C++ for dinosaurs

Guide for

readable, maintainable, reusable and faster code

Nick Economidis

C++ for dinosaurs

Guide for readable, maintainable, reusable and faster
code

Nick Economidis

This book is for sale at http://leanpub.com/cpp_for_dinosaurs

This version was published on 2014-07-25

ISBN 978-1-312-36766-1

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and

many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2014 Nick Economidis

http://leanpub.com/cpp_for_dinosaurs
http://leanpub.com
http://leanpub.com/manifesto

Contents

Preface i
Whoisthisbookfor. i
How toread thisbook ii
Why this book was written oo ii
Acknowledgements: iii
0.1 Step 4: Algorithms should read like pseudocode 1

Learning the details, 4

1 Avoid using low-level stringso Lo 5
1.1 Problem description 5

1.2 Thesolution 7

Preface

Habits are the brain’s actions in power-saving mode. Experienced programmers evolve habits so
that they can save energy in common tasks, and spend it in solving difficult problems.

Dinosaurs are the experienced programmers in the company who have evolved a style of program-
ming featuring a certain pattern of habits. The older the dinosaurs are, the more obstinate they are.
They aren’t willing to break these habits, because they work fine for them.

From the aspect of development, this argument is actually right; development is usually faster
when you use habits and don’t stand to think for simple things. For the whole program though,
development only accounts for about 15% of the temporal effort, while maintenance accounts
for nearly 80%. There are habits, especially old ones, that have a serious impact in reading,
understanding, and therefore maintaining code. This includes both other people’s code, or even
one’s own, two-month-old code.

In this book I am addressing such habits, and provide alternative ones, based on contemporary
instruments provided by C++.

This book is not about teaching for a paradigm-shift. It is about writing C++ using native idioms,
not like C, Java, or Fortran.

The book makes use of features in C++03 and C++ Technical Report 1 libraries (tr1). So, any compiler
after 2005 should support the contents of this book. Certain features of C++11 are also discussed as
an alternative, where applicable.

Who is this book for

« This book was originally aimed for engineers and programmers who strongly believe in C.
Most bad habits stem from practices developed by the low-level nature of C. The problems of
these habits are demonstrated and alternatives are offered. The book contains all the necessary
material, so that C programmers can get the kickstart they need to embrace C++.

« C++ programmers will benefit from the style described in this book. Their style is often filled
with impurities inherited from Java and C books.

+ Students will find a guide to creating professional looking coding style. Colleges very rarely
provide any incentive for writing quality code. This book bridges the gap between knowing
C++ and writing good code.

CONTENTS ii

If you care about software quality but fear that it takes huge organisational changes to achieve it,
this book is the missing link towards your goal.

[am describing steps that you can take to write clear code. This is an important quality because:

Clear code increases readability.
Readable code allows your partner to have an opinion about your code.
Readable code is the prerequisite for code reviews.

It is other people’s eyes that spot bugs, not tests'.

Clear code also promotes maintenance.

Prerequisite knowledge

« This book will not teach you C++. I expect that you can write C or C++ without much
difficulty. I suppose that at least six months of working experience or a couple of years of
exercises at college should be enough in order to appreciate this book.

+ You do not need to know C++, but you should be able to write in C.

+ No object oriented programming knowledge is required.

How to read this book

The first half of the book can be read sequentially. I demonstrate the characteristics of poor code
that [am addressing. Then I describe the common arguments of those who resist adopting C++ and
explain how I am going to invert them. Finally, I describe the six steps that you can take to write
clearer code.

Throughout the first chapters, there are references to the second part of the book. All examples
and demonstrations are studied in separate chapters. This gives me enough space to go into greater
depths. It makes reading the whole concept smoother, too.

Why this book was written

I studied Electrical Engineering in the mid 90’s, and I was taught C and Matlab for problem solving.
I only used C for production code.

I have worked on programs that already had a lifetime of more than 10 years. This means that they
carried a lot of legacy code. The features had to be delivered fast and there was hardly ever enough
time for proper programming.

