambda sin estado, también es una clase vacia, sin ningtiin
dato miembro, por lo que su tamafio minimo es de solo un byte. Por otro lado, la versién
std::function es mucho mas grande: 32 bytes. Es por eso que si puedes, confia en la
deduccion de tipo auto para obtener el nimero de objetos cierre mas pequefio posible.

Cuando hablamos de std: : function, también es importante mencionar que este tipo no
admite cierres solo movibles. Puedes leer mas sobre este asunto en el capitulo de C++14
sobre tipos movibles.

Constructores y copia

La seccién esta disponible solo en la version completa del libro.
El operador de llamada a funcion

El cédigo que pones en el cuerpo de la lambda se “traduce” al cddigo en el operator () del
tipo cierre correspondiente.

Por defecto, en C++11 es una funcién miembro const -inline. Por ejemplo:
auto lam = [](double param) { /* hacer algo */ };
Se expande en algo similar a:

struct __anonymousLambda {
inline void operator() (double param) const { /*x hacer algo */ }

s

Analicemos las consecuencias de este enfoque y cdmo podemos modificar la declaracion del
operador de llamada a funcién resultante.

Sobrecarga

Una cosa que vale la pena mencionar es que cuando defines una lambda, no hay forma de
crear lambdas “sobrecargadas” tomando argumentos distintos. Por ejemplo:

Lambdas en C++11 20

// ino compilal!
auto lam = [](double param) { /* hacer algo */ };
auto lam = [](int param) { /* hacer algo %/ };

Arriba, el c6digo no se compilara ya que el compilador no puede traducir esas dos lambdas
en un solo objeto funcién. Ademas, no puedes redefinir la misma variable. Por otro lado, es
posible crear un tipo objeto funcién que tenga dos operadores de llamada a funcién:

struct MyFunctionObject {
inline void operator() (double param) const { /* hacer algo */ }
inline void operator() (int param) const { /x hacer algo */ }

33
MyFunctionObject ahora puede funcionar con argumentos double e int. Si deseas un

comportamiento similar para las lambdas, puedes ver la seccion sobre la herencia de lambdas
en este capitulo y también sobre el patron de sobrecarga del capitulo de C++17.

Atributos

La sintaxis para lambdas permite usar los atributos de C++11 en forma de [[attr_name]].
Sin embargo, si aplicas un atributo a una lambda, se aplica al tipo del operador de llamada
a funcion y no al operador en si. Es por eso que actualmente (e incluso en C++20) no hay
atributos que tengan sentido poner en una lambda. La mayoria de los compiladores incluso
informan de un error. Si tomamos un atributo de C++17 e intentamos usarlo con la expresion:

auto myLambda = [](int a) [[nodiscard]] { return a * a; };
Esto genera el siguiente error en Clang (véase el cddigo en vivo @Wandbox”):
error: 'nodiscard' attribute cannot be applied to types

Sibien en teoria la sintaxis para lambdas esta preparada, por el momento no existen atributos
aplicables.

"https://wandbox.org/permlink/3zfzZL1INNpPXXgLOx

https://wandbox.org/permlink/3zfzL1NNpPXXgLOx
https://wandbox.org/permlink/3zfzL1NNpPXXgLOx

Lambdas en C++11 21

Otros modificadores
Tocamos brevemente este tema en la seccién de sintaxis, pero no estid limitado a una

declaracion por defecto del operador de llamada a funcién para un tipo cierre. En C++11
puedes agregar mutable o una especificacién de excepcion.

o Si es posible, ejemplos mas largos de este libro intentan marcar el objeto cierre

con const y también hacer la lambda noexcept.

Puedes usar esas palabras clave especificando mutable y noexcept después de la clausula
de declaracion de parametros:

auto myLambda = [](int a) mutable noexcept { /* hacer algo %/ }
El compilador expandira este codigo en:

struct __anonymousLambda {
inline void operator() (double param) noexcept { /* hacer algo x/ }

33

Ten en cuenta que la palabra clave const desaparecio y el operador de llamada a funciéon
ahora puede cambiar los datos miembro de la lambda.

(Pero qué datos miembro? ;Cémo podemos declarar un dato miembro de una lambda?
Veamos la siguiente seccion sobre “captura” de variables:

Capturas

La seccién esta disponible solo en la version completa del libro.

Cddigo generado

A lo largo de este libro, muestro un posible cédigo generado por el compilador como un tipo
struct para definir un tipo de clase cierre. Sin embargo, esto es solo una simplificacién, un
modelo mental, y dentro del compilador podria ser diferente.

Lambdas en C++11 22

Por ejemplo, en Clang el arbol de sintaxis abstracto (AST por sus siglas en inglés) usa class
para representar un cierre. El operador de llamada a funcion se define como pub1ic mientras
que los datos miembros son private.

Es por eso que no puedes escribir:

int x = 0;
auto lam = [x]() { std::cout << x; };
lam.x = 105 // 2?2

En GCC (o de manera similar en Clang) obtendras:
error: 'struct main()::<lambda()>' has no member named 'x'

Por otro lado, tenemos una parte esencial de la especificacion que menciona que las variables
capturadas se inicializan directamente, lo cual es imposible para miembros privados (para
nuestras clases regulares en c6digo). Esto significa que aqui los compiladores pueden hacer
un poco de “magia” y crear un codigo mas eficiente (no hay necesidad de copiar variables o
incluso moverlas).

