1C++STORIES t

Inicializacion

cppstories.com

en C++

Barttomiej Filipek

Inicializacion en C++

Una guia a través de todas las opciones de
inicializacién y areas relacionadas con C++
Barttomiej Filipek y Javier Estrada

Este libro est4 a la venta en http://leanpub.com/cppinitbook_spanish

Esta version se publico en 2023-06-24

)

Leanpub

Este es un libro de Leanpub. Leanpub anima a los autores y publicadoras con el proceso de
publicacion. Lean Publishing es el acto de publicar un libro en progreso usando
herramientas sencillas y muchas iteraciones para obtener retroalimentacion del lector hasta
conseguir el libro adecuado.

© 2022 - 2023 Bartlomiej Filipek y Javier Estrada

http://leanpub.com/cppinitbook_spanish
https://leanpub.com/
https://leanpub.com/manifesto

También por estos autores
Libros por Barttomiej Filipek

C++17 in Detail
C++ Lambda Story
Lambdas en C++

C++ Initialization Story

Libros por Javier Estrada

Lambdas en C++

https://leanpub.com/u/fenbf
https://leanpub.com/cpp17indetail
https://leanpub.com/cpplambda
https://leanpub.com/cpplambdaspanish
https://leanpub.com/cppinitbook
https://leanpub.com/u/jestrada
https://leanpub.com/cpplambdaspanish

Indice general

Sobreellibro i
(Por qué debes leer este libro? Lo o i
Objetivos de aprendizaje i
Estructuradellibro ii
Paraquiénesestelibro iii
Requisitos previos L iii
Retroalimentacion del lector y errata oL L. iii
Codigodeejemplo L iv
Formateo y secciones especiales iv

Sobreelautor viii

Sobre el traductor ix

Agradecimientos X

Historial de revisiones xii

1. Local Variables and Simple Types 1
Starting with simpletypes L 2
Setting valuestozero 5
Initialization with aggregates oL 6
Default data member initialization 8
SUMMAry o e 10

2. Classes and Initialization With Constructors 11
Asimpleclasstype 11
Basics of constructors L 15
Body of a constructor 20

Adding constructors to DataPacketl 22

INDICE GENERAL

Compiler-generated default constructors 24
Explicit constructors 27
Difference between direct and copy initialization 27
Constructor SUMmMAry ittt e 27
3. Copy and Move Constructors 28
Copy constructor 28
Move constructor L 31
Distinguishing from assignment 34
Adding logging to constructors oL 34
Trivial classes and user-declared/user-provided default constructors 37
4. Delegating and Inheriting Constructors 38
Limitations e 38
Inheritance 38
Inheriting constructors. L 38
5. Destructors e 40
Basics e 40
Objects allocated onthe heap 43
Destructors and data members o L L 43
Virtual destructors and polymorphism 43
Partially created objects 44
Use Casesot it e 44
A compiler-generated destructor Lo oL 44
6. Initialization and Type Deduction 45
7. Quizon Constructors. 46
Apéndice A - Cuestionario y respuestas a los ejercicios 47

Referencias e, 48

Sobre el libro

iLa inicializacion en C++ es un tema candente! El Internet esta lleno de debates sobre
las mejores practicas, e incluso hay memes divertidos sobre ese tema. La situacion no es
sorprendente, ya que hay mas de una docena de formas de inicializar un valor entero simple,
reglas complejas para la deduccidn de tipos automaticos, datos miembro y matices del tiempo
de vida de objetos.

Y aqui viene el libro.

A lo largo de este texto, aprenderas opciones practicas para inicializar varias categorias de
variables y datos miembro en C++ moderno. Mas especificamente, este texto enseria varios
tipos de inicializacion, constructores, inicializacion de datos miembro no estaticos, variables
en linea, inicializadores designados y mas. Ademas, veras los cambios y las nuevas técnicas
de C++11 a C++20 y muchos ejemplos para completar tu comprension.

El plan es explicar la mayoria (si no todas) las partes de la inicializacion, aprender muchas
técnicas excelentes de C++ y ver qué sucede debajo del cap6 o cofre.

¢Por qué debes leer este libro?

Con C++ moderno (desde C++11) tenemos muchas caracteristicas nuevas para agilizar el
trabajo y simplificar nuestro cédigo. Un area de mejora es la inicializaciéon. C++ moderno
agregé nuevas reglas de inicializacion, tratando de hacerlo mas facil manteniendo el
comportamiento y la compatibilidad antiguos (principalmente del lenguaje C). Sin embargo,
a veces las reglas pueden parecer confusas y complejas, e incluso el comité de ISO puede
necesitar corregir algunas cosas en el camino. El libro te ayudara a navegar a través de
esos principios y comprender mejor este tema. Ademas, la inicializacién es solo un aspecto
de este texto. Aprenderas todos los temas relacionados con las clases, los constructores, los
destructores, el tiempo de vida de los objetos o incluso como el compilador procesa los datos
al inicio.

Objetivos de aprendizaje

El objetivo es equiparte con los siguientes conocimientos:

Sobre el libro ii

Explicar las reglas sobre la inicializacién de objetos, incluidas las variables regulares,
los datos miembro y los objetos no locales.

Cémo implementar funciones miembro especiales (constructores, destructores, opera-
ciones de copia/movimiento) y cuando son utiles.

Como inicializar eficientemente datos miembro no estaticos usando funciones de
C++11, tales como inicializacion de datos miembro no estaticos, constructores here-
deros y delegadores.

Como agilizar el trabajo con variables estaticas y datos miembro estaticos con variables
inline de C++17.

Cémo trabajar con miembros tipo contenedor, datos miembro no copiables (como datos
miembro const) o datos miembro que solo se pueden mover, o incluso lambdas.

Qué es un agregado y como crear tales objetos con inicializadores designados de C++20.

Estructura del libro

El libro contiene 14 capitulos con la siguiente estructura:

Los capitulos 1 a 5 crean una base para el resto del libro. Cubren las reglas bésicas de
inicializacion, los constructores, los destructores y los conceptos basicos de los datos
miembro.

El capitulo 6 trata sobre la deduccion de tipos.

El capitulo 7 es un breve cuestionario sobre constructores. Puedes comprobar tus
conocimientos desde la primera “parte” del libro.

El capitulo 8 describe la inicializacién de datos miembro no estaticos (NSDMI por
sus siglas en inglés), una potente caracteristica de C++11 que mejora la forma en que
trabajamos con datos miembro. Al final del capitulo, puede resolver algunos ejercicios.

El capitulo 9 analiza cémo inicializar datos miembro similares a contenedores.

El capitulo 10 contiene informaciéon sobre datos miembro no regulares y cémo
manejarlos en una clase. Aprenderas sobre const, unique_ptr como datos miembro
y referencias.

El capitulo 11 describe variables estaticas no locales, objetos estaticos, varias opciones
de duracién de almacenamiento y variables inline de C++17 y constinit de C++20.

El capitulo 12 pasa a C++20 y describe los inicializadores designados, una funcién util
basada en algo similar del lenguaje C.

Sobre el libro iii

« El capitulo 13 muestra varias técnicas, como pasar cadenas a constructores, tipificaciéon
fuerte, un contador de clases usando el patron de plantilla curiosamente recurrente (o
CRTP por sus siglas en inglés), el modismo copiar-e-intercambiar y mas.

« El capitulo 14 es el cuestionario final con preguntas de todo el libro.
Y hay dos apéndices:

« Apéndice A - una guia util sobre las reglas para las funciones miembro especiales
generadas por el compilador.

« Apéndice B — respuestas a cuestionarios y ejercicios.

Para quién es este libro

El libro esta destinado a programadores de C++ principiantes o intermedios que desean
aprender varios aspectos de la inicializacion en C++ moderno (de C++11 a C++20).

Debes conocer al menos algunos de los aspectos basicos de la creacion y el uso de clases
personalizadas.

Este texto también es util para los programadores experimentados que conocen los estandares
de C++ mas antiguos y desean pasar a C++17/C++20.

Requisitos previos

+ Deberas tener conocimientos basicos de expresiones C++ y tipos primitivos.

+ Deberas ser capaz de implementar una clase elemental con varios datos miembro, asi
como saber crear y manipular objetos de dicha clase de forma basica.

Retroalimentacion del lector y errata

Si detectas un error, un error tipografico, un error gramatical o cualquier otra cosa
(jespecialmente problemas logicos!) que deba corregirse, envia tus comentarios a bar-
tek@cppstories.com o somete un asunto en github.com/fenbf/cppinitbook_public/issues’.

Aqui esta la errata con la lista de correcciones:

"https://github.com/fenbf/cppinitbook_public/issues

https://github.com/fenbf/cppinitbook_public/issues
https://github.com/fenbf/cppinitbook_public/issues

Sobre el libro iv

www.cppstories.com/p/cppinitbook/?

iTus comentarios son importantes! Si escribes una critica honesta, puedes ayudar con la
promocion del libro y la calidad de mi trabajo posterior.

Ademas, el libro tiene una pagina dedicada en GoodReads. Por favor comparte tus comenta-
rios en: C++ Initialization Story by Barttomiej Filipek®.

O escribe una resefia en Amazon si obtienes este libro en forma impresa.

Coédigo de ejemplo

Puedes encontrar el codigo fuente de todos los ejemplos en este repositorio ptblico indepen-
diente de Github.

https://github.com/fenbf/cppinitbook_public/tree/main/examples
Puedes buscar archivos individuales o descargar toda la rama:

https://github.com/fenbf/cppinitbook_public/archive/refs/heads/main.zip
Licencia del cédigo

El c6digo del libro esta disponible bajo el modelo de la licencia MIT.
Formateo y secciones especiales

Los ejemplos de codigo se presentan en una fuente monoespaciada, similar al siguiente
ejemplo:

*https://www.cppstories.com/p/cppinitbookspanish/
*https://www.goodreads.com/book/show/62606823-c-initialization-story

https://www.cppstories.com/p/cppinitbookspanish/
https://www.goodreads.com/book/show/62606823-c-initialization-story
https://www.cppstories.com/p/cppinitbookspanish/
https://www.goodreads.com/book/show/62606823-c-initialization-story

Sobre el libro v

Titulo del ejemplo

#include <iostream>

int main() {
const std::string text { "Hola, mundo" }
std::cout << text << '"\n'j;

O fragmentos maés cortos (sin titulo y a veces con instrucciones include):

int foo() {
return std::clamp(100, 1000, 1001);

Cuando esté disponible, también veras un enlace a uno de los compiladores en linea donde
puedes jugar con el codigo. Por ejemplo:

Titulo del ejemplo. Ejecutar en Compiler Explorer

#include <iostream>

int main() {
std::cout << "Hola, mundo!";

Puedes hacer clic en el enlace en el titulo y luego debera abrirse el sitio web de un compilador
en linea determinado (en el caso anterior es Compiler Explorer). Puedes compilar la muestra,
ver el resultado y experimentar con el codigo directamente en tu navegador. He aqui una
descripcion general basica de Compiler Explorer:

https://godbolt.org/z/zMEnd5z6b

Sobre el libro vi

= EXPLORER /dd-~ More~ Compilador Share~ Policies™ Other~
Cr+soUCE #1 X g (C++ Editor #1, Compiler #1) 2 X
A- @ +- v £ = C++ v || x86-64 gcc (trunk) v @ -std=c++20 E
1 #include clostream> A~ ©output.~ Y Fiter.~ N-INIECHON +Add new..™ o Add tool.. ~
: std: :basic_ostreamcchar, std::char_traitscchars »>& std::operator<< <c | T

int main()

std::cout << "Hello World!"; fie
401848 | jmp QWORD PTR [rip+éx2fda] # 484020 <std::basic_ostreamcch |

4081046 push oxl
Cadigo fuente @ B Output (0/0) xB6-64gec (trunk) i - 549tms (37368) ~ 198 ines fltred L

Output of X8
A~ OWrap lines

gec (trunk) (Compiler #

Salida de Iz del . ASM generation compiler returned: @
>alida de [a gjscucion del programa Execution build compiler returned:

o errores del compilador Program returned: @
Hello World!