Most of my career I had to use C and C++. However, there was always an underlying rule that C was
to be preferred. There was not enough trust that C++ had a significant advantage — C++ was thought

ltests are written to spot bugs that you know they exist, so that they do not appear again. But tests do not discover bugs.

CONTENTS iii

of as an object-oriented language. Indeed, I have made a lot of regrettable errors in my projects, as
a result of experimenting with features of C++, especially object-oriented programming. However,
[always felt a strong distaste whenever I had to switch to C.

Finally after ten years, through the advancements of C++ and some experts’ ideas, I feel that I
can present (without remorse) some ways C programmers can use to create elegant, readable, yet
traditional programs.

These ways involve the use of certain C++ features to make good old-fashioned C code read and
work better. They have nothing to do with object oriented programming. It is not the most suitable
solution for most problems anyway.

I presented these advancements through a series of lectures to my colleagues, and it was the first
time that I managed to change the dinosaurs’ attitude towards C++. In fact, they were so interested
that they encouraged me to write this book.

In this book I will demonstrate how C-style makes code unreadable, buggy and slow. I will show
the features of C++ that deter people from adopting it, and how to fix this issue. I will present a
few basic rules, that will change how you write, not how you think. Ultimately, with this style shift,
your code will read nicer, you will reduce the bug count, and your program may even run faster.

Acknowledgements:

This book collects the best ideas and suggestions about readable code, presented recently by
Sean Parent, Bjarne Stroustup, James Coplien and Trygve Reenskaug. Their presentations were so
inspiring I felt I had to test, present and write about them. This book serves as a testimonial that
their proposals actually work for production code, and are also easy to learn and adhere to.

The cover of this book was painted by Chrysa Malama®.

®http://rabbithole2014.blogspot.com/

http://rabbithole2014.blogspot.com/
http://rabbithole2014.blogspot.com/

CONTENTS 1

0.1 Step 4: Algorithms should read like pseudocode

When an algorithm is described like pseudo-code, there is hardly ever any mention about the
underlying data-structures. No statement is made on whether a 1ist, a dynamic array, or abinary
tree should be used.

With C++, it is possible to code in such a way.

Let’s compare how you would write an algorithm in C, that accumulates numbers in an array:

int accumulate (int numbers[], int sz, int sum)

{
int 1i;
for (i=0; i<sz; i++) {
sum += numbers[i];
}
return sum;
}

Now, what would you do if you had to accumulate the entries of abinary tree? oralinked list?

« would you re-write a version of accumulate() for the tree or the 1ist? or
« would you copy the tree or list into an array and then call accumulate()?

well, people usually choose the path of least pain:

« if you're in a hurry, you copy the data into suitable data structure, and then move to the next
task.

« if you have time, you rewrite the algorithm, find a clumsy name, like accumulate_list(), or
accumulate2(), taking the risk of introducing bugs.

« If the algorithm is simple enough, you rewrite it in-place, where you need it.

a really conscious programmer might even consider writing a macro for it—for reuse. Try writing
a macro for as simple an algorithm as this one! Then, try to provide a nice API to call it!

Done that? Now what would you do if you needed to accumulate over a container of doubles?

But really, if you wanted to describe the algorithm to your colleague, you would write it like:

CONTENTS

T accumulate (IT from, IT to, T sum)

{
foreach entry in [from:to]
sum += entry;
return sum
}

well, the equivalent in C++ is:

template <typename T, typename IT>

inline

T accumulate (IT from, IT to, T sum)

{
for (IT iter = from; iter
sum += *iter;
return sum;
}

Look how you can call it:

vector<int> v; int sum
list<double> v; double sum

set<float> ' float sum

sum
sum

sum

= to; ++iter)

accumulate (v.begin(), v.end(), sum);
accumulate (v.begin(), v.end(), sum);
accumulate (v.begin(), v.end(), sum);

this allows you to replace the container types without changing user code.

0.1.1 How does that compare to a C function ?

readability

apart from the first line that declares the template types, the rest is good-old C/C++ code -
there is no special syntax, or characters like \, # or ## that you see in macros.

speed

execution speed is definitely much faster than copying the container to an array. The function
is marked as inline, allowing the optimiser to decide whether it should be inlined, or not. In

C,

« if accumulate() was an extern function, the optimiser would not be able to optimise.