Puedes leer mas sobre los componentes internos de las lambdas en una excelente publicacion
de blog de Andreas Fertig (el creador de C++ Insights): Las lambdas de C++ bajo las sabanas
- Part 2: Capturas, capturas, capturas®.

¢Capturar todo o explicitamente?

Aungque especificar [=] o [&] puede ser conveniente, ya que se capturan todas las variables
con duracién de almacenamiento automatica, es mas claro capturar una variable explicita-
mente. De esa forma el compilador puede advertirte sobre efectos no deseados (por ejemplo,
consulta las notas sobre variables globales y estaticas).

También puedes leer mas en el articulo 31 de “Effective Modern C++”° por Scott Meyers:
“Avoid default capture modes.”

®https://andreasfertig.blog/2020/11/under- the- covers-of-cpp-lambdas- part- 2- captures-captures- captures/
*“Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11 and C++14” primera edicién por Scott Meyers, 2014

https://andreasfertig.blog/2020/11/under-the-covers-of-cpp-lambdas-part-2-captures-captures-captures/
https://andreasfertig.blog/2020/11/under-the-covers-of-cpp-lambdas-part-2-captures-captures-captures/
https://andreasfertig.blog/2020/11/under-the-covers-of-cpp-lambdas-part-2-captures-captures-captures/

Lambdas en C++11 23

la palabra clave mutable

Por defecto, operator () del tipo cierre estd marcado como const, y no puedes modificar
las variables capturadas dentro del cuerpo de la lambda.

Si deseas cambiar este comportamiento, debes agregar la palabra clave mutable después
de la lista de parametros. Esta sintaxis elimina efectivamente a const de la declaracion del
operador de llamada a funcion en el tipo cierre. Si tienes una expresiéon lambda simple con
mutable

int x = 1;
auto foo = [x]() mutable { ++x; };
Se “expandird” en el siguiente objeto funcion:

struct __Tlambda_x1 {
void operator() () { ++x; }
int x;

}s

Como puedes ver, el operador de llamada a funciéon puede cambiar el valor de los datos
miembro.

Ex2_5: Captura de dos variables por copia y mutable. Cédigo en vivo @Wandbox

#include <iostream>

int main() {
const auto print = [](const char* str, {int x, int y) {
std::cout << str << ": " <K< x << "M <K<y << "\n';
}s
int x = 1, y = 1;
print("in main()", x, y);
auto foo = [x, y, &print]() mutable {
+4X 3
Tty
print("in foo()", x, y);
}s
foo();

https://wandbox.org/permlink/yQZUOIcK1ncKIyEI

Lambdas en C++11 24

print("in main()", x, y);

Salida:

in main(): 1 1
in foo(): 2 2
in main(): 1 1

En el ejemplo anterior, podemos cambiar los valores de x e y. Dado que esas son solo las
copias de x e y del ambito adjunto, no vemos sus nuevos valores después de que se invoca
a foo.

Por otro lado, si capturas por referencia no necesitas aplicar mutable a la lambda para
modificar el valor. Esto se debe a que los datos miembro capturados son referencias, lo que
significa que de ningiin modo puedes volver a vincularlos a un nuevo objeto, pero puedes
cambiar los valores referenciados.

int x = 1;

std::cout << x << '"\n'j;

const auto foo = [&x]() noexcept { ++x; 1};
foo();

std::cout << x << '"\n';

En el ejemplo anterior, la lambda no se especifica con mutable pero puedes cambiar el valor
al que se hace referencia.

Una cosa importante a tener en cuenta es que cuando aplicas mutable, entonces no puedes
marcar el objeto cierre resultante con const, ya que te impide invocar la lambda.

int x = 10;
const auto lam = [x]() mutable { ++x; }
lam(); // ino compila!

La ultima linea no se compilara ya que no podemos llamar a una funcién miembro que no
sea const en un objeto const.

Lambdas en C++11 25

Contador de invocacion - Un ejemplo de variables
capturadas

Antes de pasar a algunos temas de captura mas complicados, podemos hacer una pequefia
pausa y centrarnos en un ejemplo mas practico.

Las expresiones lambda son utiles cuando deseas utilizar algun algoritmo existente de
la biblioteca estandar y modificar el comportamiento predeterminado. Por ejemplo, para
std: :sort puedes escribir su funcién de comparacion.

Pero podemos ir méas allda y mejorar el comparador con un contador de invocaciones.
Echemos un vistazo:

Ex2_6: Contador de invocacién. Cédigo en vivo @Compiler Explorer

#include <algorithm>
#include <iostream>
#include <vector>

int main() {
std::vector<int> vec { 0, 5, 2, 9, 7, 6, 1, 3, 4, 8 };

size_t compCounter = 0;
std::sort(vec.begin(), vec.end(),
[&compCounter] (int a, int b) noexcept {
++compCounter;
return a < b;

)5
std::cout << "number of comparisons: " << compCounter << '\n'j;

for (const auto& v : vec)
std::cout << v << ") My

El comparador proporcionado en el ejemplo funciona de la misma manera que el predeter-
minado, retorna si a es menor que b, por lo que usamos el orden natural de los nimeros de
menor a mayor. Sin embargo, la lambda pasada a std: : sort también captura una variable
local compCounter. Luego, la variable se usa para contar todas las invocaciones de este
comparador desde el algoritmo de ordenamiento.