Un disefio de Compiler Explorer utilizado en el libro

Los fragmentos de programas mas largos generalmente se acortaron para presentar solo la
mecanica principal. Pueden carecer de algunas declaraciones #include o tener una linea
“comprimida”. Haz clic en el enlace del compilador en linea para ver la version completa del
programa o verlos en el repositorio publico.

Recomendacién para Compiler Explorer y Referencia de C++

Al ejecutar los ejemplos en Compiler Explorer* con un navegador en espafiol, puedes
hacer clic en el botén derecho del ratén (o equivalente) y aparecera una opcioén en el
menu de contexto, Search on CppReference. Si haces clic, te llevard a la versién en
espanol de la Referencia de C++° para el término selecctionado (clase, funcién, contenedor
u otros)[" contextmenu].

["contextmenu] jGracias a Javier Estrada por sugerir este tip genial!

Limitaciones del resaltado de sintaxis

La version actual del libro puede mostrar algunas limitaciones con respecto al resaltado de
sintaxis.

Por ejemplo:

+ El primer método de una clase no esta resaltado - Primer método de clase no resaltado
en C++ - Asunto #791°.

“https://godbolt.org
*https://es.cppreference.com
“https://github.com/pygments/pygments/issues/791

https://godbolt.org/
https://es.cppreference.com/
https://github.com/pygments/pygments/issues/791
https://github.com/pygments/pygments/issues/791
https://godbolt.org/
https://es.cppreference.com/
https://github.com/pygments/pygments/issues/791

Sobre el libro vii

« El método de plantilla no esta resaltado C++ analizador léxico no reconoce la funcién
si el tipo de retorno tiene una plantilla - Asunto #1138’.

« Los atributos de C++ moderno a veces no se reconocen correctamente.

Otros asuntos de C++ y Pygments: Asuntos de C++ - github/pygments/pygments®.
Secciones especiales
A lo largo del libro también puedes ver las siguientes secciones:

Este es un cuadro de informacion, con notas adicionales relacionadas con la
seccién actual.

Este es un cuadro de advertencia con riesgos y amenazas potenciales relacionados
con un tema determinado.

Este es un cuadro de citas. A menudo se usa en el libro para citar el estandar de C++.

"https://github.com/pygments/pygments/issues/1138
®https://github.com/pygments/pygments/issues?q=is%3Aissue+is%3Aopen+C%2B%2B

https://github.com/pygments/pygments/issues/1138
https://github.com/pygments/pygments/issues/1138
https://github.com/pygments/pygments/issues?q=is:issue+is:open+C%2B%2B
https://github.com/pygments/pygments/issues/1138
https://github.com/pygments/pygments/issues?q=is:issue+is:open+C%2B%2B

Sobre el autor

Bartlomiej (Bartek) Filipek es un desarrollador de software C++ de la hermosa ciudad de
Cracovia, en el sur de Polonia. Comenz6 su carrera profesional en 2007 y en 2010 se gradud
de la Universidad Jagiellonian con una Maestria en Ciencias de la Computacién.

Bartek trabaja actualmente en Xara®, donde desarrolla funciones para editores avanzados de
documentos. También tiene experiencia con aplicaciones de graficos de escritorio, desarrollo
de juegos, sistemas a gran escala para aviacién, escritura de controladores de graficos e
incluso biorretroalimentacién. En el pasado, Bartek también ha ensefiado programacion
(principalmente cursos de programacion de juegos y graficos) en las universidades locales
de Cracovia.

Desde 2011, Bartek publica regularmente en su blog cppstories.com™ (comenzdé como
bfilipek.com'!). El blog se centra en las caracteristicas centrales de C++ y en actualizarse
con los estandares de C++. También es coorganizador del Grupo de usuarios de C++ en
Cracovia'. Puedes escuchar a Bartek en un episodio de CppCast'* donde habla sobre C++17,
blogs y procesamiento de texto.

Desde octubre de 2018, Bartek es experto en C++ para el organismo nacional polaco, que
trabaja directamente con ISO/IEC JTC 1/SC 22 (el comité de estandarizacion de C++).

Bartek recibi6 su primer titulo de MVP de Microsoft para los afios 2019/2020.
En su tiempo libre, le encanta coleccionar y ensamblar modelos de Lego con su hijo.

Bartek es el autor de C++17 In Detail'* y C++ Lambda Story*’

*http://www.xara.com/
'°https://www.cppstories.com]
hitps://www.bfilipek.com
*https://www.meetup.com/C-User-Group- Cracow/
“http://cppcast.com/2018/04/bartlomiej-filipek/
“https://leanpub.com/cpp17indetail
“https://leanpub.com/cpplambda

http://www.xara.com/
https://www.cppstories.com]/
https://www.bfilipek.com/
https://www.meetup.com/C-User-Group-Cracow/
https://www.meetup.com/C-User-Group-Cracow/
http://cppcast.com/2018/04/bartlomiej-filipek/
https://leanpub.com/cpp17indetail
https://leanpub.com/cpplambda
http://www.xara.com/
https://www.cppstories.com]/
https://www.bfilipek.com/
https://www.meetup.com/C-User-Group-Cracow/
http://cppcast.com/2018/04/bartlomiej-filipek/
https://leanpub.com/cpp17indetail
https://leanpub.com/cpplambda

Sobre el traductor

Javier Estrada es un desarrollador de software de C++ en Silicon Valley en el norte de
California. Inici6 su carrera profesional en 1988 y se gradué del Instituto Tecnoldgico de
Chihuahua'® con una Ingenieria Industrial en Electrénica.

Javier trabaja actualmente como Ingeniero Principal de Software en Motorola Solutions'’,
donde desarrolla software para seguridad publica (9-1-1 emergency) en C++ y Java. Javier
también trabaj6 para VMware'® en el equipo que produce vRealize Aria Suite (anteriormente
vRealize Suite), y para Samsung Semiconductor USA (SSI)*” en un grupo de desarollo e
investigacion de almacenamiento de discos de estado sélido (SSD) y su aplicacion en sistemas
operativos, bases de datos, y aprendizaje de maquinas. En el pasado Javier ha impartido
cursos de programacion en Python y Java para equipos de robdtica de escuelas preparatorias
regionales en el sur de California.

Javier publica en su blog Se Habla C++?°, donde trata temas generales y resefias de presenta-
ciones en CppCon® por distintos autores. Puedes ver su perfil profesional en LinkedIn®*.

Javier es el traductor de C++17 - La guia completa® y Lambdas en C++** y es uno de los
editores principales de la Referencia de C++*°. Puedes escuchar a Javier en platicas relampago
en CppCon: A Conversion Story: Improving from_chars and to_chars in C++17%, If You
Build It, Will They Come?*” y C++ en tu idioma®:.

En su tiempo libre, Javier disfruta discutir C++ con su hija, una buena partida de ajedrez, y
leer un buen libro.

*$https://itchihuahua.mx
https://motorolasolutions.com
*https://vmware.com
https://semiconductor.samsung.com/us/
**https://javierestrada.wordpress.com
**https://cppcon.org/
*?https://linkedin.com/in/ljestrada
“https://leanpub.com/cpp17es
**https://leanpub.com/cpplambdaspanish
**https://es.cppreference.com
*https://www.youtube.com/watch?v=7HB4AejLHZs
*"https://www.youtube.com/watch?v=I81IVKve_bEk
**https://youtu.be/n5Uq4J307Al

https://itchihuahua.mx/
https://itchihuahua.mx/
https://motorolasolutions.com/
https://vmware.com/
https://semiconductor.samsung.com/us/
https://javierestrada.wordpress.com/
https://cppcon.org/
https://linkedin.com/in/ljestrada
https://leanpub.com/cpp17es
https://leanpub.com/cpplambdaspanish
https://es.cppreference.com/
https://www.youtube.com/watch?v=7HB4AejLHZs
https://www.youtube.com/watch?v=I8lVKve_bEk
https://www.youtube.com/watch?v=I8lVKve_bEk
https://youtu.be/n5Uq4J3o7AI
https://itchihuahua.mx/
https://motorolasolutions.com/
https://vmware.com/
https://semiconductor.samsung.com/us/
https://javierestrada.wordpress.com/
https://cppcon.org/
https://linkedin.com/in/ljestrada
https://leanpub.com/cpp17es
https://leanpub.com/cpplambdaspanish
https://es.cppreference.com/
https://www.youtube.com/watch?v=7HB4AejLHZs
https://www.youtube.com/watch?v=I8lVKve_bEk
https://youtu.be/n5Uq4J3o7AI

Agradecimientos

Este libro no seria posible sin el valioso aporte de muchos amigos y expertos en C++.

Me gustaria agradecer especialmente a las siguientes personas:

JFT (John Taylor),

Mariusz Jaskotka,

Florin Chertes (véase su perfil profesional en LinkedIn®),

Konrad Jaskowiec (véase su perfil profesional en LinkedIn®’),

Professor Boguslaw Cyganek (véase su perfil profesional en AGH university page®),
Dawid Pilarski (véase su blog en panicsoftware.com®?),

Javier Estrada (véase su perfil profesional en LinkedIn®® blog en Se Habla C++**) y su
cuenta Twitter®,

Jonathan Boccara (de fluentcpp.com™),

Andreas Fertig (véase su blog en andreasfertig.blog®”),

Peter Sommerlad (véase su sitio web e informacién de capacitacion en sommerlad.ch®®),
Timur Doumler (véase su sitio web timur.audio® y su cuenta Twitter*),

Michael Goldshteyn, Arquitecto de Software.

Pasaron mucho tiempo en encontrar incluso pequefias cosas que podrian mejorarse y
ampliarse.