« if a macro was used, the function would have forcefully be inlined, but that might not
be the best action to take, especially for functions longer than 2-3 lines.

CONTENTS 3

size of executable
if accumulate() is implemented as an extern function:

« in C, the code remains in the executable, even if it is not called.

« in C++, the template function is instantiated only when it is used.
if accumulate() is implemented as macro:

« in C, the code is copied in every macro use.

« In C++, some calls of the template function may be inlined, while others will share a
single instance of the function.

code reuse
only by using a macro (a well known bad practice) can you reuse an algorithm with different
parameter types. Template provides a much better option.

Learning the details

1 Avoid using low-level strings

C-style strings require too much housekeeping. Code is susceptible to bugs and memory leaks.

1.1 Problem description

You do not know when a function returns a pointer to a string, or to a copy of the string. You simply
cannot trust the return value of a function.

Consider the following code, that uses a function, change_working_directory().

const char *old_dir;
const char *new_dir;

change_working_directory ("~/books/literature");
old_dir = get_working_directory();

change_working_directory ("~/books/comics");
new_dir = get_working_directory();

What is the string for old_dir and new_dir ?

It should be that old_dir is "~/books/literature" and new_dir is "~/books/comics". But it
actually depends on the implementation of get_working_directory().

0 typically, you can get the current working directory using this method.

int sz = A_FILENAME_MAX;
char *cwd = malloc(sz);
if(!getcwd(cwd, sz)) {
if (errno == ERANGE) {
do {
sz k= 2;
cwd = realloc(cwd, sz);
} while (getcwd(cwd, sz) == NULL && errno == ERANGE);
}
else {

}

Avoid using low-level strings 6

If get_working_directory() is implemented as:

const char* get_working_directory()

{
int sz = A_FILENAME_MAX;
static char *cwd = malloc(sz); // static, to avoid allocations
return cwd;

}

then old_dir and new_dir will be the same, namely "~/books/comics". Which is totally counter
intuitive!

If this is the way that get_working_directory() is implemented, you would have to write

const char *old_dir;

const char *new_dir;

change_working_directory ("~/books/literature");
old_dir = strdup (get_working_directory());

change_working_directory ("~/books/comics");
new_dir = strdup(get_working_directory());

free(new_dir);
free(old_dir);

We have guarded ourselves from unexpected behavior, taking a big hit in readability.

Unfortunately, this is not a global solution against this type of problems: the code now runs the risk
of memory leaks.

What if get_working_directory() is implemented like this?

const char* get_working_directory()

{
int sz = A_FILENAME_MAX;
char *cwd = malloc(sz); // non-static
return cwd;

}

In this case, it is the user who is responsible of freeing the string.

Avoid using low-level strings 7

const char *old_dir;

const char *new_dir;

change_working_directory ("~/books/literature");
old_dir = get_working_directory();

change_working_directory ("~/books/comics");
new_dir = get_working_directory();

free (new_dir);
free (old_dir);

As you can see, there’s no way you can compose the user code to guard against any kind of
implementation of such functions. Even if one looks at the declaration of the function, he cannot
tell whether he owns the string returned, or not.

1.2 The solution

The solution is to use C++’s string. In this case, we can implement get_working_directory() was
so that it returns a string:

string get_working_directory()

{
int sz = A_FILENAME_MAX;
char *cwd = malloc(sz);
return string(cwd);

}

This leads to a user code which is always safe, and easy to read.

Avoid using low-level strings

change_working_directory ("~/books/literature");
string old_dir = get_working_directory();

change_working_directory ("~/books/comics");
string new_dir = get_working_directory();

now, this code

is easy to read

requires no housekeeping (no calls to free() are needed)

the strings returned can be changed - they are not const

there are no surprises when it comes to calling get_working_directory()

	Table of Contents
	Preface
	Who is this book for
	How to read this book
	Why this book was written
	Acknowledgements:
	Step 4: Algorithms should read like pseudocode

	Learning the details
	Avoid using low-level strings
	Problem description
	The solution