https://godbolt.org/z/jG5xK7

Lambdas en C++11 26

Captura de variables globales

Si tienes una variable global y usas [=] en su lambda, podrias pensar que su objeto global
también se captura por valor ... pero no lo es. Ve el codigo:

Ex2_7: Captura de variables globales. Cédigo en vivo @Wandbox

#include <iostream>

int global = 10;

int main() {
std::cout << global << '"\n'j;
auto foo = [=]() mutable noexcept { ++global; };
foo();
std::cout << global << '\n'j;
const auto increaseGlobal = []() noexcept { ++globalj; };
increaseGlobal();
std::cout << global << '\n'j;
const auto moreIncreaseGlobal = [global]() noexcept { ++globalj; };
moreIncreaseGlobal();
std::cout << global << '\n'j;

El ejemplo anterior define global y luego la usa con varias lambdas definidas en la funcién
main(). Si ejecutas el codigo, no importa la forma en que captures, siempre apuntara al
objeto global y no se crearan copias locales.

Es porque solo se pueden capturar variables con duracién de almacenamiento automatica.
GCC incluso puede emitir la siguiente advertencia:

warning: capture of variable 'global' with non-automatic
storage duration

Esta advertencia aparecera solo si capturas explicitamente una variable global, por lo que si
usas [=] el compilador no te ayudara.

El compilador Clang es incluso mas til, ya que genera un error:

https://wandbox.org/permlink/n8wCuoeej8mGscql

Lambdas en C++11 27

error: 'global' cannot be captured because it does not have
automatic storage duration

Véase el ejemplo en vivo con Clang @Wandbox°.

Captura de variables estaticas

De manera similar a la captura de variables globales, tendras los mismos problemas con los
objetos estaticos:

Ex2_8: Captura de variables estaticas. Codigo en vivo @Wandbox

#include <iostream>

void bar() {
static int static_int = 10;
std::cout << static_int << '"\n'j;
auto foo = [=]() mutable noexcept{ ++static_int; };
foo();
std::cout << static_int << '"\n'j;
const auto increase = []() noexcept { ++static_int; };
increase();
std::cout << static_int << '"\n'j;
const auto moreIncrease = [static_int]() noexcept { ++static_int; };
moreIncrease();
std::cout << static_int << '"\n';

int main() {
bar();

Esta vez intentamos capturar una variable estatica y luego cambiar su valor, pero como no
tiene una duracién de almacenamiento automatica, el compilador no puede hacerlo.

Salida:

%https://wandbox.org/permlink/4V91bkuz8NvHrDDA

https://wandbox.org/permlink/4V91bkuz8NvHrDDA
https://wandbox.org/permlink/CpJt4PUSleIJNVf2
https://wandbox.org/permlink/4V91bkuz8NvHrDDA

Lambdas en C++11 28

10
11
12
13

GCC emite una advertencia cuando capturas la variable por nombre [static_int] y Clang
emite un error.

Captura de datos miembro y el puntero this

Las cosas se complican un poco mas cuando estas en una funciéon miembro de una clase
y quieres capturar un dato miembro. Dado que todos los datos miembro no estaticos estan
relacionados con el puntero th1s, el dato miembro también debe almacenarse en algun lugar.

Echemos un vistazo:

Ex2_9: Error al capturar un dato miembro. Cédigo en vivo @Wandbox

#include <iostream>

struct Baz {
void foo() {
const auto lam = [s]() { std::cout << sj };
lam();

std::string s;

}s

int main() {
Baz b;
b.foo();

El codigo intenta capturar a s, que es un dato miembro, pero el compilador emitira el
siguiente mensaje de error:

https://wandbox.org/permlink/mp5VgqIyu5LWLn0f

Lambdas en C++11 29

In member function 'void Baz::foo()':
error: capture of non-variable 'Baz::s'
error: 'this' was not captured for this lambda function

Para resolver este problema, debes capturar el puntero this y entonces tendras acceso a los
datos miembro.

Podemos actualizar el codigo a:

struct Baz {
void foo() {
const auto lam = [this]() { std::cout << s; };
lam();

std::string s;

s

Ahora no hay errores del compilador.

También puedes usar [=] o [&] para capturar this (jambos tienen el mismo efecto en
C++11/14!).

Ten en cuenta que capturamos this por valor ... a un puntero. Es por eso que tienes acceso
al dato miembro inicial, no a su copia.

En C++11 (e incluso en C++14) no puedes escribir:
auto lam = [xthis]() { std::cout << s; };°

El c6digo no se compilara en C++11/14; sin embargo, esta permitido en C++17.

Si usas tus lambdas en el contexto de una sola funcién, entonces capturar this estara bien.
Pero, ;qué hay de los casos mas complicados?

;Sabes qué pasara con el siguiente codigo?

Lambdas en C++11 30

Ex2_10: Devolver una lambda desde una funcion

#include <functional>
#include <iostream>

struct Baz {

std: : function<void()> foo() {
return [=] { std::cout << s << '"\n'; };

std::string s;

13

int main() {

auto fl = Baz{"abc"}.foo();
auto f2 = Baz{'"xyz"}.foo();
f1();
203

El c6digo declara un objeto Baz y luego invoca a foo (). Ten en cuenta que foo() devuelve
una lambda (almacenada en std: : function) que captura un miembro de la clase'.