*https://www.linkedin.com/in/florin-ioan-chertes- 41b6845/
*https://pl.linkedin.com/in/konrad-ja%C5%9Bkowiec- 84585159
*'https://home.agh.edu.pl/~cyganek/
**https://blog.panicsoftware.com/
**https://www.linkedin.com/in/ljestrada/
**https://javierestrada.wordpress.com
**https://twitter.com/jestrada

*$https://www.fluentcpp.com/

*"https://andreasfertig.blog/

**https://sommerlad.ch/

**https://timur.audio/

“*https://twitter.com/timur_audio

https://www.linkedin.com/in/florin-ioan-chertes-41b6845/
https://pl.linkedin.com/in/konrad-ja%C5%9Bkowiec-84585159
https://home.agh.edu.pl/~cyganek/
https://blog.panicsoftware.com/
https://www.linkedin.com/in/ljestrada/
https://javierestrada.wordpress.com/
https://twitter.com/jestrada
https://www.fluentcpp.com/
https://andreasfertig.blog/
https://sommerlad.ch/
https://timur.audio/
https://twitter.com/timur_audio
https://www.linkedin.com/in/florin-ioan-chertes-41b6845/
https://pl.linkedin.com/in/konrad-ja%C5%9Bkowiec-84585159
https://home.agh.edu.pl/~cyganek/
https://blog.panicsoftware.com/
https://www.linkedin.com/in/ljestrada/
https://javierestrada.wordpress.com/
https://twitter.com/jestrada
https://www.fluentcpp.com/
https://andreasfertig.blog/
https://sommerlad.ch/
https://timur.audio/
https://twitter.com/timur_audio

Agradecimientos xi

Por dltimo, pero no menos importante, recibi mucha retroalimentacion valiosa y comentarios
de los lectores del blog, Patreon Discord Server (véase C++ Stories en Patreon*'), y debates
en C++ Polska*?. jGracias a todos!

iCon toda la ayuda de estas amables personas, la calidad del libro mejor6 cada vez mas!

“'https://www.patreon.com/cppstories
“*https://cpp-polska.pl/

https://www.patreon.com/cppstories
https://cpp-polska.pl/
https://www.patreon.com/cppstories
https://cpp-polska.pl/

Historial de revisiones

« 10 de enero de 2023 - {La primera versién publica!

« 3 de febrero de 2023 - Capitulo de Inicializaciéon de datos miembro no estaticos
(NSDMI), diagramas en espafiol.

+ 4 de febrero de 2023 - Capitulo de Contenedores como datos miembro.

« 5 de febrero de 2023 - Referencias al final del libro, correccién de erratas.
+ 10 de febrero de 2023 - Capitulo de datos miembro no regulares.

+ 14 de febrero de 2023 - Capitulo de objetos no locales.

+ 24 de junio de 2023 - Todos los capitulos.

1. Local Variables and Simple Types

Let’s start simple and ask, “what is initialization?” When we go to the definition from
C++Reference?, we can read:

Initialization of a variable provides its initial value at the time of construction.

We can translate this definition to the following example:

void foo() {
int x = 42;
// ... use 'x' later...

Above, we have a function with a local variable x. The variable is declared as integer and
initialized with the value 42. This is not the only way you can assign that initial value. Here
are some more options:

struct Point { int x; int y; }; // declare a custom type
Point createPoint(int x) { return {x, -x}; }
int main() {

int x { 42 }; // list initialization

double vy = { 100.0 }; // copy list initialization
auto ptr = std::make_unique<float>(90.5f); // auto type deduction
auto z = createPoint(42); // through a factory function
std::string s (10, 'x'); // calling a constructor
Point p { 10 }; // aggregate initialization

std::array<float, 100> numbers { 1.1f, 2.2f }; // array initialization
//

'https://en.cppreference.com/w/cpp/language/initialization

https://en.cppreference.com/w/cpp/language/initialization
https://en.cppreference.com/w/cpp/language/initialization

Local Variables and Simple Types 2

You can also come up with many other forms of setting a value. We can also extend the
syntax on class data members, static variables, thread locals, or even dynamic memory
allocations.

In theory, initialization is a simple task: “put a value into a memory location of a newly
created variable”. However, such action relates to many different parts of an application
(local vs. non-local scope) and various places in the memory (like stack vs. heap). That’s
why the syntax or the behavior might be slightly different.

In C++, we have at least the following forms of initialization:

« aggregate initialization

« constant initialization

« default initialization

« direct initialization

« copy initialization

« list initialization

« reference initialization

« value initialization

« zero initialization

« plusrelated topics like copy elision, static variables, conversion sequences, constructors,

assignment, dynamic memory, storage, and more.

While the list sounds complex, we’ll move through those topics step by step revealing core
concepts. Later we’ll address more advanced examples and see what happens inside the C++
machinery.

While we can explain most cases on integers and other numerical types, it’s best to work
on something more practical. The book starts with some elementary custom types, then
considers various issues we might have with their early implementations. Later the types
will expand, giving us more context and compelling use cases.

Starting with simple types

Defining a class or a struct (a custom type) in C++ allows you to model your problem domain
and solve problems more naturally. Rather than working with a bunch of variables and
functions, it’s best to group them and provide a consistent API (Application Programming

Local Variables and Simple Types 3

Interface). C++ provides a set of built-in types, including boolean, integral, character, and
floating-point. Additionally, you can use objects from the Standard Library, like various
collections, std: :string, std: :vector, std: :map, std: :set, and many others. You can
collect these essential components and build your types.

To create a background for our main topic, let’s start with a type representing Car
Information for a car listing app. A system reads the car/truck information from a database
and displays it in the application. For an easy start, the type holds four members: name (a
std: :string), production year, number of seats, and engine power.

CarA CarC

name: “...” name: “...”

year: 1990 year: 2019

seats: 4 seats: 5

power: 130hp power: 167hp
CarB CarD
name: “...” name: “...”
year: 2003 year: 2015
seats: 5 seats: 5
power: 116hp power: 95hp

Below there’s the first version of the code for that CarInfo type:

Ex 1.1. Simple CarInfo structure. Run @Compiler Explorer

#include <iostream>
#include <string>

struct CarInfo {
std::string name;
unsigned year;
unsigned seats;
double power;

s

int main() {
CarInfo firstCar;
firstCar.name = "Renault Megane'";
firstCar.year = 2003;
firstCar.seats = 5;
firstCar.power = 116;

https://godbolt.org/z/GYxe4a839

Local Variables and Simple Types 4

std::cout << "name: " << firstCar.name << '\n';
std::cout << "year: " << firstCar.year << '\n';
std::cout << "seats: " << firstCar.seats << '\n';
std::cout << "power (hp): " << firstCar.power << '\n'j;

In the above example, we defined a simple structure that holds data for a CarInfo. The code
is super simple, contains some issues, and follows the style of C++03. In the following few
chapters, I'll guide you through the code and help you understand the problems and how to
eliminate them. We’ll also modernize it to include the latest C++ (up to C++20) features.

First: name, year, seats and power are called non-static data members. Each instance of
the CarInfo class has its own set of those members. In other words, we group variables to
create a representation for models in our problem domain. A user-defined type might also
have static data members, which are data shared between all instances of a given type. For
example, we could imagine a static member variable called numAllCars that would indicate
the total number of cars created in our program. We’ll talk about static data members later
in chapter 11 Static Variables.

Now, let’s investigate the code in detail. The definition and the declaration of the variable
firstCar in the main() function:

CarInfo firstCar;

It is called default initialization and, since our struct is simple, will leave all data members
of built-in types with indeterminate values. Similarly, you can get the same (potentially
buggy effect) for simple types when declared in function (as such variables have automatic
storage duration)

void foo() {
int i; // indeterminate value!
double d; // indeterminate value!

The std: : string data member name, on the other hand, will have an empty state (an empty
string) because its default constructor will be called. More on that later.

’In contrast, static and thread-local objects will be zero-initialized.

Local Variables and Simple Types 5

Once the object is created and uninitialized, we can access its members and set proper values.
By default, struct has public access to its members (and class has private access). This way,
we can access and change their values directly.

o What is “Automatic Storage Duration” ?

All objects in a program have four possible ways to be “stored”: automatic, static,
thread, or dynamic. Automatic means that the storage is allocated at the start of
the scope, like in a function. Most local variables have automatic storage duration
(except those declared as static, extern, or thread_local). We'll talk about this
more in the separate chapter on non-local objects®.

Setting values to zero

You might feel very unsatisfied that after creating a CarInfo object, most data members
have some indeterminate values. We can fix this and make sure data is at least set to “zero”.
Have a look:

Ex 1.2. Value initialization for CarInfo structure. Run @Compiler Explorer

CarInfo emptyCar{};

std::cout << "name: " << emptyCar.name << '\n'j;
std::cout << "year: " << emptyCar.year << '\n'j;
std::cout << "seats: " << emptyCar.seats << '\n';
std::cout << "power (hp): " << emptyCar.power << '\n'j;
The output:

name:

year: 0

seats: 0

power (hp): ©

The initialization with empty braces {} is called value initialization and by default (for built-
in types and classes with default constructors that are neither user-provided nor deleted),
sets data to “zero” (adapted for different types). This is similar to declaring and defining the
following variables:

3(‘lmptm'inlin(‘\';n's

https://godbolt.org/z/sKKMPoE8W

Local Variables and Simple Types

int i{}; // i 0
double d{}; // d 0.0
std::string s{}; // s is an empty string

int j = {}; // other form of value initialization
std::string str = {}; //

This time the storage duration doesn’t matter, and value initialization works the same for
static, dynamic, thread-local, or automatic variables. For types with default constructors
(more on that later), the code will call them and, in the case of string s; will initialize it

to an empty string.

Initialization with aggregates

Our structure is very simple, and for such types, C++ has special rules where we can initialize
their internal values with so-called aggregate initialization. We can use such syntax also for

arrays. Here are some basic examples:

Ex 1.3. Aggregate Initialization basic syntax. Run @Compiler Explorer

// arrays:
int arr[] { 1, 2, 3, 4 };

float numbers[] = { 0.1f, 1.1f, 2.2f, 3.f, 4.f, 5.

int nums[10] { 1 }; // 1, and then all 0s

// structures:

struct Point { int x; int y; };

struct Line { Point pl; Point p2; };

Line longLone {0, 0, 100, 100};

Line anotherlLine = {100}; // rest set to O

Line shortLine {{-10, -10}, {10, 10}}; // nested

}s

In summary, for the above code:

« Each array element, or non-static class member, in order of array subscript/appearance
in the class definition, is copy-initialized from the corresponding clause of the initiali-

zer list.

https://godbolt.org/z/9jq9eTz63

Local Variables and Simple Types 7

+ You can use list initialization for arrays, and when the number of elements is not
provided, the compiler will deduce the count.

« If you pass fewer elements in the initializer list than the number of elements in the
array, the remaining elements will be value initialized. For built-in types, it means the
value of zero.