Dado que usamos objetos temporales, no podemos estar seguros de lo que sucedera cuando
llames a f1 y f2. Este es un problema de referencia pendiente y genera un comportamiento
indefinido.

Similarmente para:

struct Bar {
std::string const& foo() const { return s; };
std::string s;

}s

auto&& fl1 = Bar{"abc"}.foo(); // una referencia pendiente

Juega con el cédigo @Wandbox™.

Si indicas la captura explicitamente ([s]) obtendras un error del compilador.

"std: : function se requiere en C++11 ya que no hay deduccién de tipo de retorno para funciones. Esta limitacién se elimina
en C++14.
*https://wandbox.org/permlink/FOgbNGoQHOmepBgY

https://wandbox.org/permlink/FOgbNGoQHOmepBgY
https://wandbox.org/permlink/FOgbNGoQHOmepBgY

Lambdas en C++11 31

std:: function<void()> foo() {
return [s] { std::cout << s << '"\n'; };
} // error: ;'this' no se capturd!

Con todo, capturar this puede resultar complicado cuando una lambda puede vivir més alla
del objeto en si. Esto puede suceder cuando utilizas llamadas asincronas o multiples hilos.

Volveremos a ese tema en el capitulo de C++17. Véase “Ejecucion concurrente mediante
lambdas” en el capitulo de C++17 en la pagina 106.

Objetos solo movibles

La seccién esta disponible solo en la version completa del libro.

Conservacion de const

Si capturas una variable const, entonces la constancia se conserva:

Ex2_11: Conservacion de const. Codigo en vivo @Wandbox

#include <iostream>
#include <type_traits>

int main() {
const int x = 10;
auto foo = [x] () mutable {
std::cout << std::is_const<decltype(x)>::value << '\n';
X = 11;
}s
foo();

El codigo anterior no se compila ya que la variable capturada es constante. Aqui tienes un
posible objeto funcion generado para este ejemplo:

https://wandbox.org/permlink/h8lCuOXd9dHsopG1

Lambdas en C++11 32

struct __lambda_x {

void operator()() { x = 11; /xerror!x/ }
const 1int x;

+s

También puedes jugar con este codigo en @Cpplnsight™*.

Captura de un paquete de parametros

Para cerrar nuestra discusion sobre la clausula de captura, debemos mencionar que también
puedes aprovechar las capturas con plantillas variadicas. El compilador expande el paquete
en una lista de datos miembro no estaticos que pueden ser ttiles si deseas usar una lambda
en un codigo con plantilla. Por ejemplo, aqui hay una muestra de coédigo que experimenta
con las capturas:

Ex2_12: Captura de un paquete de parametros. Cédigo en vivo @Wandbox

#include <iostream>
#include <tuple>

template<class... Args>
void captureTest(Args... args) {
const auto lambda = [args...] {
const auto tup = std::make_tuple(args...);
std::cout << "tuple size: " <<
std: :tuple_size<decltype(tup)>::value << '\n';
std::cout << "tuple 1st: " << std::get<O0>(tup) << '\n';
}s
lambda(); // call it

int main() {
captureTest(1l, 2, 3, 4);
captureTest("Hello world", 10.0f);

Después de ejecutar el codigo, obtendremos el siguiente resultado:

Phttps://cppinsights.io/s/7b2f8b10

https://cppinsights.io/s/7b2f8b10
https://wandbox.org/permlink/29qxFbLefKf3wnNU
https://cppinsights.io/s/7b2f8b10

Lambdas en C++11 33

tuple size: 4
tuple 1st: 1
tuple size: 2
tuple 1st: Hello world

Este codigo algo experimental muestra que puedes capturar un paquete de parametros
variadico por valor (por referencia también es posible) y luego el paquete se “almacena”
en un objeto tupla. Luego llamamos a algunas funciones auxiliares en la tupla para acceder
a sus datos y propiedades.

También puedes usar C++ Insights para ver como el compilador genera el codigo y expande
las plantillas, los paquetes de parametros y las lambdas en cédigo. Ve este ejemplo aqui:
@C++Insights™.

Véase el capitulo de C++14 donde es posible capturar un tipo solo movibles
y también el capitulo de C++20 para mejoras con el paquete de parametros
variadico.

Tipo de retorno

En la mayoria de los casos, incluso en C++11, puedes omitir el tipo de retorno de la lambda
y luego el compilador deducira el nombre del tipo por ti.

Como nota al margen: Inicialmente, la deduccién del tipo de retorno se restringié a las
lambdas con cuerpos que contenian una unica declaracién de retorno. Sin embargo, esta
restriccion se eliminé rapidamente ya que no hubo problemas para implementar una version
mas conveniente.

Véase Informes de defectos del lenguaje principal estindar de C++ y problemas aceptados*’.

En resumen, desde C++11 el compilador ha podido deducir el tipo de retorno siempre que
todas sus declaraciones de retorno sean del mismo tipo.