« For structures, you can use a single initializer list or nested one; the expansion will be
recursive.

« If you provide fewer values than the number of data members in the aggregate, then the
remaining data members (in the declaration order) will be effectively value initialized.

The first bullet point says that each element is copy initialized. We’ll return to this topic and
explain the difference between a copy vs. direct initialization syntax once we know explicit
constructors.

For our structure, we can write the following test code:

Ex 1.4. Aggregate initialization for the CarInfo structure. Run @Compiler Explorer

struct CarInfo {
std::string name;
unsigned year;
unsigned seats;
double power;

s

void printInfo(const CarInfo& c) {
std::cout << c.name << " "
<< c.year << " year, "
<< c.seats << " seats, "
<< c.power << " hp\n'";

int main() {
CarInfo firstCar{"Megane", 2003, 5, 116 };
printInfo(firstCar);
CarInfo partial{"unknown"};
printInfo(partial);
CarInfo largeCar{"large car", 1975, 10};
printInfo(largeCar);

https://godbolt.org/z/5zvd5fehf

Local Variables and Simple Types 8

This will output:

Megane, 2003 year, 5 seats, 116 hp
unknown, 0 year, 0 seats, 0 hp
large car, 1975 year, 10 seats, 0 hp

To give you the full picture, as of C++20, here’s the definition of an aggregate type from the
C++ Standard: dcl.init.aggr*.

An aggregate is an array or a class type with:

« no user-provided, explicit, or inherited constructors
« no private or protected non-static data members
« no virtual functions, and

« no virtual, private, or protected base classes

Don’t worry if you’re not familiar with all of the cases listed above. We’ll discuss them along
the way and see more aggregates in the further parts. There’s also a dedicated chapter about
Aggregates and Designated Initialization in C++20.

Default data member initialization

What if you want to provide some default value for your data member? With value
initialization, you can get zeros for various types, but sometimes it might not be good enough.

Since C++14, we can leverage Non-static Data Member Initializers (NSDMI), also called
Default Member Initializers, to provide default values for aggregates. Have a look:

“https://timsong-cpp.github.io/cppwp/n4868/dcl.init.aggr#initialization,aggregate

https://timsong-cpp.github.io/cppwp/n4868/dcl.init.aggr#:initialization,aggregate
https://timsong-cpp.github.io/cppwp/n4868/dcl.init.aggr#:initialization,aggregate

Local Variables and Simple Types 9

Ex 1.5. Default member initialization and aggregates. Run @ Compiler Explorer

#include <iostream>
#include <string>

struct CarInfo {
std::string name { "unknown" };
unsigned year { 1920 };
unsigned seats { 4 };
double power { 100. };

}s

void printInfo(const CarInfo& c) { /* x/ }

int main() {
CarInfo unknown;
printInfo(unknown);
CarInfo zeroed{};
printInfo(zeroed);
CarInfo partial{"large car", 1975};
printInfo(partial);

This will print:

unknown, 1920 year, 4 seats, 100 hp
unknown, 1920 year, 4 seats, 100 hp
large car, 1975 year, 4 seats, 100 hp

The syntax is quite intuitive; you can initialize a data member at the place where it’s declared.
This can prevent accidental bugs where your data has some indeterminate value. As you
can see from the example, even if you use default initialization or value initialization, data
members will get values that were provided in the struct declaration. If you give fewer
values in the aggregate initializer, the remaining members will get their defaults from the
declaration.

Technically, in-class member initializers have been available since C++11, but aggregate
types weren’t supported initially. In this section, we’ve only scratched the surface of
this handy technique. See the dedicated chapter for this topic: Non-static data member
initialization chapter.

https://godbolt.org/z/Mr49dTnfz

Local Variables and Simple Types 10

Summary

In this chapter, we covered some simple custom types and looked at ways to initialize their
data members. We went from objects with indeterminate values to zero initialization, and
then we learned about aggregates and techniques to provide default values.

Things to keep in mind:

+ Default initialization for objects and variables yields indeterminate values for built-
in types or default-initialize complex types (like std: : string and set it to an empty
string). That’s why it’s essential to be sure your objects and simple variables are
always initialized.

« Value initialization like int x{}; for built-in types effectively yields zero initialization
for them so that they will be zero (in their type).

o With value initialization CarInfo car{}; all data members will be zero-initialized
(for built-in types) or default initialized for complex types.

« Aggregates are simple types or arrays with all public data members; we can initialize
them with an aggregate initialization syntax.

« Thanks to the in-class member initializer feature, you can provide default values for
your data members.

What’s next?

While simple types are handy, in C++, we often need to build large objects where data
members depend on each other or have invariants. In such cases, it’s best to hide them
behind member functions and give access to them under certain conditions. That’s why in
the next chapter, we’ll look at class’s and constructors. We’ll also expand the knowledge
that we got so far.

2. Classes and Initialization With
Constructors

In the previous chapter, you’ve seen that C++ might treat simple structures with all public
data members as an aggregate class. Still, aggregates might not be enough if we want better
data encapsulation and a more complex class API. For full flexibility in C++, we can leverage
constructors that are special member functions invoked when an object is created.

A simple class type

As abackground example, let’s create a type that will hold some elementary network data. To
complicate things, we’d like to compute a basic checksum for the data part. Such a checksum
might be handy for checking if the data was transferred correctly across the Internet (read
more @Wikipedia®).

Ex 2.1. Simple DataPacket class. Run @Compiler Explorer

#include <iostream>
#include <numeric>

size_t calcCheckSum(const std::string& s) {
return std::accumulate(s.begin(), s.end(), static_cast<size_t>(0));

class DataPacket {
private:
std::string data_;
size_t checkSum_;
size_t serverId_;

public:
const std::string& getData() const { return data_; }

'https://en.wikipedia.org/wiki/Checksum

https://en.wikipedia.org/wiki/Checksum
https://godbolt.org/z/jK38bebef
https://en.wikipedia.org/wiki/Checksum

Classes and Initialization With Constructors 12

void setData(const std::string& data) {
data_ = data;
checkSum_ = calcCheckSum(data);
}
size_t getCheckSum() const { return checkSum_; }
size_t getServerId() const { return serverId_; }
void setServerId(size_t serverId) { serverId_ = serverId; }

}s

The class above contains three non-static data members: data_, checkSum_ and serverID_.
I'm using the underscore suffix to indicate private data members, a common practice in
many codebases. See Google C++ Style Guide®.

To keep things simple, I implemented the calcCheckSum function in terms of
std::accumulate(), which is an algorithm from the C++ Standard Library. This
code starts from 0 (we can use 0UZ since C++23 instead of explicit static_cast) and adds
numerical values of letters from the input std: :string. For example, for "HELLO", we’ll
get the following computations:

calcular suma de verificacion

DataPacket{ “HELLO" }
letrazt H E L L O

' ASCII: 72 69 76 76 79 P

T2 + 69 + 76 + 76 + 79 = 372

Calculating simple checksum for a string

DataPacket has so-called getters and setters - functions that return or change a particular
data member. For example getData() returns the data_ data member, while setData(...)
allows to change it.

One important topic is that getters usually have const applied at the end. This means that
a given member function is constant and cannot change the value of the members (unless
they are mutable). If you have a const object, you can only call its const member functions.
Applying const might improve program design as it’s usually easier to reason about the state

*https://google.github.io/styleguide/cppguide.html#Variable_Names

https://google.github.io/styleguide/cppguide.html#Variable_Names
https://google.github.io/styleguide/cppguide.html#Variable_Names

Classes and Initialization With Constructors 13

of const instances. For more information, see this C++ core guideline: Con.2: By default,
make member functions const®.

Member functions might also have noexcept specifier applied. However, this
topic is outside the scope of the book and won’t be covered. You can find more
@C-++Reference - noexcept specifier®.

Here’s the continuation of the example where we create and use the object of the DataPacket
class:

Ex 2.2. Simple DataPacket class, continuation. Run @ Compiler Explorer

int main() {
DataPacket packet;
packet.setData("Programming World");
std::cout << packet.getCheckSum() << '"\n';

The code doesn’t access data members directly but calls member functions to operate on the
object and change its properties.

You can notice public and private parts in the class declaration. The order of those sections
is just a coding convention and they group elements together based on their access modifier.
In short, a member under the public keyword can be accessed from the outside (like calling
a member function or accessing a data member). On the other hand, members under the
private section cannot be accessed from °. In C++, you can also add protected to your class
declaration, which means that member functions or fields are not accessible outside. Still,
they are accessible to all inherited classes (assuming public inheritance, members become
private outside, but public to derived types, see more about different inheritance options
@C++Reference®).

For example, in the main() function above, I cannot write:

*https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con2-by-default-make-member-functions- const
“https://en.cppreference.com/w/cpp/language/noexcept_spec

*Unless accessed by friend functions or classes.

“https://en.cppreference.com/w/cpp/language/access

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con2-by-default-make-member-functions-const
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con2-by-default-make-member-functions-const
https://en.cppreference.com/w/cpp/language/noexcept_spec
https://godbolt.org/z/jK38bebef
https://en.cppreference.com/w/cpp/language/access
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con2-by-default-make-member-functions-const
https://en.cppreference.com/w/cpp/language/noexcept_spec
https://en.cppreference.com/w/cpp/language/access

Classes and Initialization With Constructors 14

DataPacket packet;
packet.serverId = 10; // error: 'size_t DataPacket::serverId'
// is private within this context

as the default access modifier and private inheritance, while struct has both
specified as public. Some C++ guidelines, for example, Google Style Guide see
this link’, suggest using struct only for smaller, “passive” types, with only public
data members. The C++ Core Guidelines also recommend using class if any
member is not public; see C++ Core Guidelines - C.8®.

o The only difference between class and struct in C++ is that class has private

Since our class doesn’t have any user-defined constructors (more on them in the next section),
we can also use value initialization syntax to set values to zero or default values:

Ex 2.3. Value initialization for the DataPacket class. Run @Compiler Explorer

int main() {
DataPacket packet{};

std::cout << "data: " << packet.getData() << '\n'j;
std::cout << "checkSum: " << packet.getCheckSum() << '"\n';
std::cout << "serverId: " << packet.getServerId() << '\n';

This will generate the following output:

data:
checkSum: 0
serverId: 0

However, the main difference now is that because we moved the data members to the private
section, the class is not an aggregate. That’s why we cannot use aggregate initialization to
set all values at once. To fix this, we need to look at constructors. And that is the plan for
further sections.