Del informe de defectos podemos leer lo siguiente *°:

"*https://cppinsights.io/s/19d3a45d
Phitp://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#975
*Gracias a Tomek Kaminiski por encontrar el enlace correcto.

https://cppinsights.io/s/19d3a45d
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#975
https://cppinsights.io/s/19d3a45d
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#975

Lambdas en C++11 34

...Si una expresion-lambda no incluye un tipo-de-retorno-al-final, es como si el tipo-de-
retorno-al-final denotara el siguiente tipo:

« si no hay declaraciones de retorno en la instruccion compuesta, o todas las declara-
ciones de retorno devuelven una expresion de tipo void o ninguna expresion o lista
de inicializadores entre llaves, el tipo void;

+ de lo contrario, si todas las instrucciones de retorno devuelven una expresién y los
tipos de expresiones devueltas después de la conversion de l-valor a r-valor (7.3.2
[conv.lval]), conversién de array a puntero (7.3.3 [conv.array]), y conversién de
funcién a puntero (7.3.4 [conv.func]) son las mismas, ese tipo comun;

+ de lo contrario, el programa esta mal formado.

Ex2_13: Deduccion del tipo de retorno. Cédigo en vivo @Wandbox

#include <type_traits>

int main() {
const auto baz = [](int x) noexcept {
if (x < 20)
return x *x 1.1;
else
return x *x 2.1;
}s
static_assert(std::is_same<double, decltype(baz(10))>::value,
"has to be the same!");

En la lambda anterior tenemos dos instrucciones return, pero ambas apuntan a double, por
lo que el compilador puede deducir el tipo

reglas de deduccion de tipo auto para las funciones regulares. Véase “Deduccién
del tipo de retorno” en la pagina 56. Esto resulta en una definicién mucho mas
simple.

o En C++14 el tipo de retorno de una lambda se actualizara para adaptarse a las

https://wandbox.org/permlink/sxtT30yKx9mwrYT3

Lambdas en C++11 35

Sintaxis del tipo de retorno al final
La seccién esta disponible solo en la version completa del libro.

Conversion a un puntero a funcion

Si tu lambda no captura ninguna variable, entonces el compilador puede convertirla en un
puntero a funcion regular. Véase la siguiente descripcion del estandar expr.prim.Jambda#6'":

El tipo cierre para una expresion lambda sin captura de lambda tiene una funcién de
conversion publica, no virtual, no explicita, const a puntero a funcién que tiene el mismo
parametro y tipos de retorno que el operador de llamada a funcién del tipo cierre. El valor
devuelto por esta funcion de conversion sera la direccion de una funcion que, cuando se
invoque, tendra el mismo efecto que la invocacion del operador de llamada a funcion del
tipo cierre.

Para ilustrar como una lambda puede admitir dicha conversion, consideremos el siguiente
ejemplo. Define un objeto funcién baz que defina explicitamente el operador de conversion:

Ex2_15: Conversioén a un puntero a funcién. Cédigo en vivo @Wandboxline-numbers=on

#include <iostream>
void callWithl0(void(* bar) (int)) { bar(10);

int main() {
struct {
using f_ptr = void(*) (int);

void operator() (int s) const { return call(s); }
operator f_ptr() const { return &callj; }

private:
static void call(int s) { std::cout << s << '"\n'; };
} baz;

https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#6

https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#6
https://wandbox.org/permlink/XAmjjJiojnFKyd44
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#6

Lambdas en C++11

callwithl0(baz);
callwithio([](int x) { std::cout << x <<

"\n'; 1);

36

Lambdas en C++11 37

En el programa anterior hay una funcion callwith1e que toma un puntero a funcién. Luego
lo llamamos con dos argumentos (lineas 18 y 19): el primero usa baz, que es un tipo objeto
funcién que contiene el operador de conversion necesario; se convierte a f_ptr, que es el
mismo que el parametro de entrada para callwith1e. Mas tarde, tenemos una llamada con
una lambda. En este caso, por debajo el compilador realiza las conversiones necesarias.

Dicha conversion puede ser util cuando necesites llamar a una funcién estilo C que requiera
alguna devolucién de llamada. Por ejemplo, a continuacién puedes encontrar cédigo que
llama a gsort de la biblioteca de C y usa una lambda para ordenar los elementos en orden
inverso:

Ex2_16: Llamar a una funcién estilo C. Cédigo en vivo @Wandbox

#include <cstdlib>
#include <iostream>

int main () {
int values[] = { 8, 9, 2, 5, 1, 4, 7, 3, 6 };
constexpr size_t numElements = sizeof(values)/sizeof(values[0]);

std::gsort(values, numElements, sizeof(int),
[1(const void*x a, const voidx b) noexcept {
return (x(intx)b - x(int*x)a);

)3

for (const auto& val : values)
std::cout << val << " '";

Como puedes ver en el ejemplo de cddigo, se usa std::qsort, que solo toma punteros
a funcion como comparadores. El compilador puede hacer una conversién implicita de la
lambda sin estado que pasamos.

https://wandbox.org/permlink/fEMhtqAXerDdCXG8

Lambdas en C++11 38

Un caso complicado

La seccion esta disponible solo en la version completa del libro.

EFIl - Expresion Funcional Inmediatamente
Invocada

En la mayoria de los ejemplos que has visto hasta ahora, puedes observar que defini una
lambda y luego la llamé.

Sin embargo, también puedes invocar una lambda inmediatamente:

Ex2_19: Llamar a una lambda inmediatamente. Codigo en vivo @Wandbox

#include <iostream>

int main() {
int x = 1, y = 1;
[&1 () noexcept { ++x; ++y; }(); // <-— call ()
std::cout << x << ", " <<y

Como puedes ver arriba, la lambda se crea y no se asigna a ningtin objeto cierre. Pero luego
se llama con (). Si ejecutas el programa, puedes esperar ver 2, 2 como resultado.

Este tipo de expresion puede resultar 1til cuando se tiene una inicializacién compleja de un
objeto const.

const auto val = []() {
/* varias lineas de coédigo... */
}O); // illamala!

Arriba, val es un valor constante de un tipo devuelto por una expresiéon lambda, es decir:

https://wandbox.org/permlink/fsFOxzBZuFS7bMVn

Lambdas en C++11 39

// vall es 1int
const auto vall = []J() { return 10; }();

// val2 es std::string
const auto val2 = []J() -> std::string { return "ABC"; }();

A continuacién, puedes encontrar un ejemplo mas largo en el que usamos EFII como una
lambda auxiliar para crear un valor constante dentro de una funcién:

Ex2_20: EFIl y generaciéon de HTML. Cédigo en vivo @ Wandbox

#include <iostream>
#include <string>

void ValidateHTML(const std::string&) { }

std::string BuildAHref(const std::string& link, const std::string& text) {
const std::string html = [&link, &text] {
const auto& inText = text.empty() ? Llink : text;
return "" + dinText + "";

YO // call!
ValidateHTML (html);

return html;

int main() {
try {
const auto ahref = BuildAHref ("www.leanpub.com", "Leanpub Store'");
std::cout << ahref;

}
catch (...) {

std::cout << "bad format...";
}

El ejemplo anterior contiene una funciéon BuildAHref que toma dos parametros y luego
crea una etiqueta HTML <a> . Basandonos en los parametros de entrada, construimos

https://wandbox.org/permlink/TtlM1t3sm9EZOUrw

Lambdas en C++11 40

la variable htm1. Si el texto no estd vacio, lo usamos como el valor HTML interno. De lo
contrario, usamos el 1ink. Queremos que la variable html sea const, pero es dificil escribir
codigo compacto con las condiciones requeridas en los argumentos de entrada. Gracias a
EFII, podemos escribir una lambda separada y luego marcar nuestra variable con const.
Posteriormente, la variable se puede pasar a ValidateHTML.

Una nota sobre la legibilidad

La seccién esta disponible solo en la version completa del libro.

Heredar de una lambda

Puede ser sorprendente verlo, pero también puedes derivar de una lambda.

Dado que el compilador expande una expresiéon lambda en un objeto funcién con
operator (), entonces podemos heredar de este tipo.

Echa un vistazo al codigo basico:

Ex2_21: Heredar de solo una lambda. Cédigo en vivo @Wandbox

#include <iostream>

template<typename Callable>
class ComplexFn : public Callable {
public:
explicit ComplexFn(Callable f) : Callable(f) {}
}s

template<typename Callable>
ComplexFn<Callable> MakeComplexFunctionObject(Callable&& cal) {
return ComplexFn<Callable>(std::forward<Callable>(cal));

int main() {
const auto func = MakeComplexFunctionObject([]() {
std::cout << "Hello Complex Function Object!";

1)
func();

https://wandbox.org/permlink/uA4q7Zy1kojUZmqb

Lambdas en C++11 41

En el ejemplo, existe la clase ComplexFn que se deriva de Callable, que es un parametro
de plantilla. Si queremos derivar de una lambda, necesitamos hacer un pequefo truco, ya
que no podemos deletrear el tipo exacto del tipo cierre (a menos que lo envolvamos en
std: : function). Es por eso que necesitamos la funcién MakeComplexFunctionObject que
puede realizar la deduccién del argumento de plantilla y obtener el tipo cierre de la lambda.

El ComplexFn, aparte de su nombre, es simplemente un contenedor simple sin mucho uso.
(Existen casos de uso para tales patrones de cédigo?

Por ejemplo, podemos extender el codigo anterior y heredar de dos lambdas y crear un
conjunto sobrecargado:

Ex2_22: Heredar de dos lambdas. Cédigo en vivo @Wandbox

#include <iostream>

template<typename TCall, typename UCall>
class SimpleOverloaded : public TCall, UCall {
public:
SimpleOverloaded(TCall tf, UCall uf) : TCall(tf), UCall(uf) {}

using TCall: :operator();
using UCall: :operator();
}s

template<typename TCall, typename UCall>
SimpleOverloaded<TCall, UCall> MakeOverloaded(TCall&& tf, UCall&& uf) {
return SimpleOverloaded<TCall, UCall>(std::forward<TCall> tf,
std::forward<UCall> uf);

int main() {
const auto func = MakeOverloaded(
[J¢int) { std::cout << "Int!\n"; 1},
[I](float) { std::cout << "Float!\n"; }
)s
func(10);
func(10.0f);

Esta vez tenemos un poco mas de cddigo: derivamos de dos parametros de plantilla, pero

https://wandbox.org/permlink/2AY4nRaHffrDWt6A

Lambdas en C++11 42

también necesitamos exponer sus operadores de llamada a funcién explicitamente.