"https://google.github.io/styleguide/cppguide.html#Structs_vs._Classes
®https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c8-use- class- rather-than- struct-if-any- member-is-non-
public

https://google.github.io/styleguide/cppguide.html#Structs_vs._Classes
https://google.github.io/styleguide/cppguide.html#Structs_vs._Classes
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c8-use-class-rather-than-struct-if-any-member-is-non-public
https://godbolt.org/z/vEhzcsK6c
https://google.github.io/styleguide/cppguide.html#Structs_vs._Classes
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c8-use-class-rather-than-struct-if-any-member-is-non-public
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c8-use-class-rather-than-struct-if-any-member-is-non-public

Classes and Initialization With Constructors 15

Basics of constructors

A constructor is a special member function without a name, but we declare it using the
enclosing class name. You cannot invoke a constructor like other member functions. Instead,
the compiler calls it when an object of its class is being initialized. It has the following basic
syntax:

class/struct ClassName {
/] ...
/*explicitx/ ClassName(parameter-list) = default/=delete
¢ base-class-initializer
, member-init
{ /*body*/ }
/] ...
}s

A constructor has the following parts:

« constructor has no name, but we define it using the name of the class,

« optional explicit - keyword to block implicit conversions on a given class type,
+ ClassName - the name of the given class type (they have to match),

+ parameter-1list- alist of parameters, as in a regular function, might be empty

« optional = default/=delete specifies if a constructor should be deleted (not present)
or defaulted by the compiler,

« : - indicates the start of the member/base initialization list, required when
base-class-initializer or member-init lists are present,

. optional base-class—initializer - a list of base classes’ constructors that we
explicitly want to call,

« optional member—init - a list of data members where we can directly initialize them,

+ {/xbody=*/} - a function body.

You can also apply noexcept, [[attributes]], constexpr, consteval on a
constructor, but the full explanation of those additional properties goes beyond

the scope of the book. Read more at C++Reference - Constructors and member
initializer lists’.

°https://en.cppreference.com/w/cpp/language/constructor

https://en.cppreference.com/w/cpp/language/constructor
https://en.cppreference.com/w/cpp/language/constructor
https://en.cppreference.com/w/cpp/language/constructor

Classes and Initialization With Constructors 16

Let’s have a look at one snippet:

class Product {
public:
Product() : id_{-1}, name_{"none"} { } // a default constructor
explicit Product(int id, const std::string& name)
¢ id_{id}, name_{name} { }

private:
int id_;
std::string name_;

s

The above example shows a class Product with two constructors. The first one is called a
default constructor; it has no arguments. The second one takes two arguments. As you can
notice, C++ allows multiple constructors that look like overloaded functions (they differ by
the number or types of arguments). Each constructor also has a regular function body where
you can execute some code; in our case, they are both empty for now. I also applied the
explicit keyword on the second constructor; we’ll talk about it later.

The primary function of constructors is to perform some actions at the start of a lifetime of
an object. Usually, it means data member initialization, resource allocation (opening a file, a
socket, memory allocation), or even doing some special logic (like logging).

In our case, constructors touch only data members inside a special section of constructors
called member initializer list: like, id_{-1}, name_{"none"}. Inside this initializer list, we
can also call constructors of base classes (if any). Later, we’ll address inheritance in the
Inheritance section.

The member initializer list is more efficient than using the body of a constructor. Sometimes
it’s even the only option to initialize the value, as with types that are not assignable. See the
following alternative:

Classes and Initialization With Constructors 17

class Product {
public:
Product() { id_ = 0; name_ = "none"; }

private:
int id_;
std::string name_;

}s

The code will yield the same values for data members as in the previous example, but the data
members are set in two steps rather than one. With the member initializer list data members
are set directly, same as calling: int id_ { © } or std::string name_ {"none"}. On the
other hand, if we use assignment in the constructor body, it requires two steps:

// step 1: default init:

int id_; // indeterminate value!
std::string name_; // default ctor called
// step 2: assignment:

id_ = 03

name_ = "none";

While this might not be a big issue for built-in simple types like int , you’ll need some more
CPU cycles for larger objects like strings.

There’s also one important aspect about the initializer list: the order of initialization. This is
covered in The C++ Specification: 11.10.3 Classes'’:

Non-static data members are initialized in the order they were declared in the class
definition (regardless of the order of the mem-initializers).

When I write:

'%https://timsong-cpp.github.io/cppwp/n4868/class.base.init#13.3

https://timsong-cpp.github.io/cppwp/n4868/class.base.init#13.3
https://timsong-cpp.github.io/cppwp/n4868/class.base.init#13.3

Classes and Initialization With Constructors 18

class Product {
public:
Product() : name_{"none"}, id_{-1} { }

private:
int id_;
std::string name_;

}s

The values will be set correctly, but the order will differ from what we think. A compiler
might show us a warning in this case. Here’s the warning from GCC compiled with -Wall
option (experiment @Compiler Explorer?):

<source>: In constructor 'Product::Product()':
<source>:15:17: warning: 'Product::name_' will be 1initialized after [-Wreorder]

15 | std::string name_;
| A
<source>:14:9: warning: 'int Product::id_' [-Wreorder]
14 | int dd_;

| ANmn

The initialization order might be critical when you imply some dependency on the values.
For example, we can write the following artificial sample:

struct S {
int x;
int y;
int z;

SO x{0}, y{1}, z{x+y} { }
/1 SO+ y{e}, z{e}, x{z+y}, {}
s

In the above example, the first constructor initializes x and y and then uses those values to
initialize z. This is complicated and might be hard to read, but it works correctly. On the
other hand, in the second (commented out) constructor, the order of initialization will create

hitps://godbolt.org/z/jE77169qd

https://godbolt.org/z/jE77169qd
https://godbolt.org/z/jE77169qd

Classes and Initialization With Constructors 19

an undefined behavior for initializing x, as z and y won’t be initialized yet. It’s best to avoid
such dependencies to minimize the risk of bugs.

Let’s see how a constructor works by creating some objects of the Product class:
Product none;

In the first example, we created the none object, which is default constructed. The compiler
will call our default constructor; thus, the data members will be initialized to id_ = -1 and
name_ = "none".

Product car (10, "car");

The example uses the form of direct initialization which calls the constructor with two
arguments. After the call data members will be: id_ = 10 and name_ = "car".

And the last example:
Product tvSet{100, "tv set" };

This time we also called a constructor with two arguments, but the syntax is called * direct
list initialization® - "{}". Please notice that I also used this form of initialization inside the
initializer list in constructors.

Here’s the complete example:

Ex 2.4. Constructors for the Product class. Run @Compiler Explorer

#include <iostream>
#include <string>

class Product {
public:
Product() : id_{-1}, name_{"none"} { } // a default constructor
explicit Product(int id, const std::string& name)
id_{id}, name_{name} { }

int Id() const { return id_; }
std::string Name() const { return name_; }

https://godbolt.org/z/Yb6Yzn79a

Classes and Initialization With Constructors 20

private:
int id_;
std::string name_;

+s

int main() {
Product none;
std::cout << none.Id() << ", " << none.Name() << '\n';

Product car (10, "super car'");
std::cout << car.Id() << ", " << car.Name() << '\n'j;

Product tvSet{77, "tv set" };
std::cout << tvSet.Id() << ", " << tvSet.Name() << '"\n'j;

You might also scratch your head and ask why I declared the name parameter as const
std: :string&rather than just std: : string&. First, we don’t want to modify this parameter
in the constructor’s body. What’s more, const T&- const references can bind to “temporary”
objects like a string literal "super car". Without a const reference, we would have to pass
some named string object. Alternatively, we can pass the name by value and perform a
“move operation” on that argument. Further in the book, I'll address this topic in detail, see
chapter: A Use Case - Best Way to Initialize string Data Members.

More on uniform initialization

Content available in the full version of the book.

Body of a constructor

After the member initializer list, each constructor has a regular function body, { ... 1,
where you can perform additional steps to modify variables or call other functions. The only
difference between a regular function and a constructor is that a constructor cannot return
any values. Typically, a constructor throws an exception to report an error.

Here’s a small example that shows how to add some logging into a constructor body and
throw an exception on error:

Classes and Initialization With Constructors 21

Ex 2.7. Logging in a constructor. Run @ Compiler Explorer

#include <iostream>
#include <stdexcept> // for std::invalid_argument

constexpr int LOWEST_ID_VALUE = -100;

class Product {
public:
explicit Product(int id, const std::string& name)
id_{id}, name_{name}

{
std::cout << "Product(): " << dd_ << ", " << name_ << '"\n'j;
if (id_ < LOWEST_ID_VALUE)
throw std::invalid_argument{"id lower than LOWEST_ID_VALUE!"};
}

std::string Name() const { return name_; }

private:
int id_;
std::string name_;

}s

int main() {
try {
Product car (10, "car");
std::cout << car.Name() << " created\n";
Product box(-101, "box");
std::cout << box.Name() << " created\n";

}
catch (const std::exception& ex) {

std::cout << "Error - " << ex.what() << '"\n';
}

The above example shows a constructor that performs logging and basic parameter checking.
It uses a LOWEST_ID_VALUE, a global constant marked with the constexpr keyword (the
second time we used this keyword).

https://godbolt.org/z/Weecb5Gha

Classes and Initialization With Constructors 22

The constexpr specifier has been available since C++11 and guarantees that a
value is available at compile time for constant expressions. For example, you
can use such a variable to set the number of elements in a C-style array. It’s
often perceived as a “type-safe macro definition”. The keyword applies to all
built-in trivial types like integral values, floating-point, or even character literals
(but not std: :string); there’s also a way to declare custom constexpr-ready
types. You can also create a function to be constexpr and possibly evaluate it at
compile-time; however, we won’t cover such functions in this book. See more at
C++Reference - constexpr'?.

If you run this program, you can see the following output:

Product(): 10, car

car created

Product(): -101, box

Error - id cannot be lower than LOWEST_ID_VALUE!

Please notice that while two constructors were called, we can see that only the first one
succeeded. Since the constructor for box threw an exception, this object is not treated as
fully created. More on that later, when we’ll talk about destructors.

Adding constructors to pataPacket

After the introduction, we can start adding constructors to our DataPacket class.

Ex 2.8. Adding constructors. Run @ Compiler Explorer

class DataPacket {
std::string data_;
size_t checkSum_;
size_t serverId_;

public:
DataPacket ()
data_{}
, checkSum_{0}
, serverId_{0}

"*https://en.cppreference.com/w/cpp/language/constexpr

https://en.cppreference.com/w/cpp/language/constexpr
https://godbolt.org/z/dEx1Yv91a
https://en.cppreference.com/w/cpp/language/constexpr

Classes and Initialization With Constructors

{3

explicit DataPacket(const std::string& data, size_t serverId)
data_{data}

, checkSum_{calcCheckSum(data)}

, serverId_{serverId}

{1

const std::string& getData() const { return data_; }
void setData(const std::string& data) {

data_ = data;

checkSum_ = calcCheckSum(data);
}

size_t getCheckSum() const { return checkSum_; }

void setServerId(size_t id) { serverId_ = id; }
size_t getServerId() const { return serverId_; }

+s

23

And here’s the demo code that creates some objects:

Ex 2.9. Adding constructors, Demo. Run @Compiler Explorer

void printInfo(const DataPacket& packet) {

std::cout << "data: " << packet.getData() << '\n';
std::cout << "checkSum: " << packet.getCheckSum() << '\n';
std::cout << "serverId: " << packet.getServerId() << '\n';

int main() {
DataPacket empty;
printInfo(empty);
DataPacket zeroed{};
printInfo(zeroed);
DataPacket packet{"Hello World", 101};
printInfo(packet);
DataPacket reply{"Hi, how are you?'", 404};
printInfo(reply);

https://godbolt.org/z/dEx1Yv91a

Classes and Initialization With Constructors 24

The output:

data:

checkSum: ©
serverId: 0

data:

checkSum: ©
serverId: 0

data: Hello World
checkSum: 1052
serverId: 101
data: Hi, how are you?
checkSum: 1375
serverId: 404

In the above example, we used two constructors:

« The first one is a default constructor and initializes data members to default values. It
will be called for default and value initialization.

« The second constructor takes several arguments and matches them with data members.
This constructor makes it easy to pass parameters all at once (previously, we needed
to call setters). This one takes two parameters, but we can initialize as many data
members as we need. For example, the constructors ensure the checkSum_ variable
matches data_. Since those two members are related, thanks to constructors and the
setData member function, we keep the relation safe.

We can also use default member initializers inside a class, but we’ll address that in detail in
a separate chapter.

Compiler-generated default constructors

While C++ allows you to implement various constructors, it can make your life easier by
automatically declaring and defining an implicit default constructor.

In other words, if you write a class type with no default constructor:

Classes and Initialization With Constructors 25

class Example {
public:
std::string Name() const { return name_; }

private:
std::string name_;

s
Then the compiler will create an implicit empty constructor:
inline Example() noexcept { }

A simple rule is that if a class has no user-declared constructors, the compiler will create a
default one if possible.

Have a look:

Ex 2.10. Implicit default constructor. Run @ Compiler Explorer

struct Value {
int x;

}s

struct CtorValue {
CtorValue(int v): x{v} { }

int x;

}s

int main() {
Value v; // fine, default constructor available
// CtorValue vy; // error! no default ctor available

CtorValue z{10}; // using custom ctor

As you can see above, the compiler will create an implicit default constructor for the value
class (since it has no other constructors), but it won’t generate a default constructor for the
CtorValue class. Also, notice that Value: : x will have an indeterminate value as a default
constructor is empty and won’t set any value for x.

https://godbolt.org/z/eeofTfbnv

Classes and Initialization With Constructors 26

g Default constructors only default-initialize data members, so in the case of built-in

types, it means indeterminate values!

You can control the creation of such a default constructor using two keywords, default
and delete. In short, default tells the compiler to use the default implementation, while
delete blocks the implementation.

Ex 2.11. Default and Delete Constructors. Run @ Compiler Explorer

struct Value {
Value() = default;

int x;

s

struct CtorValue {
CtorValue() = default;
CtorValue(int v): x{v} { }
int x;

s

struct DeletedValue {
DeletedValue() = delete;
DeletedValue(int v): x{v} { }

int x;

}s

int main() {
Value v; // fine, default constructor available
CtorValue y; // ok now, default ctor available

CtorValue z{10}; // using custom ctor
// DeletedValue w; // err, deleted ctor!
DeletedValue u{10}; // using custom ctor

In the above example, you can see that we declare Value() = default; this tells the
compiler to create an empty (doing nothing) implementation. Also, in the Ctorvalue class,
we also use the same technique, and, as you can notice, the default construction works now.

https://godbolt.org/z/1Msszxodr

Classes and Initialization With Constructors 27

The third class has = delete as its default constructor, and you’ll get an error if you want
to create an object of this class using its default constructor.

The implicit default constructor won’t be created if your type has data members that are
not default-constructible or inherits from a type that is not default-constructible. That
includes references, const data members, unions, and others. See the complete list here
@C++Reference®®.

You may also ask what’s the difference between value() = default and
value() { } they both are “empty”. Still, according to the C++ Standard the
second constructor is considered user-declared or user-provided and has some
consequences in the type characteristics. We'll cover that later once we cover copy
constructors in the section: Trivial classes and user-declared/user-provided default
constructors.

Explicit constructors

Content available in the full version of the book.

Difference between direct and copy initialization
Content available in the full version of the book.

Even more

Content available in the full version of the book.

Constructor summary

This chapter was probably the longest, as we had to prepare the background for the rest
of the book. Once you know the basics of how data members can be initialized through
constructors, we can move further and explore various new C++ features and examples.

Now, it’s essential to summarize two other types of constructors: copy and move. Read on
to the next chapter.

https://en.cppreference.com/w/cpp/language/default_constructor#Deleted_implicitly-declared_default_constructor

https://en.cppreference.com/w/cpp/language/default_constructor#Deleted_implicitly-declared_default_constructor
https://en.cppreference.com/w/cpp/language/default_constructor#Deleted_implicitly-declared_default_constructor

3. Copy and Move Constructors

Regular constructors allow you to invoke some logic and initialize data members when an
object is created from a list of arguments. But C++ also has two special constructor types
that let you control a situation when an object is created using an instance of the same class
type. Those constructors are called copy and move constructors. Let’s have a look.

Copy constructor

A copy constructor is a special member function taking an object of the same type as the
first argument, usually by const reference.

ClassName(const ClassName&);

Technically it might have other parameters, but they all have to have default values assigned.

It’s used and called when you create an object using a variable of the same type, to be precise,
when you use copy initialization.

Product base { 42, "base product" }; // an initial object

// various forms of initialization, where a copy constructor 1is called
Product other { base };

Product another (base);

Product oneMore = base;

Product arr[] = { base, other, oneMore };

Implementing a copy constructor might be necessary when your class has data members
that shouldn’t be shallow copied, like pointers, resource ids (like file handles), etc.

A canonical implementation of a copy constructor

Implementing a copy constructor is straightforward and very similar to regular constructors.
The only difference is that you have a single parameter which is a (const) reference to an
object of that same type.

For the Product class, we can write the following:

Copy and Move Constructors 29

class Product {
public:
explicit Product(int id, const std::string& name)
id_{id}, name_{name}

std::cout << "Product(): " << dqd_ << ", " << name_ << '"\n'j;

// copy constructor
Product(const Product& other)
id_{other.id_}, name_{other.name_}

{13

private:
int id_;
std::string name_;

s

As you can see, the copy constructor uses the member initialization list to copy the data from
other. Please notice that there’s no need to use public getters, as we have access to all private
data members. The compiler requires you to use a reference, so writing Product (Product
other) won'’t be treated as a copy constructor.

A copy constructor can also take a non-const argument like Product (Product&
other). However, such a constructor might modify the other object and might
be hard to reason about the code. It might be better to use move semantics and
move constructors when you want to “steal” the guts of some other object.

Here’s another example where logging is enabled:

Copy and Move Constructors

Ex 3.1. An example of a logging copy constructor. Run @Compiler Explorer

30

#include <iostream>
#include <string>

class Product {
public:
explicit Product(int id, const std::string& name)
id_{id}, name_{name}

std::cout << "Product(): " << dd_ << ", " << name_ << '\n'j;

Product(const Product& other)
id_{other.id_}, name_{other.name_}

std::cout << "Product(copy): " << dqd_ << ", " << name_ << '"\n'j;

const std::string& Name() const { return name_; }

private:
int id_;
std::string name_;

s

int main() {
Product base { 42, "base product" }; // an initial object
std::cout << base.Name() << " created\n";
std::cout << "Product other { base };\n";
Product other { base };
std::cout << "Product another(base);\n";
Product another(base);
std::cout << "Product oneMore = base;\n";
Product oneMore = base;
std::cout << "Product arr[] = { base, other, oneMore };\n";
Product arr[] = { base, other, oneMore };

https://godbolt.org/z/dE86rq91K

Copy and Move Constructors

If you run the code, you should see the following output:

Product(): 42, base product

base product created
Product other { base };
Product(copy): 42, base
Product another (base);
Product(copy): 42, base
Product oneMore = base;
Product(copy): 42, base
Product arr[] = { base,
Product(copy): 42, base
Product(copy): 42, base
Product(copy): 42, base

product

product

product
other, oneMore };
product
product
product

31

In the first line, we construct base product, and then use it to copy-construct all other

instances.

o Copy constructors can be marked with explicit, but this is not a common

practice and might prevent copy initialization.

A compiler-generated copy constructor

Content available in the full version of the book.

Move constructor

Move constructors take rvalue references of the same type.

ClassName (ClassName&&) ;

In short, rvalue references are temporary objects, usually appearing on the right-hand side
of an expression and which value is about to expire.

For example:

Copy and Move Constructors 32

std::string hello { "Hello"}; // lvalue, a regular object
std::string world { "World"}; // lvalue
std::string msg = hello + world;

Above, the expression hello + world creates a temporary object. It doesn’t have a name,
and we cannot access it easily. Such temporary objects will end their lifetime immediately
after the expression completes (unless it’s assigned to a const or rvalue reference'), so we
can steal resources from them safely. It doesn’t make sense in the case of built-in types like
integers or floats, as we need to copy values anyway. But in the case of strings or memory
buffers, we can avoid data copy and just reassign the pointers.

Move constructors are a way to support the case with initialization from temporary objects.
In many cases, they are an optimization over regular copy constructor calls. Additionally,
they can also be used to pass “ownership” of the resource, for example, with smart pointers.

You can mark a regular object as expiring with the std: :move function when you have a
regular object with a name. This tells the compiler that the object’s value is no longer needed,
so it’s safe to “steal” resources from it.

Have a look at this example:

Ex 3.3. Move Constructor. Run @Compiler Explorer

#include <iostream>
#include <string>

class Product {
public:
explicit Product(int id, const std::string& name)
id_{id}, name_{name}

std::cout << "Product(): " << dd_ << ", " << name_ << '"\n'j;

Product (Product&& other)
id_{other.id_}, name_{std::move(other.name_)}

std::cout << "Product(move): " << dqd_ << ", " << name_ << '"\n'j;

}

'The lifetime of a temporary object may be extended by binding to a const lvalue reference or to an rvalue reference. See more
at https://en.cppreference.com/w/cpp/language/lifetime.

https://godbolt.org/z/nPoGqeh4d

Copy and Move Constructors 33

const std::string& name() const { return name_; }

private:
int id_;
std::string name_;

s

int main() {
Product tvSet {100, "tv set"};
std::cout << tvSet.name() << " created...\n";
Product setV2 { std::move(tvSet) };
std::cout << setV2.name() << " created...\n";
std::cout << "old value: " << tvSet.name() << '\n';

When you run the code, you can see the following output:

Product(): 100, tv set

tv set created...
Product(move): 100, tv set
tv set created...

old value:

As you can see, we create the first object, and then mark it as expiring. This gives a chance
for the compiler to call the move constructor.