(Por qué sucede eso? Es porque cuando se busca la funciéon de sobrecarga correcta, el
compilador requiere que los candidatos estén en el mismo ambito.

Para entender eso, escribamos un tipo simple que se derive de dos clases base. El ejemplo
también comenta dos declaraciones using:

Ex2_23: Error al derivar de dos clases. Cédigo en vivo @Wandbox

#include <iostream>

struct BaselInt {
void Func(int) { std::cout << "BaseInt...\n"; }

+s

struct BaseDouble {
void Func(double) { std::cout << "BaseDouble...\n"; }

+s

struct Derived : public BaseInt, BaseDouble {
//using BaseInt::Func;
//using BaseDouble: :Func;

+s

int main() {
Derived d;
d.Func(10.0);

Tenemos dos clases base que implementan Func. Queremos llamar a ese método desde el
objeto derivado.

GCC emite el siguiente error:
error: request for member 'Func' 1is ambiguous

Debido a que comentamos las instrucciones using, ::Func() puede ser del &mbito de
BaseInt o de BaseDouble. El compilador tiene dos 4mbitos para buscar el mejor candidato
y, segun el estandar, no esta permitido.

https://wandbox.org/permlink/fFRqVGUisdQh1qGV

Lambdas en C++11 43

De acuerdo, volvamos a nuestro caso de uso principal:

SimpleOverloaded es una clase elemental y no esta lista para produccion. Echa un vistazo al
capitulo de C++17 donde discutiremos una versiéon avanzada de este patron. Gracias a varias
caracteristicas de C++17, podremos heredar de multiples lambdas (gracias a las plantillas
variadicas) y aprovechar una sintaxis mas compacta.

Almacenar lambdas en un contenedor

La seccion esta disponible solo en la version completa del libro.

Resumen

En este capitulo aprendiste a crear y usar expresiones lambda. Describi la sintaxis, la clausula
de captura, el tipo lambda y cubrimos muchos ejemplos y casos de uso. Incluso fuimos un
poco mas lejos y te mostré un patrén para derivar de una lambda o almacenarla en un
contenedor.

iPero eso no es todo!

Las expresiones lambda se han convertido en una parte importante de C++ moderno. Con
mas casos de uso, los desarrolladores también vieron posibilidades de mejorar esta funcion.
Y es por eso que ahora puedes pasar al siguiente capitulo y ver las actualizaciones esenciales
que el comité internacional ISO para la normalizacion del lenguaje C++ agregé en C++14.

Referencias

Borradores del Estandar de C++
Aqui estan los borradores finales de los estandares de C++, habitualmente con arreglos
editoariales. Disponibles en timsong-cpp/cppwp*®.

Secciones sobre la expresion lambda:

« C++11 N3337 - [expr.prim.lambda]*
o C++14 N4140 - |

o C++17 N4659 - [expr.prim.lambda
« C++20 N4861 - [expr.prim.lambda]*

expr.prim.lambda]?

21

]
]
]
]

Otras referencias

« Expresiones lambda - cppreference.com®
« Apoyo de compiladores de C++ - cppreference.com™
« Categorias de valor - cppreference.com®

« Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11 and C++14 1ra
edicion por Scott Meyers, véase @Amazon.com?®

« Functional Programming in C++: How to improve your C++ programs using functional
techniques por Ivan Cukic, véase @Amazon®’

+ Microsoft Docs - Lambda Expressions in C++2®

*https://github.com/timsong-cpp/cppwp
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda
**https://timsong- cpp.github.io/cppwp/n4140/expr.prim.lambda
*'https://timsong-cpp.github.io/cppwp/n4659/expr.prim.lambda
**https://timsong- cpp.github.io/cppwp/n4861/expr.prim.lambda
*https://es.cppreference.com/w/cpp/language/lambda
**https://es.cppreference.com/w/cpp/compiler_support
*https://es.cppreference.com/w/cpp/language/value_category
*https://amzn.to/2ZpAT7yz

*"https://amzn.to/30EMVMY
**https://docs.microsoft.com/es-es/cpp/cpp/lambda- expressions-in-cpp

https://github.com/timsong-cpp/cppwp
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda
https://timsong-cpp.github.io/cppwp/n4140/expr.prim.lambda
https://timsong-cpp.github.io/cppwp/n4659/expr.prim.lambda
https://timsong-cpp.github.io/cppwp/n4861/expr.prim.lambda
https://es.cppreference.com/w/cpp/language/lambda
https://es.cppreference.com/w/cpp/compiler_support
https://es.cppreference.com/w/cpp/language/value_category
https://amzn.to/2ZpA7yz
https://amzn.to/3oEMVMY
https://docs.microsoft.com/es-es/cpp/cpp/lambda-expressions-in-cpp
https://github.com/timsong-cpp/cppwp
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda
https://timsong-cpp.github.io/cppwp/n4140/expr.prim.lambda
https://timsong-cpp.github.io/cppwp/n4659/expr.prim.lambda
https://timsong-cpp.github.io/cppwp/n4861/expr.prim.lambda
https://es.cppreference.com/w/cpp/language/lambda
https://es.cppreference.com/w/cpp/compiler_support
https://es.cppreference.com/w/cpp/language/value_category
https://amzn.to/2ZpA7yz
https://amzn.to/3oEMVMY
https://docs.microsoft.com/es-es/cpp/cpp/lambda-expressions-in-cpp