Product (Product&& other)
id_(other.id_), name_(std: :move(other.name_))

The above implementation is similar, but we need to pay attention to details. Since id_ is just
an integer, all we can do is copy the value. We cannot perform any optimizations here. As
for the name_ member, we can initialize it with std: :move (other.name_). We encounter
the first problem, other.name_ is a name, so not a temporary (a temporary has no name);
we can not move (take, steal) its contents. That is why we tell the compiler to interpret it as
temporary by using the expression std: :move (other.name_). This will invoke the move
constructor for std: : string, and, potentially, “steal” the buffer from other.name_.

Copy and Move Constructors 34

The move constructor must ensure that the other object is left in an unspecified but valid
state. In our case, we can see it in the last line of the output. The line old value: ends with
nothing, so the string was simply cleared.

Move constructors can be marked with explicit, butit’s not a common practice
and might affect generic code that relies on implicit move constructors (like
standard algorithms).

noexcept and move constructors

Content available in the full version of the book.

A compiler-generated move constructor

Content available in the full version of the book.

Distinguishing from assignment

Content available in the full version of the book.

Adding logging to constructors

As an exercise, let’s add logging to our DataPacket class and see when each constructor is
called:

O 00 N o U A W N B

W W W w W W W W NN NDNDNDNDNDNDNNMNDNDDNDMDNNERBE PR PR 2 E R R
N o 0 WN B O O o N0 b WNPE O W o N0 0D WwWN E O

Copy and Move Constructors

Ex 3.6. Logging in the DataPacket class. Run @Compiler Explorer

35

class DataPacket {

std:

:string data_;

size_t checkSum_;

size_t serverId_;

public:

DataPacket()
data_{}

, checkSum_{0}

, serverId_{0}

{3

explicit DataPacket(const std::string& data, size_t serverId)

data_{data}
, checkSum_{calcCheckSum(data)}
, serverId_{serverId}

{

std::cout << "Ctor for \"" << data_ << "\"\n";

DataPacket(const DataPacket& other)
data_{other.data_}

, checkSum_{other.checkSum_}

, serverId_{other.serverId_}

{

std::cout << "Copy ctor for \"" << data_ << "\"\n";

DataPacket (DataPacket&& other)

data_{std::move(other.data_)}
, checkSum_{other.checkSum_}

, serverId_{other.serverId_}

{

other.checkSum_ = 0; // leave this in a proper state
std::cout << "Move ctor for \"'" << data_ << "\"\n";

// move string member...

// no need to move built-in types...

https://godbolt.org/z/ar1Yzrqr6

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

© 0 N oo U b~ W N K

I
=

Copy and Move Constructors

DataPacket& operator=(const DataPacket& other) {
if (this != &other) {
data_ = other.data_;
checkSum_ = other.checkSum_;
serverId_ = other.serverId_;
std::cout << "Assignment for \'"" << data_ << "\'"\n";

}

return xthis;

DataPacket& operator=(DataPacket&& other) {
if (this != &other) {

data_ = std::move(other.data_);

checkSum_ = other.checkSum_;

other.checkSum_ = 0; // leave this in a proper state
serverId_ = other.serverId_;

std::cout << "Move Assignment for \"" << data_ << "\'"\n";

}

return xthis;

// getters/setters
}s

36

And here’s the main() function:

Ex 3.6. Logging in the DataPacket class, the main function. Run @Compiler Explorer

int main() {
DataPacket firstMsg {"first msg", 101 };
DataPacket copyMsg { firstMsg };

DataPacket secondMsg { '"second msg", 202 };
copyMsg = secondMsg;

DataPacket movedMsg { std::move(secondMsg)};

// now we stole the data, so it should be empty...

std::cout << "secondMsg's data after move ctor): \'""
<< secondMsg.getData() << "\'", sum: "

https://godbolt.org/z/ar1Yzrqr6

12
13
14
15
16
17
18
19
20

Copy and Move Constructors 37

<< secondMsg.getCheckSum() << '"\n'j;
movedMsg = std::move(firstMsg);

// now we stole the name, so it should be empty...
std::cout << "firstMsg's data after move ctor): \""
<< firstMsg.getData() << "\", sum: "
<< firstMsg.getCheckSum() << '"\n'j;

When you run the example, you should see the following output:

Ctor for "first msg"

Copy ctor for "first msg"

Ctor for "second msg"

Assignment for '"second msg"

Move ctor for "second msg"

secondMsg's data after move ctor): "", sum: O
Move Assignment for "first msg"

firstMsg's data after move ctor): "", sum: 0

The example creates several DataPacket objects, and with each creation, you can see that
the compiler invokes the appropriate constructor or an assignment operator. For instance,
in line 3, we need a copy constructor call. On the other hand, line 5 shows an assignment
(copyMsg already exists). In the last section of main(), lines 8 and 14, there are calls to
std: :move(), which marks secondMsg and firstMsg as an rvalue reference, from which
the contents could be moved. This means that the object is unimportant later, and we can
“steal” from it. In this case, the compiler will call a move constructor or move assignment
operator.

Trivial classes and user-declared/user-provided
default constructors

Content available in the full version of the book.

O© 00 N O U A W N

=
(o]

4. Delegating and Inheriting
Constructors

Content available in the full version of the book.

Limitations

Content available in the full version of the book.

Inheritance

Content available in the full version of the book.

Inheriting constructors

In our previous example with DebugPropertyInfo we didn’t have any new data members,
only some new member functions. The code showed a single constructor called the base class
constructor. Since C++11, you can tell the compiler to “reuse” the code:

Ex 4.4. Inheriting constructors. Run @Compiler Explorer

class DebugDataPacket : public DataPacket {
public:
using DataPacket: :DataPacket;

void DebugPrint(std::ostream& os) {
os << getData() << ", " << getCheckSum() << '"\n'j;
}
}s

int main() {

https://godbolt.org/z/jeo6Kbd8P

11
12
13

Delegating and Inheriting Constructors 39

DebugDataPacket hello{"hello!", 404};
hello.DebugPrint(std::cout);

Consider line 3 - using DataPacket::DataPacket;. This tells the compiler that it can
use all constructors from the base class, ignoring access modifiers. It means that all public
constructors are visible and can be called, but the protected will still be protected in that
context. Still, if you want to limit the access to constructors, you must explicitly write
constructors for DebugDataPacket.

We completed all information about constructors, but it’s good to mention one more thing:
destructors. See in the next chapter.

5. Destructors

While constructors are responsible for various situations where an object is created, C++
also offers a way to handle object destruction. C++ doesn’t provide any form of garbage
collection available in many popular programming languages, but thanks to precise lifetime
specification, you can be confident when your object will be destroyed.

Each class has a special member function called a destructor. If you don’t write one, the
compiler prepares a default implementation. A destructor is called when an object ends its
lifetime. In most cases, it means that an object goes out of the scope (for stack-allocated
variables), or when a delete operator is called (for heap-allocated variables). Additionally,
when you have a user-defined class, it will automatically call destructors for its data
members. For more information about lifetime, see a good summary at C++Reference page’.

Basics

2

Before we move on, it would be good to expand our terminology. So far I mentioned “object
to refer to entities of some type and relied on our “intuition” on how to access such entities.
But the C++ Standard defines an object in the following terms (simplified, based on C++
Draft - intro.object?):

The constructs in a C++ program create, destroy, refer to, access, and manipulate objects.
An object is created by a definition, by a new-expression, by an operation that implicitly
creates objects, or when a temporary object is created. An object occupies a region
of storage in its period of construction, throughout its lifetime, and in its period of
destruction.

And continuing:

'https://en.cppreference.com/w/cpp/language/lifetime
*https://timsong-cpp.github.io/cppwp/n4868/intro.object#1

https://en.cppreference.com/w/cpp/language/lifetime
https://timsong-cpp.github.io/cppwp/n4868/intro.object#1
https://timsong-cpp.github.io/cppwp/n4868/intro.object#1
https://en.cppreference.com/w/cpp/language/lifetime
https://timsong-cpp.github.io/cppwp/n4868/intro.object#1

Destructors 41

« An object can have a name,
«+ An object has a storage duration which influences its lifetime,
« An object has a type,

+ Objects can contain other objects, called subobjects. A subobject can be a member
subobject, a base class subobject, or an array element.

Here’s a basic scenario for a destructor that handles a case where the lifetime of an object
ends:

Ex 5.1. A logging destructor. Run @Compiler Explorer

#include <iostream>
#include <string>

class Product {
public:
explicit Product(const char* name, unsigned id)
name_ (name)
, id_(4d)
{

std::cout << name << ", id " << did << '"\n';

~Product() {
std::cout << name_ << " destructor...\n";

std::string Name() const { return name_; }
unsigned Id() const { return id_; }

private:
std::string name_;
unsigned id_;

s

The example contains the following special member function:

https://godbolt.org/z/chEvdezvb

Destructors 42

~Product() {
std::cout << name_ << " destructor...\n";

The syntax is unique as it has no parameters and has the ~ prefix. You can also have only
one destructor in a class. What’s more, a destructor doesn’t return any value.

Now, let’s create two objects of that type:

Ex 5.1. A logging destructor, continuation. Run @ Compiler Explorer

int main() {

{

Product tvset("TV Set", 123);
}
{

Product car("Mustang", 999);
}

In our case, the constructor and the destructor is used to perform the logging. When you run
the example, you’ll see the following output:

TV Set, id 123
TV Set destructor...
Mustang, id 999
Mustang destructor...

I specifically enclosed objects (created on the stack) in separate scopes so that their lifetime
ends when their scope ends. On the other hand, if we have code:

int main() {
Product tvset("TV Set", 123);
Product car("Mustang", 999);

Then both tvset and car share the same lifetime scope so that we can expect the following
output:

https://godbolt.org/z/chEvdezvb

Destructors 43

TV Set, id 123
Mustang, id 999
Mustang destructor...
TV Set destructor..

As you can see, the destructors are called in the reverse order of how they were created. It’s
because the stack is a LIFO structure (Last In First Out). tvset was created first and added
to the stack, then car is added. When the function goes out of the scope, the stack is cleared,
taking elements in the reverse order. So car is deleted first, and then tvset. This is illustrated
by the following diagram:

crear nuevas variables y objeto limpiando el ambito y la pila

segundo en removerse

|

pila :
|
|
|
| removiendo de
| la parte posterior
|

crece

‘ |

hacia | ‘
|
|
|

abajo k
™

empujado en la pila removiendo el primero

Adding and removing objects from the stack.
Objects allocated on the heap
Content available in the full version of the book.

Destructors and data members

Content available in the full version of the book.

Virtual destructors and polymorphism

Content available in the full version of the book.

Destructors 44

Partially created objects

Content available in the full version of the book.

Use Cases

The primary use case for destructors is when you need to release resources allocated in a
constructor. For example, you allocate some memory when the object is created, and then
the memory must be released to avoid memory leaks. Similarly, you can open a file or a
database connection, and then you must ensure the file or the connection is closed when the
object goes out of scope. Fortunately, in Modern C++, there are fewer and fewer places where
you need custom destructors. For example, when your data members are standard containers
(like std: :vector<int>, or std: :map<std::string, int>)in your classes, then you can
rely on default destructors to do the job. Standard containers like std: : vector<int> might
allocate memory buffers, but they also manage that buffer and release it properly, so you
don’t need to take any action when using them in a class.

A compiler-generated destructor

Content available in the full version of the book.

6. Initialization and Type
Deduction

Content available in the full version of the book.

7. Quiz on Constructors

Congratulations!
You’ve just completed the section on the basics and constructors.

Here’s a quick quiz. Try answering the following questions, and then we will continue our
journey :)

1. Can a constructor have a different name than the class name?

1. Yes
2. No
3. Yes, but it can be only named self()

2. What operations are called in the following code? Pick one option.
std::string s { "Hello World" };

std::string other = s;

1. A constructor is called for s. Then, as assignment operation is called for other.
2. A constructor is called for s, and then a copy constructor is called to create other.

3. A constructor is called for s, and then another regular constructor is called for other.

More questions available in the full version of the book.

Apéndice A - Cuestionarioy
respuestas a los ejercicios

Contenido disponible en la version completa del libro.

Referencias

Materiales y enlaces relacionados sobre la inicializacion de datos miembro en C++:

Propuestas para caracteristicas de C++:

+ N2756' - Inicializadores de datos miembro no estaticos para C++11,
+ P0683? - Inicializador por defecto de campo de bits para C++20,

« P0386° - Variables en linea para C++17,

« P0329* - Inicializadores designados para C++20,

« P0960° y P1975° - Inicializacion de agregados a partir de una lista con paréntesis para
C++20.

Recursos valiosos para C++:

« Borrador del estandar de C++7 - N4868 (octubre de 2020 - borrador de trabajo previo a
la plenaria virtual/C++20 mas cambios editoriales),

+ Apoyo de compiladores de C++ - Referencia de C++® - una lista de caracteristicas y su
compatibilidad con el compilador desde C++11,

+ Guias Basicas de C++’ - una guia abierta y editada por la comunidad para el estilo C++,
dirigida por Bjarne Stroustrup y Herb Sutter.

Libros:

« “Embracing Modern C++ Safely”° por J. Lakos, V. Romeo , R. Khlebnikov, A. Meredith,
un libro maravilloso y muy detallado sobre las ultimas caracteristicas de C++, desde
C++11 hasta C++14 en la primera edicion.

'https://wg21.link/N2756

*https://wg21.link/P0683

*https://wg21.link/P0386

“https://wg21.link/P0329

*https://wg21.link/p0960

“https://wg21.link/p1975
"https://timsong-cpp.github.io/cppwp/n4868/
*https://es.cppreference.com/w/cpp/compiler_support
*https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
'°https://amzn.to/3PywHTg

https://wg21.link/N2756
https://wg21.link/P0683
https://wg21.link/P0386
https://wg21.link/P0329
https://wg21.link/p0960
https://wg21.link/p1975
https://timsong-cpp.github.io/cppwp/n4868/
https://es.cppreference.com/w/cpp/compiler_support
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://amzn.to/3PywHTg
https://wg21.link/N2756
https://wg21.link/P0683
https://wg21.link/P0386
https://wg21.link/P0329
https://wg21.link/p0960
https://wg21.link/p1975
https://timsong-cpp.github.io/cppwp/n4868/
https://es.cppreference.com/w/cpp/compiler_support
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://amzn.to/3PywHTg

Referencias 49

« “Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11 and C++14”"
por Scott Meyers

Presentaciones:

+ Core C++ 2019: Initialisation in modern C++'? por Timur Doumler,

« CppCon 2018: “The Nightmare of Initialization in C “** por Nicolai Josuttis,

CppCon 2021: Back To Basics: The Special Member Functions'* por Klaus Iglberger,
« ACCU 2022: What Classes We Design and How" - por Peter Sommerlad,
« CppCon 2018 “The Bits Between the Bits: How We Get to main()”*® - por Matt Godbolt

Articulos y otros enlaces:

« Non-Static Data Members Initialization - C++ Stories'” - fuente inicial del libro,

« What happens to your static variables at the start of the program? - C++ Stories*?,

« Always Almost Auto Style' por Herb Sutter,

« Guias Basicas de C++ - C51%° and C52°" - sobre constructores delegadores y herederos,
« Modern C++ Features - Inherited and Delegating Constructors* por Arne Mertz,

« Trivial, standard-layout, POD, and literal types* en Microsoft Docs,

« Modern C++ Features - Uniform Initialization and initializer_list>* por Arne Mertz,

« The cost of std::initializer_1list* por Andrzej Krzemienski,

« Objects, their lifetimes and pointers®® por Dawid Pilarski,

"https://amzn.to/3t5tmS4

*https://www.youtube.com/watch?v=v0jM4wm1zYA

Phttps://www.youtube.com/watch?v=7DTIWPgX6zs

“*https://www.youtube.com/watch?v=9BM5LAvNtus

Phttps://www.youtube.com/watch?v=fzsBZicBe88

'“https://www.youtube.com/watch?v=dOfucXtyEsU

https://www.cppstories.com/2015/02/non-static- data-members-initialization/

*®https://www.cppstories.com/2018/02/staticvars/

https://herbsutter.com/2013/08/12/gotw-94-solution-aaa- style-almost-always-auto/

*https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c51-use- delegating-constructors-to-represent-common-
actions-for-all-constructors-of-a-class

*'https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c52-use-inheriting-constructors- to-import- constructors-
into-a-derived-class-that-does-not-need- further-explicit-initialization

**https://arne-mertz.de/2015/08/new- c-features-inherited-and- delegating- constructors/

*https://docs.microsoft.com/es-mx/cpp/cpp/trivial-standard-layout-and-pod-types?view=msvc-170

**https://arne- mertz.de/2015/07/new-c-features-uniform-initialization-and-initializer_list/

**https://akrzemil.wordpress.com/2016/07/07/the-cost-of-stdinitializer_list/

*https://blog.panicsoftware.com/objects-their-lifetimes-and-pointers/

https://amzn.to/3t5tmS4
https://www.youtube.com/watch?v=v0jM4wm1zYA
https://www.youtube.com/watch?v=7DTlWPgX6zs
https://www.youtube.com/watch?v=9BM5LAvNtus
https://www.youtube.com/watch?v=fzsBZicBe88
https://www.youtube.com/watch?v=dOfucXtyEsU
https://www.cppstories.com/2015/02/non-static-data-members-initialization/
https://www.cppstories.com/2018/02/staticvars/
https://herbsutter.com/2013/08/12/gotw-94-solution-aaa-style-almost-always-auto/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c51-use-delegating-constructors-to-represent-common-actions-for-all-constructors-of-a-class
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c52-use-inheriting-constructors-to-import-constructors-into-a-derived-class-that-does-not-need-further-explicit-initialization
https://arne-mertz.de/2015/08/new-c-features-inherited-and-delegating-constructors/
https://docs.microsoft.com/es-mx/cpp/cpp/trivial-standard-layout-and-pod-types?view=msvc-170
https://arne-mertz.de/2015/07/new-c-features-uniform-initialization-and-initializer_list/
https://akrzemi1.wordpress.com/2016/07/07/the-cost-of-stdinitializer_list/
https://blog.panicsoftware.com/objects-their-lifetimes-and-pointers/
https://amzn.to/3t5tmS4
https://www.youtube.com/watch?v=v0jM4wm1zYA
https://www.youtube.com/watch?v=7DTlWPgX6zs
https://www.youtube.com/watch?v=9BM5LAvNtus
https://www.youtube.com/watch?v=fzsBZicBe88
https://www.youtube.com/watch?v=dOfucXtyEsU
https://www.cppstories.com/2015/02/non-static-data-members-initialization/
https://www.cppstories.com/2018/02/staticvars/
https://herbsutter.com/2013/08/12/gotw-94-solution-aaa-style-almost-always-auto/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c51-use-delegating-constructors-to-represent-common-actions-for-all-constructors-of-a-class
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c51-use-delegating-constructors-to-represent-common-actions-for-all-constructors-of-a-class
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c52-use-inheriting-constructors-to-import-constructors-into-a-derived-class-that-does-not-need-further-explicit-initialization
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c52-use-inheriting-constructors-to-import-constructors-into-a-derived-class-that-does-not-need-further-explicit-initialization
https://arne-mertz.de/2015/08/new-c-features-inherited-and-delegating-constructors/
https://docs.microsoft.com/es-mx/cpp/cpp/trivial-standard-layout-and-pod-types?view=msvc-170
https://arne-mertz.de/2015/07/new-c-features-uniform-initialization-and-initializer_list/
https://akrzemi1.wordpress.com/2016/07/07/the-cost-of-stdinitializer_list/
https://blog.panicsoftware.com/objects-their-lifetimes-and-pointers/

Referencias

« Tutorial: When to Write Which Special Member®” por Jonathan Miiller,

+ The implication of const or reference member variables in C++%® por Lesley Lai.

*"https://www.foonathan.net/2019/02/special-member-functions/
**https://lesleylai.info/en/const-and-reference- member-variables/

50

https://www.foonathan.net/2019/02/special-member-functions/
https://lesleylai.info/en/const-and-reference-member-variables/
https://www.foonathan.net/2019/02/special-member-functions/
https://lesleylai.info/en/const-and-reference-member-variables/

	Tabla de contenido
	Sobre el libro
	¿Por qué debes leer este libro?
	Objetivos de aprendizaje
	Estructura del libro
	Para quién es este libro
	Requisitos previos
	Retroalimentación del lector y errata
	Código de ejemplo
	Formateo y secciones especiales

	Sobre el autor
	Sobre el traductor
	Agradecimientos
	Historial de revisiones
	Local Variables and Simple Types
	Starting with simple types
	Setting values to zero
	Initialization with aggregates
	Default data member initialization
	Summary

	Classes and Initialization With Constructors
	A simple class type
	Basics of constructors
	Body of a constructor
	Adding constructors to DataPacket
	Compiler-generated default constructors
	Explicit constructors
	Difference between direct and copy initialization
	Constructor summary

	Copy and Move Constructors
	Copy constructor
	Move constructor
	Distinguishing from assignment
	Adding logging to constructors
	Trivial classes and user-declared/user-provided default constructors

	Delegating and Inheriting Constructors
	Limitations
	Inheritance
	Inheriting constructors

	Destructors
	Basics
	Objects allocated on the heap
	Destructors and data members
	Virtual destructors and polymorphism
	Partially created objects
	Use Cases
	A compiler-generated destructor

	Initialization and Type Deduction
	Quiz on Constructors
	Apéndice A – Cuestionario y respuestas a los ejercicios
	Referencias