Referencias 45

« Sticky Bits - Demystifying C++ lambdas®

+ The View from Aristeia - Lambdas vs. Closures®

+ Sy Brand - Passing overload sets to functions®

« Jason Turner - C++ Weekly - Ep 128 - C++20’s Template Syntax For Lambdas*
+ Jason Turner - C++ Weekly - Ep 41 - C++17’s constexpr Lambda Support*’
» Stack Overflow - c++ - Recursive lambda functions in C++11*

+ Pedro Melendez - Recursive lambdas in C++(14)*

« Andreas Fertig - Under the covers of C++ lambdas - Part 2: Captures, captures,
captures®

« Scott Meyers - Standard C++ - Universal References in C++11*’

« Standard C++ Website - Quick Q: Why can noexcept generate faster code than
throw()?*®

« Bjarne Stroustrup - C++ Style and Technique FAQ*
+ C++ Core Guidelines*

« Jonathan Boccara - How Lambdas Make Function Extraction Safer - Fluent C++*

*https://blog.feabhas.com/2014/03/demystifying-c-lambdas/
**http://scottmeyers.blogspot.com/2013/05/lambdas-vs-closures.html
*'https://blog.tartanllama.xyz/passing-overload-sets/
**https://www.youtube.com/watch?v=ixGiE4- 1GA8&
*hittps://www.youtube.com/watch?v=kmza9U_niq4
**https://stackoverflow.com/questions/2067988/recursive-lambda-functions-in-c11
**http://pedromelendez.com/blog/2015/07/16/recursive-lambdas-in-c14/
*https://andreasfertig.blog/2020/11/under- the- covers- of-cpp-lambdas- part- 2- captures- captures- captures/
*"https://isocpp.org/blog/2012/11/universal-references-in-c11-scott-meyers
**https://isocpp.org/blog/2014/09/noexcept-optimization
**https://stroustrup.com/bs_faq2.html
“*https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
“‘https://www.fluentcpp.com/2020/11/13/how-lambdas- make-function-extraction- safer/

https://blog.feabhas.com/2014/03/demystifying-c-lambdas/
http://scottmeyers.blogspot.com/2013/05/lambdas-vs-closures.html
https://blog.tartanllama.xyz/passing-overload-sets/
https://www.youtube.com/watch?v=ixGiE4-1GA8&
https://www.youtube.com/watch?v=kmza9U_niq4
https://stackoverflow.com/questions/2067988/recursive-lambda-functions-in-c11
http://pedromelendez.com/blog/2015/07/16/recursive-lambdas-in-c14/
https://andreasfertig.blog/2020/11/under-the-covers-of-cpp-lambdas-part-2-captures-captures-captures/
https://andreasfertig.blog/2020/11/under-the-covers-of-cpp-lambdas-part-2-captures-captures-captures/
https://isocpp.org/blog/2012/11/universal-references-in-c11-scott-meyers
https://isocpp.org/blog/2014/09/noexcept-optimization
https://isocpp.org/blog/2014/09/noexcept-optimization
https://stroustrup.com/bs_faq2.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://www.fluentcpp.com/2020/11/13/how-lambdas-make-function-extraction-safer/
https://blog.feabhas.com/2014/03/demystifying-c-lambdas/
http://scottmeyers.blogspot.com/2013/05/lambdas-vs-closures.html
https://blog.tartanllama.xyz/passing-overload-sets/
https://www.youtube.com/watch?v=ixGiE4-1GA8&
https://www.youtube.com/watch?v=kmza9U_niq4
https://stackoverflow.com/questions/2067988/recursive-lambda-functions-in-c11
http://pedromelendez.com/blog/2015/07/16/recursive-lambdas-in-c14/
https://andreasfertig.blog/2020/11/under-the-covers-of-cpp-lambdas-part-2-captures-captures-captures/
https://isocpp.org/blog/2012/11/universal-references-in-c11-scott-meyers
https://isocpp.org/blog/2014/09/noexcept-optimization
https://stroustrup.com/bs_faq2.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://www.fluentcpp.com/2020/11/13/how-lambdas-make-function-extraction-safer/

	Tabla de contenido
	Sobre el libro
	Orígenes del libro
	Para quién es este libro
	Cómo leer este libro
	Retroalimentación del lector y errata
	Código de ejemplo
	Licencia del código
	Formateo y secciones especiales
	Compiladores en línea

	Sobre el autor
	Sobre el traductor
	Agradecimientos
	Historial de revisiones
	Lambdas en C++98/03
	Objectos invocables en C++98/03
	Problemas con los tipos clase objeto función
	Composición con auxiliares funcionales
	Motivación para una nueva característica

	Lambdas en C++11
	La sintaxis de una expresión lambda
	Definiciones básicas
	El tipo de una expresión lambda
	El operador de llamada a función
	Capturas
	Tipo de retorno
	Conversión a un puntero a función
	EFII - Expresión Funcional Inmediatamente Invocada
	Heredar de una lambda
	Almacenar lambdas en un contenedor
	Resumen

	Referencias

